CN103765803A - 波长交换光网络中的路径计算 - Google Patents

波长交换光网络中的路径计算 Download PDF

Info

Publication number
CN103765803A
CN103765803A CN201180073316.8A CN201180073316A CN103765803A CN 103765803 A CN103765803 A CN 103765803A CN 201180073316 A CN201180073316 A CN 201180073316A CN 103765803 A CN103765803 A CN 103765803A
Authority
CN
China
Prior art keywords
path
end node
transformation parameter
calculating
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180073316.8A
Other languages
English (en)
Other versions
CN103765803B (zh
Inventor
R.马格里
F.库吉尼
F.保卢西
N.萨姆博
P.卡斯托尔迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN103765803A publication Critical patent/CN103765803A/zh
Application granted granted Critical
Publication of CN103765803B publication Critical patent/CN103765803B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

路径计算客户端(PCC)(21)能够请求路径计算元件(PCE)(22)来计算跨波长交换光网络的路径。PCC(21)发送标识端节点(10)的请求。端节点(10)能够支持传输参数,例如调制格式或者前向纠错(FEC)类型,的多个可能值。PCE(22)计算端节点之间的路径,并且向PCC(21)发送应答。应答标识端节点之间的路径,并且标识所计算路径的传输参数的所选值。应答能够包括路径的谱指配。应答能够是PCE通信协议(PCEP)应答消息。

Description

波长交换光网络中的路径计算
技术领域
本发明涉及波长交换光网络(WSON)中的路径的计算、用于请求路径计算的设备以及用于执行路径计算的设备。
背景技术
波长交换光网络(WSON)支持要求网络中的连接的节点之间的端对端光程(称作光路)。WSON能够部署于大区域,以及光程能够以最小电再生来路由(如果可能的话)。在中间节点由波长选择开关(WSS)以光学方式来交换业务。WSON中的链路按照波分复用(WDM)方式来操作,并且在多个不同波长携带业务。在建立端节点之间的路径时,可对端节点之间的整个端对端路径来为路径指配特定波长,或者如果支持波长转换,则可在端节点之间的路径的不同分支(leg)上为路径指配不同波长。
路径计算元件(PCE)定义为一个实体(组件、应用或者网络节点),其能够基于网络图来计算网络路径或路线,并且应用计算限制。路径计算客户端(PCC)是请求路径计算将要由PCE来执行的客户端应用。PCC和PCE经过PCE通信协议(PCEP)进行通信。PCEP操作定义成实现有效的基于PCE的路径计算并且又实现网络资源的有效使用。在因特网工程任务组(IETF)文档RFC 4655中描述了基于PCE的架构,以及在RFC 4657中描述了PCE通信协议。
在WSON中,路径计算客户端能够是想要建立跨WSON的路径的端节点。PCE能够位于网络中的任何位置,并且可处于光交换元件、网络管理系统(NMS)或者操作支持系统(OSS)中,或者可以是单独的网络服务器。
当前所部署节点中的转发器通常采用唯一的或者静态配置的传输技术,例如每转发器采用唯一所支持调制格式。
对WSON定义了特定PCEP操作。它们包括例如实现损害验证以及路由和波长指配的能力。US 2010/0220996A1和“PCEP Extensions for WSON Routing and Wavelength Assignment” (draft-lee-pce-wson-rwa-ext-01.txt,2011年3月,http://tools.ietf.org/html/draft-lee-pce-wson-rwa-ext-01)描述WSON中的PCEP信令。这些PCEP操作能够从PCC向PCE发送传输参数,例如调制格式或者FEC类型。这些被PCE简单地用作输入或限制,以及PCE将尝试计算满足限制的端节点之间的路径。
发明内容
本发明的一个方面提供一种在波长交换光网络的路径计算元件处服务于对路径计算的请求的方法。该方法包括从路径计算客户端接收对于端节点之间的路径的计算的请求。该方法包括确定由端节点所支持的传输参数的多个可能值。该方法包括计算端节点之间的路径。计算包括选择传输参数的值中之一。该方法包括向路径计算客户端发送应答。该应答标识端节点之间的路径,并且该应答标识所计算路径的传输参数的所选值。
另一方面提供一种在波长交换光网络的路径计算客户端处请求路径的计算的方法。该方法包括向路径计算元件发送对于端节点之间的路径的计算的请求,其中端节点支持传输参数的多个可能值。该方法包括从路径计算元件接收应答。该应答标识由路径计算元件所计算的端节点之间的路径,并且该应答标识路径的传输参数的所选值。
路径计算客户端(PCC)提供有至少一个传输参数的值(其作为由路径计算元件(PCE)所执行的路径计算的结果而得到)。一个或多个传输参数的所选值能够在PCE通信协议(PCEP)应答消息中传递给PCC。
传输参数能够是调制格式。调制格式传输参数的一些可能值是双极化正交相移键控(DP-QPSK)和双极化16正交幅度调制(DP-16QAM)。能够使用其它值。不同调制格式的配置通常要求沿不同的谱资源量的路径的保留。这在所支持光学可达范围(reach)方面还会引起不同的性能。一般来说,调制格式在带宽方面越有效,则光学可达范围更为关键。
另一个可能的传输参数是前向纠错(FEC) FEC类型。不同的FEC类型要求不同的数据开销量,即,不同的线路速率和不同的所需谱资源。但是,不同的FEC类型还实现不同等级的传输质量(例如可接受的误比特率预先FEC),其中具有光学可达范围中的直接暗示。
该方法特别适合于具有灵活转发器的WSON,其中传输参数(例如调制格式和/或FEC类型)能够按照所需光学可达范围以及特定链路或路径损害特性来动态配置。
实施例的一个优点在于,有可能确定充分的传输质量,同时使用例如在带宽使用方面更为有效的传输参数的值。这允许灵活波长交换光网络中的谱资源的更最佳使用。
PCE能够确定满足目标函数,例如给定某个传输质量目标的情况下所需谱资源的最小化,的结果。目标函数能够在PCE静态配置。备选地,目标函数能够在PCEP请求中传递给PCE。
在WSON的节点中应用传递给PCC的传输参数(例如最佳调制格式和FEC类型)的值,以建立路径。
PCE能够位于网络中的任何位置,并且可处于光交换元件、网络管理系统(NMS)或者操作支持系统(OSS)中,或者可以是单独的网络服务器。
光网络能够使用光学正交频分复用(OFDM)或者单载波传输技术。
本发明的其它方面提供用于执行所述或要求保护的方法步骤中任何步骤的设备。
本发明的一个方面提供一种供波长交换光网络中使用的路径计算元件(PCE)。PCE包括用于与路径计算客户端(PCC)进行通信的接口。PCE包括处理器,其设置成经由接口从路径计算客户端接收对于端节点之间的路径的计算的请求,端节点支持传输参数的多个可能值。处理器设置成确定由端节点所支持的传输参数的多个可能值。处理器设置成计算端节点之间的路径,其中路径的计算包括选择传输参数的值中之一。处理器设置成经由接口发送应答。该应答标识由路径计算元件所选的端节点之间的路径,并且该应答标识路径的传输参数的所选值。
本发明的一个方面提供一种供波长交换光网络中使用的路径计算客户端(PCC)。PCC包括用于与路径计算元件(PCE)进行通信的接口。PCC包括处理器,其设置成经由接口向路径计算元件发送对路径的计算的请求。该请求标识路径的端节点。端节点支持传输参数的多个可能值。处理器设置成从路径计算元件接收应答。该应答标识由路径计算元件所选的端节点之间的路径,并且该应答标识路径的至少一个传输参数的所选值。
这里所述的功能性能够通过硬件、处理设备所运行的软件或者通过硬件和软件的组合来实现。处理设备能够包括计算机、处理器、状态机、逻辑阵列或者任何其它适当的处理设备。处理设备能够是运行软件以使通用处理器执行所需任务的通用处理器,或者处理设备能够专用于执行所需功能。本发明的另一方面提供在由处理器运行时执行所述方法的任何方法的机器可读指令(软件)。机器可读指令可存储在电子存储器装置、硬盘、光盘或其它机器可读存储介质上。机器可读指令能够经由网络连接下载到存储介质。
附图说明
将仅作为举例、参照附图来描述本发明的实施例,在附图中:
图1示出波长交换光网络(WSON);
图2示出图1的WSON的节点;
图3示出PCC与PCE之间的PCEP通信;
图4示出图3中使用的消息;
图5示出WSON的示例拓扑;
图6示出在PCC所执行的方法;
图7示出在PCE所执行的方法;
图8示出试验台WSON;
图9和图10示出使用图8的试验台所得到的数据;
图11示出试验台的节点之间的通信;
图12示出作为试验台的WSON的另一个示例拓扑;
图13示出用于实现路径计算实体之一的计算机系统。
具体实施方式
图1示出具有节点10(其还能够称作网络元件)的示例光传输网络2。光传输链路5连接节点10。业务在链路5上由波长信道6(称作λ)来携带。在网络2中建立连接或光路。在网络2的一对(或更多)节点10之间建立各光路。术语“连接”和“光路”将可互换地使用。光路能够经由中间节点传递。各节点具有网络接口,以用于在λ上光学传送业务以及用于在λ上光学接收业务。节点10连接到多个链路5,并且能够包括灵活波长选择开关(WSS),例如带宽可变光交叉连接(BV-OXC)。在节点10,在网络接口处,在入口链路5的λ上接收业务,该业务被转发到要求的出口网络接口,并且在出口链路5的λ上传送。节点10能够将业务转发到网络2的其它节点10,或者能够插入(add)从其它节点(其没有形成网络2的一部分)所接收的业务,或者分离(drop)送往其它节点(其没有形成网络2的一部分)的业务。
网络2还包括称作路径计算客户端(PCC) 21和路径计算元件(PCE) 22的实体。路径计算客户端(PCC)向PCE提交计算路径的请求。PCE 22服务于来自PCC的请求。PCE设置成计算端节点之间的路由,并且采用所选路径来应答PCC。有利地,PCE还能够执行所请求光路的谱指配和损害验证(IV)。路由和谱指配的组合功能称作(RSA)。执行组合路由和谱指配以及损害验证的PCE将缩写为IV&RSA。PCE能够使用业务工程数据库(TED) 23。TED 23能够存储与谱资源可用性(例如可保留频隙)有关的信息,以帮助PCE选择可用的资源。检验损害感知PCE中的光路的光学可行性的信息也能够存储在TED 23中或者在PCE 22可访问的另一个数据库中。
路径计算引擎(PCE) 22能够集中在网络的节点,或者该功能性能够分布在网络的多个节点之间。类似地,TED能够是集中或分布式的。PCE 22能够形成网络管理系统(NMS)的一部分。PCC 21能够位于节点10(如图1所示),但是能够位于网络2的任何部分。
图2示出图1的光传输网络2中的端节点10之一的示例形式。光接口31包括一组转发器32。转发器32设置成使用一系列可能调制格式中之一用数据来调制光载波信号。转发器32的操作波长能够从一系列可能波长来配置。可变带宽光交叉连接(BV-OXC) 35按照其谱占用,沿发射方向复用一组不同的波长信号,以及沿接收方向对一组波长信号进行解复用。BV-OXC能够每信道操控可变的带宽量,例如信道1操控25 GHz带宽、相邻信道2操控75 GHz等。可变带宽光交叉连接(BV-OXC) 35在光域中还能够接转链路5之间的业务。对于前向和反向传输方向,能够通过独立λ来支持双向操作。有利地,独立链路5用于各传输方向。转发器可支持以一个或多个比特率(例如2.5 Gb/s、10 Gb/s、40 Gb/s、100 Gb/s、200 Gb/s)的传输或接收。将来系统可使用更高比特率。转发器可支持使用一个或多个例如以下的调制格式的传输或接收:通-断键控(OOK)或者相位调制格式,如差分正交相移键控(DQPSK),双极化正交相移键控(DP-QPSK),正交幅度调制(DP-QAM)和双极化正交幅度调制(DP-QAM)。在灵活WSON中,转发器32并不是限制到波长信道的固定网格。而是能够为转发器指配来自灵活网格的多个频隙。这样,沿光链路5的相邻业务流(信道)能够具有不同的带宽。节点10能够具有管理平面接口41和控制平面接口42。控制平面信令,例如RSVP-TE信令,能够在节点之间发送,以保留资源并且建立光路。转发器控制模块43控制转发器32的配置,例如波长、带宽、调制格式。转发器控制模块43与PCC 21和管理平面接口41和/或控制平面接口42进行通信,以确立将要由转发器32所使用的传输参数的值。
在节点能够有选择地使用DP-16QAM调制方案以100 Gb/s以及使用DP-QPSK调制方案以100 Gb/s进行通信的网络中,对于这两种方案存在不同的谱占用。DP-16QAM相对DP-QPSK使所需谱减半。灵活WSON能够通过有效地利用如下两个方面在所占用谱资源方面提供优点:(i) 采用可配置高级调制格式操作的灵活转发器,以及(ii) 采用每输出端口可配置频隙的灵活光交叉连接(OXC)。调制格式和灵活OXC能够按照所需光学可达范围来动态配置,以便使谱利用为最小。
图3示出PCC 21与PCE 22之间的PCEP通信。通信包括PCC向PCE 22发送PCEP请求消息101。PCE 22基于在请求消息101中接收的信息来计算102路径。PCE 22还能够使用其它信息,例如损害信息以及与可用波长信道有关的信息。然后,PCE 22向PCC 21发送PCEP应答消息103。
有利地,PCEP请求消息标识由所请求路径的端节点所支持的传输参数的值。备选地,其它技术可采用来向PCE 22提供这个信息,例如带外通信或者监听携带这个信息的特定路由协议扩展。
图4示意示出PCEP应答消息103的元素。消息103能够包括:信息104,标识由PCE所选的路径;信息105,标识由PCE所选的调制类型;信息106,标识由PCE所选的FEC类型;以及信息107,标识由PCE所选的谱指配。信息105-107能够作为PCE协议(PCEP)的扩展来携带。例如,信息元素105能够通过包含数字代码(其标识调制格式)或者通过使用二进制字段,来标识调制格式的所选值,在二进制字段中各二进制数表示不同的调制格式,以及这些数中的特定数设置为“1”以指示选择的调制格式。类似技术能够用来标识所选FEC类型106。稍后参照图11来描述指示谱指配107的一种示范方式。
现在将参照图5来描述操作WSON的一种示例情况。WSON包括节点1-8。中间节点具有带宽可变的光交叉连接。
当路径计算请求由PCC(例如位于入口节点1)来生成时,在IV&RSA PCE 22接收PCEP PCReq消息。PCEP PCReq消息标识源s和目的地d作为端点以及100 Gb/s的所请求比特率。另外,提供两个所支持调制格式的指示:DP-16QAM和DP-QPSK。这些是由节点1和2处的转发器所支持的调制格式。IV&RSA PCE 22计算给定某个量度(例如跳数)下的最短路径的集合Ps,d。还对Ps,d中的各路径估计传输质量(QoT)量度,例如光信噪比(OSNR),并且将其与OSNR阈值 (每调制格式一个)进行比较,使得保证例如10-3的误比特率(BER)(在接收器考虑相干检测和前向纠错(FEC))。
在图5的网络中,在节点1与节点2之间存在三个不同的可能路径。PCE例如通过使用TED 23中的信息,知道这些路径的传输性能。第一路径p1将遇到大约33 dB的接收光信噪比(OSNR)。第二路径p2具有26 dB的接收OSNR。最后,第三路径p3具有19 dB的接收OSNR。考虑各链路的噪声来计算这些OSNR值:它们表示应当保证的OSNR要求。
不同调制方案具有不同要求。DP-16QAM与DP-QPSK相比将所需谱减半,但是要求更高OSNR。
考虑传输参数(例如调制格式)的值。通过以100 Gb/s的DP-QPSK调制,全部三个路径p1、p2、p3均能够成功建立。具体来说,分别对于p1、p2和p3遇到16dB、9dB和2dB的OSNR余量(w.r.t在BER=10-3的所需OSNR)。通过以100 Gb/s的DP-16QAM,BER沿路径p1和p2保持低于BER=10-3(分别以9dB和2dB的OSNR余量),而路径p3在这种情况下是不可行的。
沿路径p1,还考虑可用余量,DP-16QAM调制能够安全地配置有DP-QPSK的带宽占用的一半。
如果充分OSNR余量(相对阈值)存在,则确定是否能够应用窄滤波,以进一步降低信号的带宽。带宽能够根据灵活网格的频隙的所需数量来确定。参照图10,DP-16QAM信号能够通过32 GHz的带宽来完全操控(没有罚值)。通过25 GHz的带宽,遇到大约1 dB的罚值。考虑特定链路,如果链路OSNR与OSNR阈值之间的差大于1 dB,则有可能应用窄滤波。在刚才所述的示例中,有可能沿链路保留25 GHz的带宽,而不是理论上所需的32 GHz。
选择要求最少数量的频隙的路径。PCE将路径p1和DP-16QAM标识为最佳路径和调制格式,因为BER保持低于阈值,并且所占用谱资源为最少。在这点上,PCE使用PCEP PCRep消息与PCC进行通信。这个消息能够标识显式路线对象(ERO)的所选路径。消息还包括所选调制格式和频隙。在这个示例中,消息指示作为所选路径的路径p1、指示所需谱资源的值以及作为所选调制格式的DP-16QAM的指示。
其它传输参数能够由PCE在路径计算时考虑。附加参数能够包括FEC类型并且可能包括光输出功率(例如,其考虑OSNR和非线性效应来使总光可达范围为最大)。任何附加的所选参数在PCEP PCRep消息中返回给PCC。
现在将描述另一种情况。这种情况适合于只保证工作资源的一个百分比的保护策略。灵活转发器实现相同调制格式以两个给定比特率的传输。考虑在200 Gb/s和100 Gb/s的DP-16QAM的信号。它们要求不同的谱占用。具体来说,100 Gb/s的DP-16QAM相对200 GB/s的DP-16QAM将所需谱减半。但是,在200 Gb/s的信号在OSNR方面明显有更高需求。在这种情况下,连接请求由PCC 21来生成,并且作为PCEP请求消息发送给IV&RSA PCE 22。请求消息指示作为端点的源s和目的地d以及两个不同路径的同步路径计算请求。一个路径对应于以200 Gb/s的比特率的工作路径,而第二路径表示以100 Gb/s的比特率的备用路径。两个路径请求均包含在唯一PCEP同步向量对象(SVEC)(如RFC 5440中规定的)中。与前一种情况相似,IV&RSA PCE 22则计算最短路径的集合Ps,d以及相关OSNR值,使得工作路径和备用路径均满足所请求指示。最后,IV&RSA PCE还考虑OSNR余量,以便可能应用窄滤波并且实现所占用资源的进一步降低。向PCC 21返回通过使所需频隙的总量为最小所取得的联合路径计算的结果。
图6示出由PCC所执行的方法。在步骤111,PCC向路径计算元件(PCE)发送请求。该请求标识路径的端节点。有利地,该请求还标识112由端节点所支持的至少一个传输参数的多个可能值。例如,如果传输参数是调制格式,则请求能够携带信息元素,其标识所支持调制格式。这能够按照各种方式来实现,例如通过使用数字代码来表示所支持调制格式的值,或者通过包含二进制字段,在二进制字段中各二进制数表示不同的调制格式,并且一个数被设置为“1”以指示支持调制格式,或者被设置为“0”以指示不支持调制格式。在步骤113,PCC从路径计算元件接收应答。应答标识由路径计算元件所选的端节点之间的路径。应答标识所选路径的至少一个传输参数的所选值。
图7示出由PCE所执行的方法。在步骤121,PCE从路径计算客户端接收对路径计算的请求。该请求标识路径的端节点。在步骤122,PCE确定由端节点所支持的传输参数的多个可能值。有利地,在步骤121所接收的请求标识由端节点所支持的传输参数的多个可能值,以及步骤122使用在该请求中接收的值。在步骤123,PCE计算端节点之间的所选路径。步骤123能够包括附加步骤124-127的一个或多个。在步骤124,PCE查找端节点之间的可能路径。可以只存在单个可能路径,或者可存在多个可能路径。在步骤125,PCE确定传输参数的多个值的每个(以及可能路径的每个)的传输质量量度(例如OSNR余量)。这能够分两个阶段执行。首先,PCE对于传输参数的每个值计算路径的预计OSNR,并且然后将OSNR与目标OSNR阈值进行比较(以取得特定BER,例如10-3)。所计算OSNR超过阈值的量是OSNR余量。例如,步骤125能够确定DP-QPSK调制格式的OSNR余量以及DP-16QAM调制格式的OSNR余量。如果传输参数的多于一个值提供可接受传输质量量度,或者如果多于一个路径提供具有可接受传输质量量度的传输参数的至少一个值,则步骤126在传输参数的可能值之间进行选择。目标函数能够用来进行选择。在步骤127,PCE确定是否有可能应用滤波以降少信号的谱占用量。应用滤波将进一步降低OSNR余量,如图10所示。在步骤128,PCE从路径计算元件发送应答。该应答标识由路径计算元件所选的端节点之间的路径,并且该应答标识所选路径的至少一个传输参数的所选值。
PCE返回所计算路径和所选调制格式,使得频隙占用沿所选路径为最小。在采用以100 Gb/s的从DP-16QAM到DP-QPSK的格式自适应和频隙指配来执行动态重新路由的现实试验台中试验了PCE。图8示出具有IV&RSA PCE的灵活WSON的实验试验台。试验台实现使用集成LiNbO3双重嵌套Mach-Zehnder调制器所调制的、经过线宽大约为100 KHz的可调谐外腔激光器(ECL)的DP-QPSK和DP-16QAM 112 Gb/s (100 Gb/s加上开销)信号生成。能够通过采用2级(QPSK)或者4级(16QAM)电信号驱动调制器的同相(I)和正交(Q)分支,来选择调制格式。通过以适当延迟和幅度插入两个2级信号,来得到4级电信号。插入操作在光域中执行,并且得到可重新配置方案,如图8所示。具体来说,通过长度211-1的28 Gb/s (QPSK)或14 Gb/s (16 QAM)伪随机比特序列(PRBS)(其通过复用3.5 Gb/s或7 Gb/s的四个二进制序列所得到),来对DFB激光器进行强度调制。光信号的两个复制品经过50/50分离器来得到,被有区别地延迟整数个符号周期(τo)并且由平衡光检测器进行光检测(插入操作)。光学快门也用于两个分离器臂之一中,以便在光检测器输出生成4级(快门以3 dB衰减关断)或2级(快门接通)电信号。I驱动信号和Q驱动信号最终由电分离器来得到,并且在施加到IQ调制器之前有区别地延迟整数个符号周期(τe)。通过经过50/50波束分离器、光延迟线路和极化波束组合器(PBC)模拟极化复用,来得到112 Gb/s DP-QPSK (28 Gbaud)或者112 Gb/s DP-16QAM (14 Gbaud)传输。通过控制快门状态和比特模式生成器(BPG)速率,来执行传输配置。
在接收器65,应用相干检测策略。发射器和接收器经过两个分离路径71、72来连接。第一(短)路径71由80 km长的标准单模光纤(SSMF)链路来组成,其中接收OSNR为30 dB。第二(长)路径72包括三个SSMF链路,其中总长度为240 km以及接收OSNR为23.2 dB。节点由四个灵活OXC 73(各由可调谐滤波器和MEMS开关组成)来组成。每个OXC 73由mini-PC经由专用RS-232端口来控制。入口OXC控制器还在发射器通过适当设置光学快门和BPG速率来配置调制格式。类似地,出口OXC控制器在接收器设置QPSK或16QAM格式的适当数字处理策略(判定规则)。另外,OXC控制器能够充当运行送往PCE的路径计算请求的PCEP的PCC,并且实现对隙(slot)保留所增强的基本RSVP-TE实例。具体来说,在Resv消息接收时,控制器触发MEMS开/关,并且按照光路指配频隙来调谐滤波器。
图9示出DP-16QAM和DP-QPSK传输的试验台性能。BER对OSNR测量按照背对背配置并且沿两个可能路径来执行。通过降低光发射功率来改变OSNR,并且短链路和长链路的最大OSNR值(分别为30 dB和23.2 dB)被指示为参考。结果表明,通过DP-QPSK,短路径和长路径均能够成功建立。具体来说,分别沿短路径和长路径遇到13 dB和6 dB的OSNR余量(w.r.t在BER=10-3的所需OSNR)。另一方面,通过DP-16QAM,BER只沿短路径保持低于10-3(其中余量为5.7 dB),而长路径结果不可行。为了表明窄滤波的效果,图10报告对于滤波器带宽的不同值(即带宽6.25 GHz的所指配频隙)所遇到的OSNR罚值(其中BER=10-3)。结果表明,通过DP-16QAM,对至少5个隙没有取得罚值,对4个隙小于1 dB,以及只对3个隙大约6 dB。通过DPQPSK,当分配至少9个隙时没有取得罚值,以及对6个隙取得大约1.5 dB的罚值。
然后实现动态重新路由实验,以表明PCE架构的性能。100 Gb/s DP-16QAM连接请求沿短路径71进行路由。然后,如在短路径链路中断时,入口OXC执行恢复光路的PCEP请求。图11示出在入口OXC(充当PCC)与IV&RSA PCE (二者通过C++来实现)之间所交换的PCEP消息的捕获。PCEP会话经过初始开放和保持有效消息来建立,然后将PCEP请求提交给PCE(分组13)。PCE将长路径标识为路径恢复的候选,但是,它因不可接受的ONSR而排除DP-16QAM调制格式,而选择DP-QPSK作为适当调制格式,从而如图7所示,得到令人满意的6 dB的OSNR余量。在给定图10所示的罚值的情况下,这个余量用来节省沿长路径的三个链路的三个频隙,即,将所需6.25 GHz频隙的量从9的值减少到6的值。所执行谱指配是第一拟合,以及PCE返回第一批6个相邻频隙。PCEP应答消息(分组15)包括通过隙标签对象所携带的ERO,ERO包含所指配调制格式和FEC以及所计算谱信道。这个对象从T. Otani等人的“Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers”(RFC 6205,2011年3月)来得出,并且除了通过两个偏移(分别称作所选谱分片的较低隙和较高隙)的定义的标准CWDM和DWDM ITU-T网格之外,还包括灵活网格规范。图11示出对象值(灵活网格标志,信道间距6.25 GHz,较低偏移-640,较高偏移-635)。对象参数实现所指配频隙的中心频率和信道间距的计算。在这种方式中,使用信道间距fcs和频率数n在ITU-T频率网格上的所指定频率f应当被理解为具有193.1+(n± 1/2)fcs (THz)之间的频率段的谱隙。ITU-T频率数n对应于频隙数。谱资源分配能够使用多个毗连频隙来表示。具有各种宽度的频率段能够使用隙宽度fslot(其等于信道间距fcs)、最低频隙数n1和最高频隙数nh的参数来指定。这类参数应当用于在信令消息的谱资源标记中。频率段的中心频率fc和宽度fw示为fc = 193.1 + {(nl+ nh)/2}fslot (THz)和fw = (nh – nl + 1)fslot(THz)。
对于图11所示的示例:
nl = -640
nh = -635
fslot = 6.25GHz = 0.00625THz
fc = 193.1 + {(nl+ nh)/2}fslot THz
 = 193.1 + {(-640-635)/2}*0.00625
 = 189.115625 THz
fw = (nh – nl + 1) fslot THz
 = (-635+640+1) * 0.00625
 = 37.5GHz。
如果控制平面信令被用来建立路径,则所返回值能够插到后续信令阶段的RSVP路径消息的ERO对象中。总IV&RSA PCE计算时间大约只是2 ms。对于PCEP和信令通信以及MEMS开/关要求数毫秒。在发射器和接收器的调制格式转换经过简单软件操作来实现,并且主要(significantly)在可调谐滤波器配置(其要求大约0.5 s,与其它市场销售的灵活OXC一致)之前完成。作为将控制平面用于路径建立的备选方案,管理平面能够执行路径建立。
第二实验使用图12所示的示例WSON。请求OXC1与OXC2之间的被保护路径,其仅具有备用路径中所保证的工作资源的一部分。为此,PCEP请求消息通过NMS包含比特率为200 Gb/s的路径请求(用于工作路径)和100 Gb/s的第二路径请求(用于备用路径)来触发。在C. Margaria等人的“PCEP extensions for GMPLS”(IETF,draft-ietf-pce-gmpls-pcep-extensions-02,2011年3月)所述的PCEP广义带宽对象中包含了各路径请求的比特率规范。消息中包含的值是:G.709 OTN业务规范、分别在200 Gb/s和100 Gb/s的OCh信号类型。两个路径请求包含在单个PCEP同步向量(SVEC)对象(其具有激活的标志N、L和S)中。这迫使PCE通过作为附加限制考虑节点、链路和共享风险链路组(SRLG)分离,来联合计算两个路径。PCE将路径p1标识为工作连接的候选,以及将路径p2和p3标识为备用连接的可能候选。在这个实验中,假定路径p1具有可用资源,并且它被选择具有在200 Gb/s的DP-16QAM调制格式。在路径p2和p3之间,选择前者(和较短的一个)作为备用,其中DP-16QAM作为在100 Gb/s的适当调制格式。沿两个路径p1和p2所遇到的2 dB的余量可以或者不可以由IV&RSA PCE用来进一步降低所占用资源的总量。在这个实验中,PCE保持余量,以提供附加可靠性。路径计算过程在大约3 ms中执行。成功地建立工作路径和备用路径。如在沿路径p1的故障检测时,激活沿路径p2的预先保留的备用资源。在这种情况下,备用路径的激活要求比特率从200 Gb/s到100 Gb/s的自适应,两者均以DP-16QAM进行操作。这种自适应在发射器和接收器使用软件操作成功地执行。
图13示出示范处理设备80,其可实现为任何形式的计算和/或电子装置,并且在其中可实现上述系统和方法的实施例。具体来说,装置80的一个实例可用来实现PCC,以及装置80的一个实例可用来实现PCE。处理设备80包括一个或多个处理器81,其可以是微处理器、控制器或者用于运行指令以控制装置的操作的任何其它适当类型的处理器。处理器81经由一个或多个总线86连接到装置的其它组件。处理器可执行指令83可使用任何计算机可读介质(例如存储器82)来提供。存储器具有任何适当类型,例如只读存储器(ROM)、随机存取存储器(RAM)、诸如磁存储装置或光存储装置的任何类型的存储装置。能够提供附加存储器84,以存储供处理器81所使用的数据85。处理设备80包括一个或多个网络接口输入88,以用于与其它网络实体进行接口。处理设备80还能够包括一个或多个输入接口,以用于接收来自用户的输入。
获益于以上描述及关联附图所提供的理论的本领域技术人员将会想到所公开的本发明的修改和其它实施例。因此要理解,本发明并不局限于所公开的具体实施例,并且修改和其它实施例预计包含在本公开的范围之内。虽然本文中可采用具体术语,但是它们仅以一般性和描述性意义来使用,而不是用于限制的目的。

Claims (16)

1. 一种在波长交换光网络中服务于对路径计算的请求的方法,包括在路径计算元件处:
从路径计算客户端接收对于端节点之间的路径的计算的请求;
确定由所述端节点所支持的传输参数的多个可能值;
计算所述端节点之间的路径,其中所述计算包括选择所述传输参数的值中之一;以及
向所述路径计算客户端发送应答,其中所述应答标识所述端节点之间的所述路径,并且所述应答标识所计算路径的所述传输参数的所选值。
2. 如权利要求1所述的方法,其中,所述请求标识由所述端节点所支持的所述传输参数的所述多个可能值,并且所述确定步骤使用在所述请求中标识的所述传输参数的所述多个可能值。
3. 如权利要求1或2所述的方法,其中,计算所述端节点之间的路径的步骤包括:
计算所述传输参数的所述多个值中每个的传输质量量度;
基于所计算量度来选择所述传输参数的值中之一。
4. 如权利要求3所述的方法,其中,计算传输质量量度的步骤对于所述端节点之间的多个可能路径来执行,以及选择所述传输参数的值中之一的步骤对于对所述多个可能路径所得到的所述量度来执行。
5. 如权利要求3或4所述的方法,其中,所述选择按照目标函数来执行。
6. 如权利要求5所述的方法,其中,所述目标函数是传输质量量度超过目标阈值和带宽的最小化。
7. 如权利要求3至6中任一项所述的方法,其中,所述传输质量量度是光信噪比余量。
8. 如以上权利要求中任一项所述的方法,还包括确定是否能够应用滤波以降低沿所述路径的带宽。
9. 一种在波长交换光网络中请求路径的计算的方法,包括在路径计算客户端处:
向路径计算元件发送对于端节点之间的路径的计算的请求,所述端节点支持传输参数的多个可能值;以及
从所述路径计算元件接收应答,其中所述应答标识由所述路径计算元件所计算的所述端节点之间的路径,并且所述应答标识所述路径的所述传输参数的所选值。
10. 如权利要求9所述的方法,其中,所述请求标识由所述端节点所支持的所述传输参数的所述多个可能值。
11. 如以上权利要求中任一项所述的方法,其中,所述传输参数包括下列中至少一个:
调制格式;
前向纠错类型;
光输出功率。
12. 如以上权利要求中任一项所述的方法,其中,所述应答包括所述路径的谱指配。
13. 如以上权利要求中任一项所述的方法,其中,所述应答包括路径计算元件通信协议应答消息,所述消息包括标识所述传输参数的所选值的元素。
14. 一种供波长交换光网络中使用的路径计算元件,包括:
接口,用于与路径计算客户端进行通信;
处理器,设置成:
  经由所述接口从所述路径计算客户端接收对于端节点之间的路径的计算的请求,所述端节点支持传输参数的多个可能值;
  确定由所述端节点所支持的传输参数的多个可能值;
  计算所述端节点之间的路径,其中路径的所述计算包括选择所述传输参数的值中之一;以及
  经由所述接口发送应答,其中所述应答标识由所述路径计算元件所选的所述端节点之间的所述路径,并且所述应答标识所述路径的所述传输参数的所选值。
15. 一种供波长交换光网络中使用的路径计算客户端,包括:
接口,用于与路径计算元件进行通信;
处理器,设置成:
  经由所述接口向所述路径计算元件发送对路径的计算的请求,所述请求标识所述路径的端节点,所述端节点支持传输参数的多个可能值;以及
  从所述路径计算元件接收应答,其中所述应答标识由所述路径计算元件所选的所述端节点之间的路径,并且所述应答标识所述路径的至少一个传输参数的所选值。
16. 一种携带指令的机器可读介质,所述指令在由处理器运行时使所述处理器执行如权利要求1至13中任一项所述的方法。
CN201180073316.8A 2011-09-08 2011-11-03 波长交换光网络中的路径计算 Expired - Fee Related CN103765803B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11180516.4 2011-09-08
EP11180516 2011-09-08
PCT/EP2011/069303 WO2013034201A1 (en) 2011-09-08 2011-11-03 Path computation in wavelength switched optical networks

Publications (2)

Publication Number Publication Date
CN103765803A true CN103765803A (zh) 2014-04-30
CN103765803B CN103765803B (zh) 2017-11-24

Family

ID=44910206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180073316.8A Expired - Fee Related CN103765803B (zh) 2011-09-08 2011-11-03 波长交换光网络中的路径计算

Country Status (4)

Country Link
US (1) US9485553B2 (zh)
EP (1) EP2745441A1 (zh)
CN (1) CN103765803B (zh)
WO (1) WO2013034201A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721961A (zh) * 2014-12-18 2016-06-29 瞻博网络公司 分组光网络内的波长和光谱指配
CN106603412A (zh) * 2015-10-16 2017-04-26 华为技术有限公司 流规则发送的方法、路径计算单元和路径计算客户端
US9838111B2 (en) 2014-12-18 2017-12-05 Juniper Networks, Inc. Network controller having predictable analytics and failure avoidance in packet-optical networks
JP2018137507A (ja) * 2017-02-20 2018-08-30 日本電信電話株式会社 光伝送システム及び光伝送方法
CN108763113A (zh) * 2018-05-23 2018-11-06 广东水利电力职业技术学院(广东省水利电力技工学校) 一种总线嵌入式工业控制系统及控制方法、信息处理终端
WO2022198735A1 (zh) * 2021-03-26 2022-09-29 苏州大学 光通道性能保证下的osnr感知频谱分配方法及系统

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633281B2 (ja) * 2010-09-29 2014-12-03 富士通株式会社 光通信システム、光ネットワーク管理装置および光ネットワーク管理方法
EP2748957B1 (en) * 2011-08-23 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Routing and bandwidth assignment for flexible grid wavelength switched optical networks
US8824274B1 (en) 2011-12-29 2014-09-02 Juniper Networks, Inc. Scheduled network layer programming within a multi-topology computer network
US8787154B1 (en) * 2011-12-29 2014-07-22 Juniper Networks, Inc. Multi-topology resource scheduling within a computer network
US9660756B2 (en) * 2012-04-24 2017-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for split spectrum signalling in an optical network
US10031782B2 (en) 2012-06-26 2018-07-24 Juniper Networks, Inc. Distributed processing of network device tasks
WO2014005613A1 (en) * 2012-07-02 2014-01-09 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for configuring an optical path
CN103532849B (zh) * 2012-07-06 2018-10-23 中兴通讯股份有限公司 一种计算频谱时序通道的方法、路径计算单元与节点
EP2904723A1 (en) * 2012-10-03 2015-08-12 Telefonaktiebolaget L M Ericsson (Publ) Optical path validation method
CN103997480B (zh) * 2013-02-17 2019-05-03 中兴通讯股份有限公司 光通道开销管理方法和装置以及光信号接收节点
US9450817B1 (en) 2013-03-15 2016-09-20 Juniper Networks, Inc. Software defined network controller
US9577925B1 (en) * 2013-07-11 2017-02-21 Juniper Networks, Inc. Automated path re-optimization
CN103414633B (zh) * 2013-08-08 2016-09-07 北京华为数字技术有限公司 一种网络中路径建立的方法及装置
WO2015078531A1 (en) * 2013-11-29 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus for elastic optical networking
WO2015162874A1 (ja) * 2014-04-24 2015-10-29 日本電気株式会社 光ノード装置、光ネットワーク制御装置、および光ネットワーク制御方法
CN105099908B (zh) 2014-05-08 2019-02-05 华为技术有限公司 路径计算的方法、消息响应的方法以及相关设备
US9923832B2 (en) * 2014-07-21 2018-03-20 Cisco Technology, Inc. Lightweight flow reporting in constrained networks
WO2016029477A1 (zh) * 2014-08-30 2016-03-03 华为技术有限公司 一种星型16qam信号生成方法及装置
US9369785B1 (en) 2014-12-18 2016-06-14 Juniper Networks, Inc. Integrated controller for routing / switching network and underlying optical transport system
WO2016103632A1 (ja) * 2014-12-24 2016-06-30 日本電気株式会社 マルチレイヤネットワークシステムおよびマルチレイヤネットワークにおけるパス設定方法
EP3254409B1 (en) * 2015-02-03 2020-01-01 Telefonaktiebolaget LM Ericsson (publ) Time aware path computation
US20170134089A1 (en) * 2015-11-09 2017-05-11 Mohammad Mehdi Mansouri Rad System and method of configuring an optical network
US10158422B2 (en) * 2016-04-20 2018-12-18 Fujitsu Limited Apparatus and method for estimating optical transmission performance
US10411806B2 (en) * 2016-06-29 2019-09-10 Ciena Corporation Gridless optical routing and spectrum assignment
JP2018011218A (ja) * 2016-07-14 2018-01-18 富士通株式会社 伝送品質推定方法および伝送品質推定装置
US11038792B2 (en) * 2017-01-27 2021-06-15 Huawei Technologies Co., Ltd. Method and apparatus for path computation
US10530631B2 (en) * 2017-03-21 2020-01-07 Futurewei Techologies, Inc. PCEP extension to support flexi-grid optical networks
US10200121B2 (en) 2017-06-14 2019-02-05 At&T Intellectual Property I, L.P. Reachability determination in wavelength division multiplexing network based upon fiber loss measurements
US10623304B2 (en) * 2018-01-17 2020-04-14 Futurewei Technologies, Inc. Configuring optical networks using a joint configuration model
EP3776921A1 (en) * 2018-03-29 2021-02-17 Cable Television Laboratories, Inc. Systems and methods for coherent optics in an access network
US11038615B2 (en) * 2018-04-16 2021-06-15 Huawei Technologies Co., Ltd. Fast connection turn-up with path-based dummy lights
US10374745B1 (en) * 2018-06-08 2019-08-06 Cisco Technology, Inc. Path selection in optical network for optical nodes with flexible baud rate and modulation format
CN109150760B (zh) * 2018-09-07 2020-06-26 北京邮电大学 一种网络资源预留方法及装置
EP3644532A1 (en) 2018-10-23 2020-04-29 Xieon Networks S.à r.l. A method and system for assigning spectral resources
TWI691182B (zh) * 2018-11-08 2020-04-11 中華電信股份有限公司 用於彈性供裝網路備援路徑之系統與方法
CN112399282B (zh) * 2019-08-15 2023-04-07 中兴通讯股份有限公司 一种用于计算全局并发优化路径的方法和设备
CN111049579B (zh) * 2019-12-13 2021-05-04 苏州大学 防止基于人工智能的传输质量预测失败的保护方法及系统
CN113411688B (zh) * 2020-03-16 2023-04-07 华为技术有限公司 一种路由计算的方法、设备和系统
WO2022101674A1 (en) 2020-11-10 2022-05-19 Eci Telecom Ltd. Multi-band optical network interface
WO2022140891A1 (zh) * 2020-12-28 2022-07-07 华为技术有限公司 一种带宽调整方法、装置及传输设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063585A1 (en) * 2007-11-22 2009-05-27 Alcatel Lucent Method and apparatus for computing a path in a network
US20100202773A1 (en) * 2009-02-06 2010-08-12 Futurewei Technologies, Inc. System and Method for Impairment-Aware Routing and Wavelength Assignment in Wavelength Switched Optical Networks

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8131873B2 (en) * 2004-11-05 2012-03-06 Cisco Technology, Inc. Technique for selecting a path computation element
US7616584B2 (en) * 2004-11-12 2009-11-10 Cisco Technology, Inc. Minimizing single points of failure in paths with mixed protection schemes
US20080225723A1 (en) * 2007-03-16 2008-09-18 Futurewei Technologies, Inc. Optical Impairment Aware Path Computation Architecture in PCE Based Network
US20080298805A1 (en) * 2007-05-30 2008-12-04 Futurewei Technologies, Inc. System and Method for Wavelength Conversion and Switching
US8059960B2 (en) * 2007-10-26 2011-11-15 Futurewei Technologies, Inc. Path computation element method to support routing and wavelength assignment in wavelength switched optical networks
CN101729376B (zh) * 2008-10-27 2011-12-21 华为技术有限公司 一种路径计算方法、节点设备及路径计算单元
US8433192B2 (en) * 2008-12-08 2013-04-30 Ciena Corporation Dynamic performance monitoring systems and methods for optical networks
US8346079B2 (en) * 2009-02-27 2013-01-01 Futurewei Technologies, Inc. Path computation element protocol (PCEP) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation
WO2010104434A1 (en) * 2009-03-12 2010-09-16 Telefonaktiebolaget L M Ericsson (Publ) Global provisioning of zero-bandwidth traffic engineering label switched paths
IN2012DN01417A (zh) * 2009-09-11 2015-06-05 Ericsson Telefon Ab L M
US8532484B2 (en) * 2009-10-06 2013-09-10 Futurewei Technologies, Inc. Method for routing and wavelength assignment information encoding for wavelength switched optical networks
US9077481B2 (en) * 2010-08-24 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for dynamic wavelength allocation in wavelength switched optical networks
EP2501065A1 (en) * 2011-03-17 2012-09-19 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for optical path validation in an optical network
US9768904B2 (en) * 2011-09-16 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating slots for transmission of data
US9544050B2 (en) * 2011-11-09 2017-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Optical supervisory channel
US9372830B2 (en) * 2012-04-13 2016-06-21 Fujitsu Limited System and method to analyze impairment of optical transmissions due to combined nonlinear and polarization dependent loss
EP2904723A1 (en) * 2012-10-03 2015-08-12 Telefonaktiebolaget L M Ericsson (Publ) Optical path validation method
US9722696B2 (en) * 2013-02-15 2017-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring of communications network at packet and optical layers
US9312914B2 (en) * 2013-04-22 2016-04-12 Fujitsu Limited Crosstalk reduction in optical networks using variable subcarrier power levels
US9509434B2 (en) * 2014-05-19 2016-11-29 Ciena Corporation Margin-based optimization systems and methods in optical networks by intentionally reducing margin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063585A1 (en) * 2007-11-22 2009-05-27 Alcatel Lucent Method and apparatus for computing a path in a network
US20100202773A1 (en) * 2009-02-06 2010-08-12 Futurewei Technologies, Inc. System and Method for Impairment-Aware Routing and Wavelength Assignment in Wavelength Switched Optical Networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAOLUCCI: "Experimental Demonstration of Impairment-Aware PCE for Multi一Bit-Rate WSONs", 《IEEE/OSA JOURNAL OPTICAL COMMUNICATIONS AND NETWORKING》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721961A (zh) * 2014-12-18 2016-06-29 瞻博网络公司 分组光网络内的波长和光谱指配
US9838111B2 (en) 2014-12-18 2017-12-05 Juniper Networks, Inc. Network controller having predictable analytics and failure avoidance in packet-optical networks
CN105721961B (zh) * 2014-12-18 2018-09-07 瞻博网络公司 分组光网络内的波长和光谱指配
CN106603412A (zh) * 2015-10-16 2017-04-26 华为技术有限公司 流规则发送的方法、路径计算单元和路径计算客户端
CN106603412B (zh) * 2015-10-16 2020-05-08 华为技术有限公司 流规则发送的方法、路径计算单元和路径计算客户端
JP2018137507A (ja) * 2017-02-20 2018-08-30 日本電信電話株式会社 光伝送システム及び光伝送方法
CN108763113A (zh) * 2018-05-23 2018-11-06 广东水利电力职业技术学院(广东省水利电力技工学校) 一种总线嵌入式工业控制系统及控制方法、信息处理终端
CN108763113B (zh) * 2018-05-23 2020-10-09 广东水利电力职业技术学院(广东省水利电力技工学校) 一种总线嵌入式工业控制系统及控制方法、信息处理终端
WO2022198735A1 (zh) * 2021-03-26 2022-09-29 苏州大学 光通道性能保证下的osnr感知频谱分配方法及系统
US11818519B2 (en) 2021-03-26 2023-11-14 Soochow University Method and system of OSNR-sensing spectrum allocation with optical channel performance guarantee

Also Published As

Publication number Publication date
US20140328587A1 (en) 2014-11-06
WO2013034201A1 (en) 2013-03-14
US9485553B2 (en) 2016-11-01
EP2745441A1 (en) 2014-06-25
CN103765803B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN103765803B (zh) 波长交换光网络中的路径计算
US8433192B2 (en) Dynamic performance monitoring systems and methods for optical networks
Velasco et al. Designing, operating, and reoptimizing elastic optical networks
Cugini et al. Demonstration of flexible optical network based on path computation element
US9392348B2 (en) Path computation element protocol (PCEP) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation
US9338529B2 (en) Routing and bandwidth assignment for flexible grid wavelength switched optical networks
US8396364B2 (en) System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks
US20090110402A1 (en) Distributed Wavelength Assignment Using Signaling Protocols in Wavelength Switched Optical Networks
US10097376B2 (en) Resilient virtual optical switches over less reliable optical networks
EP2745443B1 (en) A method and apparatus for allocating slots for transmission of data
Meloni et al. PCE architecture for flexible WSON enabling dynamic rerouting with modulation format adaptation
CN103053126B (zh) 用于波长交换光网络中的动态波长分配的方法和设备
US8208405B2 (en) Information encoding for impaired optical path validation
US9973383B2 (en) Placement of wavelength shifters in optical networks
Kyriakopoulos et al. Exploiting the signal overlap technique for energy efficiency in elastic optical networks
Liu et al. Lab trial of PCE-based OSNR-aware dynamic restoration in multi-domain GMPLS-enabled translucent WSON
Sambo et al. Candidate paths for impairment-aware PCE in 10-100 gb/s optical networks
US9100730B2 (en) Establishing connections in a multi-rate optical network
Sambo et al. Impairment-aware PCE in multi bit-rate 10-100 Gb/s WSON with experimental demonstration
González de Dios et al. Experimental demonstration of multi-vendor and multi-domain elastic optical network with data and control interoperability over a pan-european test-bed
Wessing et al. Deliverable D13. 1 Research and Study Network Technologies–White Paper
Liu Protection Strategies in New Optical Networking Paradigms

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171124