WO2016029477A1 - 一种星型16qam信号生成方法及装置 - Google Patents

一种星型16qam信号生成方法及装置 Download PDF

Info

Publication number
WO2016029477A1
WO2016029477A1 PCT/CN2014/085630 CN2014085630W WO2016029477A1 WO 2016029477 A1 WO2016029477 A1 WO 2016029477A1 CN 2014085630 W CN2014085630 W CN 2014085630W WO 2016029477 A1 WO2016029477 A1 WO 2016029477A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ook
8psk
qpsk
star
Prior art date
Application number
PCT/CN2014/085630
Other languages
English (en)
French (fr)
Inventor
王健
李旭辉
涂鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480077500.3A priority Critical patent/CN106464622B/zh
Priority to PCT/CN2014/085630 priority patent/WO2016029477A1/zh
Publication of WO2016029477A1 publication Critical patent/WO2016029477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a star 16QAM signal generating method and apparatus.
  • the 16 Quadrature Amplitude Modulation (QAM) modulation format used as the high-order modulation format is used in optical fiber communication, and the key to the 16QAM modulation format is the generation of the star 16QAM signal.
  • a commonly used star 16QAM signal is currently available.
  • the generating device comprises a laser, an electric combiner and a phase modulator, but the disadvantage of the device is that the electric combiner processes the signal based on the linear effect, and the input signal value of the linear effect device required for the same output signal value is greater than the nonlinear effect device.
  • the optical signal generated by the laser does not carry information, so the information carried by the electrical signal needs to be modulated in the electrical combiner.
  • the rate of electron transfer in the electrical signal limits the rate at which the device generates the star 16QAM signal due to the presence of electrical signals during modulation.
  • the embodiment of the invention discloses a star 16QAM signal generation method and device for reducing power consumption and improving the generation rate of a star 16QAM signal.
  • a first aspect of the embodiments of the present invention discloses a star 16QAM signal generating apparatus, including a demodulator D, a first coupler C1, a first nonlinear device N1, a first filter F1, a second coupler C2, and a second Nonlinear device N2, where:
  • the input terminal I of the D is used to input a first quadrature phase shift keying QPSK signal, the first output end O1 of the D is connected to the first input end I1 of the C1, and the second output end O2 of the D is Connecting the first input I1 of the C2, the second input I2 of the C1 is for inputting a second QPSK signal, the output O of the C1 is connected to the input I of the N1, and the output of the N1 O is connected to the input I of the F1, the F1
  • the output terminal O of the C2 is connected to the second input terminal I2 of the C2, and the output terminal O of the C2 is connected to the input terminal I of the N2;
  • the D is configured to demodulate the first QPSK signal into a first open key control OOK signal and a second OOK signal, send the first OOK signal to the C1, and send the second OOK signal Give the C2;
  • the C1 is configured to combine the second QPSK signal and the first OOK signal and send the signal to the N1;
  • the N1 is configured to phase shift the second QPSK signal under the control of the first OOK signal to obtain an 8-phase shift keying PSK signal, and send the first OOK signal and the 8PSK signal Giving the F1;
  • the F1 is configured to filter out the first OOK signal, and send the 8PSK signal to the C2;
  • the C2 is configured to combine the 8PSK signal and the second OOK signal and send the signal to the N2;
  • the N2 is configured to adjust the amplitude of the 8PSK signal under the control of the second OOK signal to obtain a star 16QAM signal.
  • the apparatus further includes a second filter F2, where:
  • the signal input terminal I of the F2 is connected to the signal output terminal O of the N2, and the signal output terminal O of the F2 is the output terminal Vo of the star 16QAM signal generating device;
  • the N2 is further configured to send the second OOK signal and the star 16QAM signal to the F2;
  • the F2 is configured to filter out the second OOK signal, and output the star 16QAM signal as an output signal of the star 16QAM signal generating device.
  • the D is a silicon-based micro ring.
  • the C1 and the C2 It is a multimode interference coupler.
  • the N1 is a ridge waveguide.
  • the N2 is a stress-applying Silicon nitride waveguide.
  • the F1 and the F2 It is an arrayed waveguide grating.
  • a second aspect of the embodiments of the present invention discloses a method for generating a star 16QAM signal, including:
  • the demodulator demodulates the first QPSK signal into a first OOK signal and a second OOK signal;
  • the first coupler combines the second QPSK signal and the first OOK signal
  • a first non-linear device phase shifting the second QPSK signal under control of the first OOK signal to obtain an 8PSK signal
  • the first filter filters out the first OOK signal
  • a second coupler combines the 8PSK signal and the second OOK signal
  • a second non-linear device adjusts the amplitude of the 8PSK signal under control of the second OOK signal to obtain a star 16QAM signal.
  • the second non-linear device adjusts the 8PSK signal under the control of the second OOK signal After obtaining the magnitude 16QAM signal, the method further includes:
  • the second filter filters out the second OOK signal.
  • the first non-linear device As a ridge waveguide, the second nonlinear device is a stressed silicon nitride waveguide.
  • the first nonlinear device and the second nonlinear device process the signal based on the nonlinear effect, which is more efficient than the linear device, thereby reducing power consumption; furthermore, due to the participation of the no-electric signal, thereby improving The generation rate of the star 16QAM signal.
  • FIG. 1 is a structural diagram of a star 16QAM signal generating apparatus according to an embodiment of the present invention
  • Figure 2 is a star 16QAM signal generation process
  • FIG. 3 is a structural diagram of another star 16QAM signal generating apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for generating a star 16QAM signal according to an embodiment of the present invention.
  • the embodiment of the invention discloses a star 16QAM signal generation method and device for reducing power consumption and improving the generation rate of a star 16QAM signal. The details are described below separately.
  • FIG. 1 is a structural diagram of a star 16QAM signal generating apparatus according to an embodiment of the present invention.
  • the star 16QAM signal generating apparatus may include a demodulator D, a first coupler C1, a first nonlinear device N1, a first filter F1, a second coupler C2, and a second nonlinear device. N2, where:
  • the input terminal I of D is used to input the first QPSK signal
  • the first output terminal O1 of D is connected to the first input terminal I1 of C1
  • the second output terminal O2 of D is connected to the first input terminal I1 of C2
  • the second input of C1 The terminal I2 is used for inputting the second QPSK signal
  • the output terminal O of C1 is connected to the input terminal I of N1
  • the output terminal O of N1 is connected to the input terminal I of F1
  • the output terminal O of F1 is connected to the second input terminal I2 of C2, C2
  • the output terminal O is connected to the input terminal I of N2;
  • N1 for phase shifting the second QPSK signal under the control of the first OOK signal to obtain an 8-phase shift keying PSK signal, and transmitting the first OOK signal and the 8PSK signal to F1;
  • F1 used to filter out the first OOK signal, and send the 8PSK signal to C2;
  • N2 is used to adjust the amplitude of the 8PSK signal under the control of the second OOK signal to obtain the star 16QAM signal.
  • the star 16QAM signal generating apparatus shown in FIG. 1 works as follows: the input signal includes a first Quadrature Phase Shift Keying (QPSK) signal and a second QPSK signal; D converts the first QPSK signal into a first On-Off Keying (OOK) signal and a second OOK signal, and sends the first OOK signal to the first coupler C1 and the second OOK signal to the second a coupler C2; the first coupler C1 combines the second QPSK signal and the first OOK signal to the first nonlinear device; the first nonlinear device performs the phase of the second QPSK signal under the control of the first OOK signal Move to obtain 8Phase Shift Keying (8PSK) signal, and send the first OOK signal and 8PSK signal to F1; the first filter F1 filters out the first OOK signal, and sends the 8PSK signal to the second coupling The second coupler C2 combines the 8PSK signal and the second OOK signal to the second nonlinear device
  • the first nonlinear device and the second nonlinear device employ a nonlinear effect.
  • the nonlinear device since the nonlinear device has only one input terminal and the input nonlinear device has two signals, the two signals are combined into one way and then sent to the non-coupler before the signal enters the nonlinear device.
  • the signal output from the first non-linear device includes an 8PSK signal and a first OOK signal. If the first OOK signal is input to the second non-linear device, the first OOK signal also controls the phase shift of the 8PSK signal, resulting in failure to generate the star 16QAM.
  • the signal therefore, filters the first OOK signal through the first filter.
  • the process of star 16QAM signal generation can be as shown in Figure 2.
  • the first nonlinear device and the second nonlinear line Sex devices process signals based on nonlinear effects, which are more efficient than linear devices, which reduces power consumption.
  • the generation rate of star 16QAM signals is improved due to the participation of no electrical signals.
  • FIG. 3 is a structural diagram of another star 16QAM signal generating apparatus according to an embodiment of the present invention.
  • the star 16QAM signal generating apparatus may include a demodulator D, a first coupler C1, a first nonlinear device N1, a first filter F1, a second coupler C2, and a second nonlinear device. N2, where:
  • the input terminal I of D is used to input the first QPSK signal
  • the first output terminal O1 of D is connected to the first input terminal I1 of C1
  • the second output terminal O2 of D is connected to the first input terminal I1 of C2
  • the second input of C1 The terminal I2 is used for inputting the second QPSK signal
  • the output terminal O of C1 is connected to the input terminal I of N1
  • the output terminal O of N1 is connected to the input terminal I of F1
  • the output terminal O of F1 is connected to the second input terminal I2 of C2, C2
  • the output terminal O is connected to the input terminal I of N2;
  • N1 for phase shifting the second QPSK signal under the control of the first OOK signal to obtain an 8PSK signal, and transmitting the first OOK signal and the 8PSK signal to F1;
  • F1 used to filter out the first OOK signal, and send the 8PSK signal to C2;
  • N2 is used to adjust the amplitude of the 8PSK signal under the control of the second OOK signal to obtain the star 16QAM signal.
  • the apparatus may further include a second filter F2, wherein:
  • the signal input end I of F2 is connected to the signal output end O of N2, and the signal output end O of F2 is the output end Vo of the star type 16QAM signal generating device;
  • N2 also used to send the second OOK signal and the star 16QAM signal to F2;
  • F2 is used for filtering out the second OOK signal, and outputting the star 16QAM signal as an output signal of the star 16QAM signal generating device.
  • the star 16QAM signal generating apparatus shown in FIG. 2 works on the principle that the input signal includes a first QPSK signal and a second QPSK signal; and the demodulator D converts the first QPSK signal into a first OOK signal and a second OOK signal, sending the first OOK signal to the first coupler C1, and the second The OOK signal is sent to the second coupler C2; the first coupler C1 combines the second QPSK signal and the first OOK signal and sends the first QOKK signal to the first nonlinear device; the first nonlinear device sets the second QPSK signal at the first OOK Phase shifting is performed under control of the signal to obtain an 8PSK signal, and the first OOK signal and the 8PSK signal are transmitted to the first filter F1; the first filter F1 filters out the first OOK signal, and transmits the 8PSK signal to the second coupler C2; the second coupler C2 combines the 8PSK signal and the second OOK signal to the second nonlinear device N2; the second
  • the first nonlinear device and the second nonlinear device employ a nonlinear effect.
  • the nonlinear device since the nonlinear device has only one input terminal and the input nonlinear device has two signals, the two signals are combined into one way and then sent to the non-coupler before the signal enters the nonlinear device.
  • the signal output from the first non-linear device includes an 8PSK signal and a first OOK signal. If the first OOK signal is input to the second non-linear device, the first OOK signal also controls the phase shift of the 8PSK signal, resulting in failure to generate the star 16QAM. The signal, therefore, filters the first OOK signal through the first filter.
  • the signal output from the second non-linear device includes a star-shaped 16QAM signal and a second OOK signal, and the device is a device for generating a star-shaped 16QAM signal. Therefore, the second filter F2 is required to be filtered before the star 16QAM signal is output.
  • the second OOK signal can be as shown in Figure 2.
  • the demodulator D is a silicon-based microring.
  • the first coupler C1 and the second coupler C2 are multimode interference couplers.
  • the multimode interference coupler is easily implemented on the chip, thereby improving the integration.
  • the first nonlinear device N1 is a ridge waveguide.
  • the first nonlinear device is an on-chip third-order nonlinear waveguide for generating a third-order nonlinear effect.
  • the third-order nonlinear effect may be a cross-phase modulation effect, a four-wave mixing effect, a two-photon absorption effect, etc., wherein the first nonlinear device adopts a cross-phase modulation effect to perform the second QPSK signal under the control of the first OOK signal. Phase shift to get the 8PSK signal.
  • the ridge waveguide is easy to realize cross-phase modulation, thereby improving the speed; in addition, its structure and manufacturing process steps are simple and easy to implement, thereby improving integration.
  • the second nonlinear device N2 is a stress-applying silicon nitride waveguide.
  • the second nonlinear device is an on-chip second-order nonlinear waveguide for generating a second-order nonlinear effect.
  • the second-order nonlinear effect may be a frequency effect, a sum frequency effect, etc., wherein the second nonlinear device adjusts the amplitude of the 8PSK signal under the control of the second OOK signal by the sum frequency effect to obtain the star 16QAM signal.
  • the stress-carrying silicon nitride waveguide has a faster signal processing speed, so that a high-speed high-order signal can be generated.
  • the first filter F1 and the second filter F2 are arrayed waveguide gratings.
  • the arrayed waveguide grating is easy to implement, thereby improving integration.
  • the first nonlinear device and the second nonlinear device process the signal based on the nonlinear effect, which is more efficient than the linear device, thereby reducing power consumption;
  • the participation of no electrical signals increases the generation rate of the star 16QAM signal.
  • FIG. 4 is a schematic diagram of a star 16QAM signal generation method according to an embodiment of the present invention. As shown in FIG. 4, the star 16QAM signal generating method may include the following steps.
  • the demodulator demodulates the first QPSK signal into a first OOK signal and a second OOK signal.
  • the first coupler combines the second QPSK signal and the first OOK signal.
  • the first nonlinear device phase shifts the second QPSK signal under the control of the first OOK signal to obtain an 8PSK signal.
  • the first filter filters out the first OOK signal.
  • the second coupler combines the 8PSK signal and the second OOK signal.
  • the second nonlinear device adjusts the amplitude of the 8PSK signal under the control of the second OOK signal. Get the star 16QAM signal.
  • the second filter filters out the second OOK signal.
  • the demodulator D converts the first QPSK signal into a first OOK signal and a second OOK signal, and sends the first OOK signal to the first coupler C1 and the second OOK signal to the second coupler.
  • C2 the first coupler C1 combines the second QPSK signal and the first OOK signal to the first nonlinear device; the first nonlinear device phase shifts the second QPSK signal under the control of the first OOK signal to Obtaining an 8PSK signal, and transmitting the first OOK signal and the 8PSK signal to the first filter F1; the first filter F1 filters out the first OOK signal, and transmits the 8PSK signal to the second coupler C2; the second coupler C2
  • the 8PSK signal and the second OOK signal are combined and sent to the second nonlinear device N2; the second nonlinear device N2 adjusts the amplitude of the 8PSK signal under the control of the second OOK signal to obtain the star 16QAM signal, and the second OOK signal and The star 16QAM
  • the first nonlinear device and the second nonlinear device process the signal based on the nonlinear effect, which is more efficient than the linear device, thereby reducing power consumption;
  • the participation of no electrical signals increases the generation rate of the star 16QAM signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开一种星型16QAM信号生成方法及装置。该装置包括解调器D、第一耦合器C1、第一非线性器件N1、第一滤波器F1、第二耦合器C2、第二非线性器件N2,其中:D,用于将第一QPSK信号解调为第一OOK信号和第二OOK信号,将第一OOK信号发送给C1,将第二OOK信号发送给C2;C1,用于将第二QPSK信号和第一OOK信号进行合路并发送给N1;N1,用于将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号,并将第一OOK信号和8PSK信号发送给F1;F1,用于过滤掉第一OOK信号,将8PSK信号发送给C2;C2,用于将8PSK信号和第二OOK信号进行合路并发送给N2;N2,用于将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号。本发明实施例可以降低功耗和提高星型16QAM信号的生成速率。

Description

一种星型16QAM信号生成方法及装置 技术领域
本发明涉及光学技术领域,尤其涉及一种星型16QAM信号生成方法及装置。
背景技术
随着通信技术的不断发展,通信中传输的信息容量越来越大,因此,采用光纤传输信息以增大传输的信息容量。作为高阶调制格式的16正交幅度调制(Quadrature Amplitude Modulation,QAM)调制格式被用于光纤通信中,而16QAM调制格式的关键是星型16QAM信号的产生,目前常见的一种星型16QAM信号产生装置包括激光器、电合路器和相位调制器,但该装置的缺点为:电合路器基于线性效应处理信号,相同的输出信号值所需线性效应器件的输入信号值大于非线性效应器件的输入信号值,而信号值越大消耗的功率越多,从而使装置的功耗增加;另外,激光器产生的光信号未携带信息,因此在电合路器中需要将电信号携带的信息调制到该光信号上,由于在调制的过程中有电信号参与,导致电信号中的电子转移率限制了该装置生成星型16QAM信号的速率。
发明内容
本发明实施例公开了一种星型16QAM信号生成方法及装置,用于降低功耗和提高星型16QAM信号的生成速率。
本发明实施例第一方面公开一种星型16QAM信号生成装置,包括解调器D、第一耦合器C1、第一非线性器件N1、第一滤波器F1、第二耦合器C2、第二非线性器件N2,其中:
所述D的输入端I用于输入第一正交相移键控QPSK信号,所述D的第一输出端O1连接所述C1的第一输入端I1,所述D的第二输出端O2连接所述C2的第一输入端I1,所述C1的第二输入端I2用于输入第二QPSK信号,所述C1的输出端O连接所述N1的输入端I,所述N1的输出端O连接所述F1的输入端I,所述F1 的输出端O连接所述C2的第二输入端I2,所述C2的输出端O连接所述N2的输入端I;
所述D,用于将所述第一QPSK信号解调为第一开关键控OOK信号和第二OOK信号,将所述第一OOK信号发送给所述C1,将所述第二OOK信号发送给所述C2;
所述C1,用于将所述第二QPSK信号和所述第一OOK信号进行合路并发送给所述N1;
所述N1,用于将所述第二QPSK信号在所述第一OOK信号的控制下进行相移以获取8相移键控PSK信号,并将所述第一OOK信号和所述8PSK信号发送给所述F1;
所述F1,用于过滤掉所述第一OOK信号,将所述8PSK信号发送给所述C2;
所述C2,用于将所述8PSK信号和所述第二OOK信号进行合路并发送给所述N2;
所述N2,用于将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实现方式中,所述装置还包括第二滤波器F2,其中:
所述F2的信号输入端I连接所述N2的信号输出端O,所述F2的信号输出端O为所述星型16QAM信号生成装置的输出端Vo;
所述N2,还用于将所述第二OOK信号和所述星型16QAM信号发送给所述F2;
所述F2,用于过滤掉所述第二OOK信号,将所述星型16QAM信号作为所述星型16QAM信号生成装置的输出信号输出。
结合本发明实施例第一方面或本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第二种可能的实现方式中,所述D为硅基微环。
结合本发明实施例第一方面或本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第三种可能的实现方式中,所述C1和所述C2为多模干涉耦合器。
结合本发明实施例第一方面或本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第四种可能的实现方式中,所述N1为脊波导。
结合本发明实施例第一方面或本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第五种可能的实现方式中,所述N2为施加应力的氮化硅波导。
结合本发明实施例第一方面或本发明实施例第一方面的第一种可能的实现方式,在本发明实施例第一方面的第六种可能的实现方式中,所述F1和所述F2为阵列波导光栅。
本发明实施例第二方面公开一种星型16QAM信号生成方法,包括:
解调器将第一QPSK信号解调为第一OOK信号和第二OOK信号;
第一耦合器将第二QPSK信号和所述第一OOK信号进行合路;
第一非线性器件将所述第二QPSK信号在所述第一OOK信号的控制下进行相移以获取8PSK信号;
第一滤波器过滤掉所述第一OOK信号;
第二耦合器将所述8PSK信号和所述第二OOK信号进行合路;
第二非线性器件将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实现方式中,所述第二非线性器件将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号之后,所述方法还包括:
第二滤波器过滤掉所述第二OOK信号。
结合本发明实施例第二方面或本发明实施例第二方面的第一种可能的实现方式,在本发明实施例第二方面的第二种可能的实现方式中,所述第一非线性器件为脊波导,所述第二非线性器件为施加应力的氮化硅波导。
本发明实施例中,第一非线性器件和第二非线性器件基于非线性效应处理信号,相对于线性器件,效率更高,从而降低了功耗;此外,由于无电信号的参与,从而提高了星型16QAM信号的生成速率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种星型16QAM信号生成装置的结构图;
图2是星型16QAM信号生成过程;
图3是本发明实施例公开的另一种星型16QAM信号生成装置的结构图;
图4是本发明实施例公开的一种星型16QAM信号生成方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种星型16QAM信号生成方法及装置,用于降低功耗和提高星型16QAM信号的生成速率。以下分别进行详细说明。
请参阅图1,图1是本发明实施例公开的一种星型16QAM信号生成装置的结构图。如图1所示,该星型16QAM信号生成装置可以包括解调器D、第一耦合器C1、第一非线性器件N1、第一滤波器F1、第二耦合器C2、第二非线性器件N2,其中:
D的输入端I用于输入第一QPSK信号,D的第一输出端O1连接C1的第一输入端I1,D的第二输出端O2连接C2的第一输入端I1,C1的第二输入端I2用于输入第二QPSK信号,C1的输出端O连接N1的输入端I,N1的输出端O连接F1的输入端I,F1的输出端O连接C2的第二输入端I2,C2的输出端O连接N2的输入端I;
D,用于将第一正交相移键控QPSK信号解调为第一开关键控OOK信号和第二OOK信号,将第一OOK信号发送给C1,将第二OOK信号发送给C2;
C1,用于将第二QPSK信号和第一OOK信号进行合路并发送给N1;
N1,用于将第二QPSK信号在第一OOK信号的控制下进行相移以获取8相移键控PSK信号,并将第一OOK信号和8PSK信号发送给F1;
F1,用于过滤掉第一OOK信号,将8PSK信号发送给C2;
C2,用于将8PSK信号和第二OOK信号进行合路并发送给N2;
N2,用于将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号。
本实施例中,图1所示的星型16QAM信号生成装置的工作原理为:输入信号包括第一正交移相键控(Quadrature Phase Shift Keying,QPSK)信号和第二QPSK信号;解调器D将第一QPSK信号转换为第一开关键控(On-Off Keying,OOK)信号和第二OOK信号,将第一OOK信号发送给第一耦合器C1,将第二OOK信号发送给第二耦合器C2;第一耦合器C1将第二QPSK信号和第一OOK信号合路后发送给第一非线性器件;第一非线性器件将第二QPSK信号在第一OOK信号的控制下进行相移以获取8相移键控(8Phase Shift Keying,8PSK)信号,并将第一OOK信号和8PSK信号发送给F1;第一滤波器F1过滤掉第一OOK信号,将8PSK信号发送给第二耦合器C2;第二耦合器C2将8PSK信号和第二OOK信号合路发送给第二非线性器件N2;第二非线性器件N2将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号。其中,解调器D将第一QPSK信号解调为第一OOK信号和第二OOK信号,即将QPSK调制格式转换为OOK调制格式。
本实施例中,第一非线性器件和第二非线性器件采用非线性效应。第一QPSK信号与第二QPSK信号之间可以存在特定关系,也可以不存在关系,本实施例不作限定。
本实施例中,由于非线性器件只有一个输入端,而输入非线性器件的信号却有两个,因此,在信号进入非线性器件之前通过耦合器将两个信号合路为一路再发送给非线性器件。从第一非线性器件输出的信号包括8PSK信号和第一OOK信号,如果将第一OOK信号输入第二非线性器件,第一OOK信号还将控制8PSK信号进行相移,导致无法产生星型16QAM信号,因此,通过第一滤波器将第一OOK信号过滤掉。其中,星型16QAM信号产生的过程可以如图2所示。
在图1所描述的星型16QAM信号生成装置中,第一非线性器件和第二非线 性器件基于非线性效应处理信号,相对于线性器件,效率更高,从而降低了功耗;此外,由于无电信号的参与,从而提高了星型16QAM信号的生成速率。
请参阅图3,图3是本发明实施例公开的另一种星型16QAM信号生成装置的结构图。如图3所示,该星型16QAM信号生成装置可以包括解调器D、第一耦合器C1、第一非线性器件N1、第一滤波器F1、第二耦合器C2、第二非线性器件N2,其中:
D的输入端I用于输入第一QPSK信号,D的第一输出端O1连接C1的第一输入端I1,D的第二输出端O2连接C2的第一输入端I1,C1的第二输入端I2用于输入第二QPSK信号,C1的输出端O连接N1的输入端I,N1的输出端O连接F1的输入端I,F1的输出端O连接C2的第二输入端I2,C2的输出端O连接N2的输入端I;
D,用于将第一QPSK信号解调为第一OOK信号和第二OOK信号,将第一OOK信号发送给C1,将第二OOK信号发送给C2;
C1,用于将第二QPSK信号和第一OOK信号进行合路并发送给N1;
N1,用于将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号,并将第一OOK信号和8PSK信号发送给F1;
F1,用于过滤掉第一OOK信号,将8PSK信号发送给C2;
C2,用于将8PSK信号和第二OOK信号进行合路并发送给N2;
N2,用于将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号。
作为一种可能的实施方式,该装置还可以包括第二滤波器F2,其中:
F2的信号输入端I连接N2的信号输出端O,F2的信号输出端O为该星型16QAM信号生成装置的输出端Vo;
N2,还用于将第二OOK信号和星型16QAM信号发送给F2;
F2,用于过滤掉第二OOK信号,将星型16QAM信号作为该星型16QAM信号生成装置的输出信号输出。
本实施例中,图2所示的星型16QAM信号生成装置的工作原理为:输入信号包括第一QPSK信号和第二QPSK信号;解调器D将第一QPSK信号转换为第一OOK信号和第二OOK信号,将第一OOK信号发送给第一耦合器C1,将第二 OOK信号发送给第二耦合器C2;第一耦合器C1将第二QPSK信号和第一OOK信号合路后发送给第一非线性器件;第一非线性器件将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号,并将第一OOK信号和8PSK信号发送给第一滤波器F1;第一滤波器F1过滤掉第一OOK信号,将8PSK信号发送给第二耦合器C2;第二耦合器C2将8PSK信号和第二OOK信号合路发送给第二非线性器件N2;第二非线性器件N2将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号,将第二OOK信号和星型16QAM信号发送给第二滤波器F2;第二滤波器F2过滤掉第二OOK信号,将星型16QAM信号作为该星型16QAM信号生成装置的输出信号输出。其中,解调器D将第一QPSK信号解调为第一OOK信号和第二OOK信号,即将QPSK调制格式转换为OOK调制格式。
本实施例中,第一非线性器件和第二非线性器件采用非线性效应。第一QPSK信号与第二QPSK信号之间可以存在特定关系,也可以不存在关系,本实施例不作限定。
本实施例中,由于非线性器件只有一个输入端,而输入非线性器件的信号却有两个,因此,在信号进入非线性器件之前通过耦合器将两个信号合路为一路再发送给非线性器件。从第一非线性器件输出的信号包括8PSK信号和第一OOK信号,如果将第一OOK信号输入第二非线性器件,第一OOK信号还将控制8PSK信号进行相移,导致无法产生星型16QAM信号,因此,通过第一滤波器将第一OOK信号过滤掉。从第二非线性器件输出的信号包括星型16QAM信号第二OOK信号,而该装置是生成星型16QAM信号的装置,因此,在将星型16QAM信号输出前,需要第二滤波器F2过滤掉其中的第二OOK信号。其中,星型16QAM信号产生的过程可以如图2所示。
作为一种可能的实施方式,解调器D为硅基微环。
本实施例中,由于硅基微环的尺寸较小,因此,易于集成,从而提高了集成度。
作为一种可能的实施方式,第一耦合器C1和第二耦合器C2为多模干涉耦合器。
本实施例中,多模干涉耦合器易于在片上实现,从而提高了集成度。
作为一种可能的实施方法,第一非线性器件N1为脊波导。
本实施例中,第一非线性器件为片上三阶非线性波导,用于产生三阶非线性效应。三阶非线性效应可以为交叉相位调制效应、四波混频效应、双光子吸收效应等,其中,第一非线性器件采用交叉相位调制效应将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号。其中,脊波导易于实现交叉相位调制,从而提高了速度;此外,它的结构与制造工艺步骤简单,易于实现,从而提高了集成度。
作为一种可能的实施方式,第二非线性器件N2为施加应力的氮化硅波导。
本实施例中,第二非线性器件为片上二阶非线性波导,用于产生二阶非线性效应。二阶非线性效应可以为频效应、和频效应等,其中,第二非线性器件采用和频效应将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号。其中,施加应力的氮化硅波导的信号处理速度较快,从而可以产生高速的高阶信号。
作为一种可能的实施方式,第一滤波器F1和第二滤波器F2为阵列波导光栅。
本实施例中,阵列波导光栅易于实现,从而提高了集成度。
在图3所描述的星型16QAM信号生成装置中,第一非线性器件和第二非线性器件基于非线性效应处理信号,相对于线性器件,效率更高,从而降低了功耗;此外,由于无电信号的参与,从而提高了星型16QAM信号的生成速率。
请参阅图4,图4是本发明实施例公开的一种星型16QAM信号生成方法。如图4所示,该星型16QAM信号生成方法可以包括以下步骤。
S401、解调器将第一QPSK信号解调为第一OOK信号和第二OOK信号。
S402、第一耦合器将第二QPSK信号和第一OOK信号进行合路。
S403、第一非线性器件将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号。
S404、第一滤波器过滤掉第一OOK信号。
S405、第二耦合器将8PSK信号和第二OOK信号进行合路。
S406、第二非线性器件将8PSK信号在第二OOK信号的控制下调节幅度以 获取星型16QAM信号。
S407、第二滤波器过滤掉第二OOK信号。
本实施例中,解调器D将第一QPSK信号转换为第一OOK信号和第二OOK信号,将第一OOK信号发送给第一耦合器C1,将第二OOK信号发送给第二耦合器C2;第一耦合器C1将第二QPSK信号和第一OOK信号合路后发送给第一非线性器件;第一非线性器件将第二QPSK信号在第一OOK信号的控制下进行相移以获取8PSK信号,并将第一OOK信号和8PSK信号发送给第一滤波器F1;第一滤波器F1过滤掉第一OOK信号,将8PSK信号发送给第二耦合器C2;第二耦合器C2将8PSK信号和第二OOK信号合路发送给第二非线性器件N2;第二非线性器件N2将8PSK信号在第二OOK信号的控制下调节幅度以获取星型16QAM信号,将第二OOK信号和星型16QAM信号发送给第二滤波器F2;第二滤波器F2过滤掉第二OOK信号,将星型16QAM信号作为星型16QAM信号生成装置的输出信号输出。其中,解调器D将第一QPSK信号解调为第一OOK信号和第二OOK信号,即将QPSK调制格式转换为OOK调制格式。
在图4所描述的星型16QAM信号生成方法中,第一非线性器件和第二非线性器件基于非线性效应处理信号,相对于线性器件,效率更高,从而降低了功耗;此外,由于无电信号的参与,从而提高了星型16QAM信号的生成速率。
以上对本发明实施例所提供的星型16QAM信号生成方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种星型16正交幅度调制QAM信号生成装置,其特征在于,包括解调器D、第一耦合器C1、第一非线性器件N1、第一滤波器F1、第二耦合器C2、第二非线性器件N2,其中:
    所述D的输入端I用于输入第一正交相移键控QPSK信号,所述D的第一输出端O1连接所述C1的第一输入端I1,所述D的第二输出端O2连接所述C2的第一输入端I1,所述C1的第二输入端I2用于输入第二QPSK信号,所述C1的输出端O连接所述N1的输入端I,所述N1的输出端O连接所述F1的输入端I,所述F1的输出端O连接所述C2的第二输入端I2,所述C2的输出端O连接所述N2的输入端I;
    所述D,用于将所述第一QPSK信号解调为第一开关键控OOK信号和第二OOK信号,将所述第一OOK信号发送给所述C1,将所述第二OOK信号发送给所述C2;
    所述C1,用于将所述第二QPSK信号和所述第一OOK信号进行合路并发送给所述N1;
    所述N1,用于将所述第二QPSK信号在所述第一OOK信号的控制下进行相移以获取8相移键控PSK信号,并将所述第一OOK信号和所述8PSK信号发送给所述F1;
    所述F1,用于过滤掉所述第一OOK信号,将所述8PSK信号发送给所述C2;
    所述C2,用于将所述8PSK信号和所述第二OOK信号进行合路并发送给所述N2;
    所述N2,用于将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号。
  2. 如权利要求1所述的装置,其特征在于,所述装置还包括第二滤波器F2,其中:
    所述F2的输入端I连接所述N2的输出端O,所述F2的输出端O为所述星型16QAM信号生成装置的输出端Vo;
    所述N2,还用于将所述第二OOK信号和所述星型16QAM信号发送给所述 F2;
    所述F2,用于过滤掉所述第二OOK信号,将所述星型16QAM信号作为所述星型16QAM信号生成装置的输出信号输出。
  3. 如权利要求1或2所述的装置,其特征在于,所述D为硅基微环。
  4. 如权利要求1或2所述的装置,其特征在于,所述C1和所述C2为多模干涉耦合器。
  5. 如权利要求1或2所述的装置,其特征在于,所述N1为脊波导。
  6. 如权利要求1或2所述的装置,其特征在于,所述N2为施加应力的氮化硅波导。
  7. 如权利要求1或2所述的装置,其特征在于,所述F1和所述F2为阵列波导光栅。
  8. 一种星型16QAM信号生成方法,其特征在于,包括:
    解调器将第一QPSK信号解调为第一OOK信号和第二OOK信号;
    第一耦合器将第二QPSK信号和所述第一OOK信号进行合路;
    第一非线性器件将所述第二QPSK信号在所述第一OOK信号的控制下进行相移以获取8PSK信号;
    第一滤波器过滤掉所述第一OOK信号;
    第二耦合器将所述8PSK信号和所述第二OOK信号进行合路;
    第二非线性器件将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号。
  9. 如权利要求8所述的方法,其特征在于,所述第二非线性器件将所述8PSK信号在所述第二OOK信号的控制下调节幅度以获取星型16QAM信号之 后,所述方法还包括:
    第二滤波器过滤掉所述第二OOK信号。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一非线性器件为脊波导,所述第二非线性器件为施加应力的氮化硅波导。
PCT/CN2014/085630 2014-08-30 2014-08-30 一种星型16qam信号生成方法及装置 WO2016029477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480077500.3A CN106464622B (zh) 2014-08-30 2014-08-30 一种星型16qam信号生成方法及装置
PCT/CN2014/085630 WO2016029477A1 (zh) 2014-08-30 2014-08-30 一种星型16qam信号生成方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085630 WO2016029477A1 (zh) 2014-08-30 2014-08-30 一种星型16qam信号生成方法及装置

Publications (1)

Publication Number Publication Date
WO2016029477A1 true WO2016029477A1 (zh) 2016-03-03

Family

ID=55398682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085630 WO2016029477A1 (zh) 2014-08-30 2014-08-30 一种星型16qam信号生成方法及装置

Country Status (2)

Country Link
CN (1) CN106464622B (zh)
WO (1) WO2016029477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039831B (zh) * 2021-10-29 2022-08-02 北京邮电大学 实现qpsk信号转换成pam信号格式的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034201A1 (en) * 2011-09-08 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Path computation in wavelength switched optical networks
CN103297146A (zh) * 2012-03-02 2013-09-11 北京邮电大学 多电平光信号产生装置及方法
CN103650396A (zh) * 2011-04-19 2014-03-19 谷歌公司 使用高阶调制对多个异步数据流的传送
CN103955101A (zh) * 2014-03-20 2014-07-30 北京邮电大学 一种基于soa的两次四波混频过程的16qam信号生成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154856A1 (en) * 2008-08-15 2010-02-17 Research In Motion Limited Systems and methods for communicating using ASK or QAM with constellation points having different distances
CN102571682B (zh) * 2011-12-17 2014-08-27 华中科技大学 一种正交幅度调制信号光的产生方法和装置
JP5773440B2 (ja) * 2012-01-31 2015-09-02 住友大阪セメント株式会社 光変調器
CN103997475B (zh) * 2014-05-29 2017-08-29 西安电子科技大学 一种识别Alpha稳定分布噪声下数字调制信号的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650396A (zh) * 2011-04-19 2014-03-19 谷歌公司 使用高阶调制对多个异步数据流的传送
WO2013034201A1 (en) * 2011-09-08 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Path computation in wavelength switched optical networks
CN103297146A (zh) * 2012-03-02 2013-09-11 北京邮电大学 多电平光信号产生装置及方法
CN103955101A (zh) * 2014-03-20 2014-07-30 北京邮电大学 一种基于soa的两次四波混频过程的16qam信号生成方法

Also Published As

Publication number Publication date
CN106464622B (zh) 2019-09-13
CN106464622A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN105379149B (zh) 光学接收设备和监测信号产生方法
US8909062B2 (en) Optical signal regeneration and amplification of M-PSK and M-QAM modulation formats using reconfigurable wavelength selective processors and phase-sensitive amplifiers
CN103414516B (zh) 基于同/外差探测的双向有线/无线混合光接入方法与系统
CN106972890A (zh) 一种光控光pam信号再生装置
CN109547104A (zh) 具有反时间电光相位混沌的双向保密通信系统
Hojo et al. Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters
CN109586800B (zh) 一种全光调制格式转换装置
WO2016029477A1 (zh) 一种星型16qam信号生成方法及装置
CN103891178B (zh) 用于光学无线结构的方法和装置
US20140099114A1 (en) Optical signal transmitting apparatus, optical frequency division multiplex transmission system, and optical signal communication method
US8761612B2 (en) 16 quadrature amplitude modulation optical signal transmitter
JP2013198167A (ja) 光ネットワークにおける波長再割り当て
JP5583222B2 (ja) 偏光のマーキングを用いる変調器
CN102118337B (zh) 相位调制格式信号再生方法及装置
Xu et al. Optical Nyquist filters based on silicon coupled resonator optical waveguides
CN105993141A (zh) 光接收器
CN103199795A (zh) 一种独立非相干双激光低相位噪声16倍频信号生成装置
CN105591698A (zh) 一种光载无线通信方法及系统
CN105974709B (zh) 全光无栅格频谱整合器
WO2008124982A1 (fr) Dispositif et méthode produisant un signal optique modulé de rz-dpsk
CN105264796B (zh) 光信号的发送方法、装置及系统
JP2021019297A (ja) 給電装置、受電装置及び光ファイバー給電システム
US9369209B2 (en) Flexible optical modulator for advanced modulation formats featuring asymmetric power splitting
JP2010124464A (ja) 電気機器接続装置
US20150244467A1 (en) Optical transmission device and optical reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900774

Country of ref document: EP

Kind code of ref document: A1