CN103748323B - 带分开的燃烧器的发动机、以及相关联的系统和方法 - Google Patents

带分开的燃烧器的发动机、以及相关联的系统和方法 Download PDF

Info

Publication number
CN103748323B
CN103748323B CN201280040373.0A CN201280040373A CN103748323B CN 103748323 B CN103748323 B CN 103748323B CN 201280040373 A CN201280040373 A CN 201280040373A CN 103748323 B CN103748323 B CN 103748323B
Authority
CN
China
Prior art keywords
burner
expansion apparatus
fluid
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280040373.0A
Other languages
English (en)
Other versions
CN103748323A (zh
Inventor
斯科特·R·弗雷泽
亚历克斯·刘
布莱恩·凡赫尔岑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Energy Storage Technologies LLP
Original Assignee
Bright Energy Storage Technologies LLP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bright Energy Storage Technologies LLP filed Critical Bright Energy Storage Technologies LLP
Publication of CN103748323A publication Critical patent/CN103748323A/zh
Application granted granted Critical
Publication of CN103748323B publication Critical patent/CN103748323B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/05Controlling by varying the rate of flow or quantity of the working gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

在此披露了多种发动机系统以及相关联的方法,包括带有半等温压缩装置的系统。根据一个具体实施例的一种发动机系统包括具有一个压缩机进流口和出流口的一个压缩机、具有联接到该压缩机出流口上的一个燃烧器进流口并且进一步具有一个燃烧器出流口的一个燃烧器、以及具有联接到该燃烧器出流口上的一个膨胀器进流口并且进一步具有一个膨胀器出流口和一个功输出装置的一个正排量膨胀器。一个阀门被联接在该燃烧器与该膨胀器之间以便调节从该燃烧器通到该膨胀器的热的燃烧产物流,并且一个排气能量回收装置被联接到该膨胀器出流口上以便从离开该膨胀器的燃烧产物中提取能量。

Description

带分开的燃烧器的发动机、以及相关联的系统和方法
相关申请的交叉引用
本申请要求于2011年6月28日提交的美国临时申请号61/502,308以及于2011年12月12日提交的美国临时申请号61/569,691的优先权,这两个申请均通过引用结合在此。对于上述申请和/或通过引用结合在此的任何其他材料与本申请提供的披露相冲突时,本申请控制。
技术领域
本技术总体上涉及发动机。多个具体实施例涉及半等温压缩发动机,该半等温压缩发动机带有热回收以及与正排量膨胀器分开的燃烧器。
背景技术
当今世界能量效率已经变成决定性的工业、经济以及甚至家庭问题,因此在动力和能量转换系统中并且特别是在发动机中考虑能量转换效率是重要的。当前的发动机现有技术是由基于开环奥托(Otto)循环、狄塞尔(Diesel)循环或布雷顿(Brayton)热力学动力循环的内燃发动机统治。基于这些循环的发动机就多数应用而言是足够有效的,这些应用的典型代表分别是汽车、重卡以及航空器涡轮机。
奥托循环和狄塞尔循环发动机主要用于汽车内燃发动机应用以及其他低成本的客户应用。这些类型的发动机是适当有效、轻质、并且对于广泛使用是相对廉价制造的,带有由规模经济导致的相对低的单位成本。
内燃发动机通常采用空气作为工作流体。燃烧热量是通过在该发动机的热力学循环中适当的点和多次喷射的燃料并且与作为工作流体的空气燃烧来创造的。这使得该工作流体能够膨胀并且做功。出于许多原因,这些发动机与它们的理论极限相比产生非常小的动力。因此更多焦点已经聚集在改善这些类型的作为动力转换装置的发动机的设计和效率上。
与常规内燃发动机相关联的问题包括:典型效率仅是大约20%至40%;各种类型的发动机需要特定的燃料类型;以及显著的温室气体排放和其他空气污染。效率有限的若干原因所基于的事实是压缩、燃烧和膨胀都是在相同的体积中发生。考虑到这些发动机中正时、燃料供应、点火变化的无常以及工作流体固有的不完全膨胀,在一个体积内优化这些系统的热力学循环是非常困难的。
发动机的理想热力学模型是卡诺(Carnot)循环,但是其效率在实际发动机系统中是不可能达到的。基于等温压缩或膨胀的热力学发动机循环最有希望保持高效率。不幸的是,在不借助于复杂且庞大的热交换器、和/或将相当大体积的直接接触热交换流体喷射到过程流中(这也添加了复杂性并且能够增大损耗)的情况下,在实际条件下合适的等温压缩或膨胀是难以实现的。真正的等温压缩或膨胀以及卡诺循环本身还只存在于理论范畴中。
发明内容
本技术致力于就发动机而言的以上挑战,因为它们属于动力产生、存储及使用领域。
以下概述了在此披露的技术的若干非限制性实施例。根据本技术的第一方面的一个实施例包括一种发动机,该发动机包括:被可操作地配置成用于压缩一种第一流体的一个冷却压缩机;被可操作地配置成用于接纳和加热该压缩的第一流体的一个压缩流体加热器;被可操作地配置成用于可控制地接纳来自该压缩流体加热器的这种加热的压缩的第一流体的一个正排量膨胀器;以及被可操作地配置成用于接纳来自该压缩机的压缩的第一流体的一个热回收器,该热回收器可以相应地对该压缩的第一流体进行预加热、并且将这种预加热的压缩的第一流体供应给该压缩流体加热器。该第一流体可以是一种气体、包括但不受限于空气,并且该压缩流体加热器可以是一个燃烧器,在该燃烧器中该第一流体被燃烧以产生热量。
该压缩机可以包括第一多个压缩级。至少一个中冷器被流体联通地布置在两个相继的压缩级之间、并且可以被可操作地配置成用于:接纳来自这两个相继的压缩级中的第一压缩级的压缩的第一流体;冷却该压缩的第一流体;并且将该压缩的第一流体提供给这两个相继的压缩级中的第二压缩级。
该热回收器可以被配置成用于通过在该压缩的第一流体与一个第二流体之间维持热联通来对该压缩的第一流体进行预加热。该第二流体可以是来自该正排量膨胀器的一种排气流体。在其他实施例中,热量可以是回收自该压缩机和/或外部源(例如,太阳热量、废热、或者其他外部源)的。
该正排量膨胀器可以包括一个往复式膨胀器和一个高温进气阀。该高温进气阀被布置成与该往复式膨胀器的膨胀室和该加热器相流体联通并且被配置成用于对来自该加热器的加热的压缩的第一流体进入该正排量膨胀器的吸入进行控制。该阀门在总体循环的任何时间或位置都是可操作在超过1200K的温度下的。在一些实施例中,该阀门可操作在超过1400K(例如,1600K、1700K、2000K、2400K、2800K、或更高)的温度下。该阀门可以具有陶瓷涂覆的运行表面和/或具有有助于高温运行的其他特征。该阀门在多个具体实施例中可以是一个旋转阀,或者在其他实施例中是一个提升阀或其他阀门。
在又进一步的实施例中,该正排量膨胀器可以包括一个旋转膨胀器和一个无阀端口。该旋转膨胀器可以具有一个或多个旋转室并且可以被可操作地配置成用于可控地接纳来自该压缩流体加热器的这种加热的压缩的第一流体。
该燃烧器可以是一个持续燃烧器、一个脉冲燃烧器、和/或其他适合的燃烧器。该发动机可以包括一个或多个传感器、一个或多个流动调制效应器、以及一个或多个微控制器,该一个或多个微控制器被可操作地配置成用于监测和控制这个(些)传感器和这个(些)调制效应器。这个(些)微控制器可以被可操作地配置成用于改变由该发动机产生的功率、燃料供应速率、燃料源、操作者限制、以及该膨胀器的排放特性中的至少一项。
根据本披露技术的一个进一步的方面的一种用于由燃料产生动力的方法包括对一种第一流体进行半等温压缩,使用来自一种第二流体的热量来对该压缩的第一流体进行预加热,在一个加热器中加热该压缩的第一流体,让这种加热的压缩的第一流体在一个正排量膨胀器中膨胀,并且对来自该加热器的加热的压缩的第一流体到该正排量膨胀器的吸入进行控制。该半等温压缩可以包括多个压缩级,并且该压缩的第一流体可以在所述多个压缩级的至少一对紧接相继的压缩级中间被中冷。
该第二流体可以是来自该膨胀过程的一种排气流体,并且该预加热过程可以包括在该第二流体与该压缩的第一流体之间交换热量。可以用一个高温阀门来控制来自该加热器的加热的压缩的第一流体到该正排量膨胀器的吸入,该高温阀门在相对高的温度(例如,大于1400K)下是可操作的。
根据本披露技术的另一个方面的一种发动机系统进一步包括一个流体存储压缩机,该流体存储压缩机被可操作地配置成用于将该压缩的第一流体压缩到一个存储压力。该发动机系统可以进一步包括一个高压流体存储罐或用于在一个存储压力下存储该压缩的第一流体的其他体积、以及一个引导阀,该引导阀在该半等温压缩机与该热回收器之间被布置在一条高压流体管线中。该引导阀可以被可操作地配置成用于从以下各项中进行选择:(a)将来自该半等温压缩机的压缩的第一流体引导至该热回收器、(b)将来自该冷却压缩机的压缩的第一流体引导至该高压流体存储压缩机、以及(c)将来自该高压流体存储罐的压缩的第一流体引导至该热回收器中。该流体存储压缩机还可以被运行为一个膨胀器以用于接纳存储的高压第一流体并且让该第一流体膨胀(例如在该第一流体被燃烧或以其他方式被加热之前)。
根据本披露技术的一个进一步的方面的一种用于转换能量的方法包括对一种第一流体进行半等温压缩,并且使该压缩的第一流体选择性地经受一个能量提取过程和一个高压存储过程之一。该能量提取过程可以包括使用来自一种第二流体的热量来对该压缩的第一流体进行预加热、通过燃烧该第一流体(或该第一流体与一种燃料的混合物)产生热量来进一步加热该压缩的第一流体、让这种加热的压缩的第一流体在一个旋转式、往复式或其他正排量膨胀器中膨胀、并且对来自该加热器的加热的压缩的第一流体到该正排量膨胀器的吸入进行控制。该高压存储过程可以包括进一步对该第一流体进行压缩并且将该第一流体收集在一个高压流体存储罐中。
根据本披露技术的一个进一步的方面的一种用于转换能量的方法包括对一种第一流体进行半等温压缩,在流体存储罐或其他体积中以存储压力对该半等温压缩的第一流体进行存储,并且使该压缩的第一流体选择性地经受一个可逆的(例如,用户可重新配置的)压缩机/膨胀器中的一个能量提取过程和一个膨胀做功过程之一。该能量提取过程可以包括使用来自一种第二流体的热量来对该压缩的第一流体进行预加热、进一步加热该压缩的第一流体(例如,通过燃烧)、让这种加热的压缩的第一流体在一个正排量膨胀器中进一步膨胀、并且对来自该加热器的加热的压缩的第一流体到该正排量膨胀器的吸入进行控制。
附图说明
图1展示了根据本披露技术的一种发动机的一个实施例。
图2展示了根据本披露技术的一种发动机的另一个实施例。
图3展示了一种用于使用根据本披露技术的发动机转换能量的方法的流程图。
图4展示了根据本披露技术的一个实施例的一个能量转换和存储系统。
图5展示了根据本披露技术的一个实施例的一种用于转换能量的方法的流程图。
图6展示了根据本披露技术的一个实施例的另一种用于转换能量的方法的流程图。
图7展示了根据本技术的一个实施例的被配置成用于压缩和/或膨胀工作流体的两个发动机组。
图8展示了本披露技术中使用的一个旋转阀。
图9A是根据本技术的一个实施例的具有一个旋转阀的一个膨胀器的一部分的局部示意性等距图示。
图9B是根据本技术的一个实施例的一个系统的局部剖开图示,该系统包括一个燃烧器,该燃烧器被联接到具有一个旋转阀的一个膨胀器上。
图9C是图9B中示出的燃烧器和膨胀器的一个实施例的放大图示。
图9D是根据本技术的一个实施例的一种用于在一个旋转阀的两个衬层中联接多个流动通道的安排的局部示意性剖开图示。
图10A是根据本技术的一个实施例配置的一个内部冷却提升阀的局部示意性截面图示。
图10B是根据本技术的一个实施例的一个内部冷却提升阀的局部示意性截面图示,该提升阀具有一个喇叭形冷却通道出口。
图10C是根据本技术的一个实施例的一个提升阀的局部示意性截面图示,该提升阀具有带多个通道出口的一个内部冷却通道。
图10D是根据本披露技术的另一个实施例的一个提升阀的局部示意性截面图示,该提升阀是通过一个外部冷却薄膜来冷却的。
图11A是根据本技术的一个实施例的具有主动冷却表面的一个活塞和汽缸的局部示意性俯视图。
图11B是图11A中示出的活塞和汽缸的一个实施例的局部示意性侧截面图示。
图11C是图11A中示出的活塞和汽缸的一个实施例的局部示意性侧截面图示,其中安装了一个冷却头部或阀门壳体。
图12A是根据本技术的一个实施例的一个旋转装置的局部示意性、局部剖开的等距图示,该旋转装置被配置成用于作为一个压缩机和/或一个膨胀器来运行。
图12B是图12A中的压缩机/膨胀器的一个实施例的局部示意性等距图示,进一步展示了一种级间冷却安排。
图13A是根据本技术的一个实施例的一个发动机系统的局部示意性等距图示,该发动机系统被配置成装配在一个标准尺寸集装箱内。
图13B是图13A中示出的发动机系统的局部示例性图示。
图13C是根据本披露技术的一个具体实施例的存储在一个集装箱中的一系列瓶罐的局部剖开图示。
图13D展示了根据本技术的一个实施例的用于存储一个发动机系统和/或多罐安排的多个集装箱。
图14A至图14C展示了对常规发动机和根据本披露技术的发动机系统而言的预期发动机系统性能的比较。
具体实施方式
本披露技术的实施例包括发动机,该发动机利用了与将加热器子系统、膨胀器子系统以及压缩子系统分离相关联的益处来分别改进(例如,优化)这些子系统的过程,同时还采用了半等温压缩以及热量回收。结果是发动机相对其成本而言具有非常高的效率,和/或具有低的排放水平并且在燃料要求方面具有良好的灵活余地。出于清晰性的目的,将不在以下的说明中给出人们熟知的并且通常与发动机系统相关联的、但却可能不必要地使本披露技术的某些重要方面难以理解的结构或过程进行描述的某些细节。此外,尽管以下的披露给出了本技术的多个不同方面的一些实施例,但其他一些实施例可以具有与这个部分中描述的那些不同的构型或者不同的部件。相应地,本技术可以具有带额外元件的、和/或不带以下通过参考图1至图14C描述的这些元件中的某些元件的其他实施例。
以下描述的本技术的一些实施例可以采取计算机可执行指令的形式,包括由可编程计算机所执行的多种例程。相关领域的技术人员应理解的是,本技术可以在与以下示出和说明的那些不同的计算机系统上进行实践。本技术可以在一种特殊用途的计算机或者数据处理器中实施,该计算机或者数据处理器是被特别地编程、配置或者构造的以便执行以下说明的这些计算机可执行指令中的一个或多个。因此,如在此概括地使用的术语“计算机”和“控制器”是指任何数据处理器并且可以包括因特网设备和手持装置(包括掌上计算机、可穿戴计算机、蜂窝式或者移动电话、多处理器系统、基于处理器的或者可编程的消费电子产品、网络计算机、小型计算机以及类似物)。本披露技术的多个方面还可以在分布式环境中实践,其中多个任务或者模块是由远程处理装置来执行的,这些远程处理装置通过一个通信网络来链接。在分布式计算环境中,程序模块或者子例程可以是位于本地的以及远程的记忆存储装置中。以下说明的本技术的多个方面可以被存储或者分布在计算机可读介质上,包括磁性或者光学可读的或者可移除的计算机盘片,以及电子地分布在网络上。在一些实施例中,本技术的多个方面所特有的数据结构以及数据传输也可以被涵盖在本技术的范围内。在其他实施例中,省却了此类数据结构和传输。
附图和相关说明是提供以展示本披露技术的多个实施例但并不限制本技术的范围。本说明书中引用“一个实施例”或“一种实施例”旨在指示一个具体特征、结构、或者结合该实施例描述的特性被包括在本披露技术的至少一个实施例中。短语“在一个实施例中”或“一个实施例”在本说明书中的不同地方出现并非必然是都引用了同一个实施例。
如在这个披露中使用的,除上下文另外要求之外,术语“包括”以及该术语的变体并不旨在排斥其他添加、组成、整体或步骤。
一些实施例被描述成一个过程,该过程被描绘成一个流程图、一个流图、一个结构图、或一个框图。尽管一个流程图可能披露作为一个序贯过程的多个不同操作步骤,但这些操作许多可以被并列地或同时地执行。这些示出的步骤并不旨在进行限制,它们也不旨在指示描绘的每个所描绘的步骤都是本方法所必要的,而仅仅是代表性步骤。
在图1示意性示出的一个实施例中,一个发动机系统100包括被可操作地配置成用于压缩一个第一流体的一个冷却的压缩机110以及被可操作地配置成用于接纳和加热这种压缩的第一流体的一个压缩流体加热器120。该发动机系统100进一步包括一个正排量膨胀器130,该膨胀器用于通过一个高温进气阀140接纳来自压缩流体加热器120的这种加热的压缩的第一流体,该高温进气阀使加热器120的内部与正流量膨胀器130的内部分开。发动机系统100进一步包括一个热回收器150(例如,一个热交换器)或其他排气能量回收装置,该热回收器或排气能量回收装置被配置成用于接纳来自冷却压缩机110的压缩的第一流体、预加热该压缩的第一流体、并且将这种预加热的压缩的第一流体供应给压缩流体加热器120。在这个实施例中,该第一流体(例如,工作流体)是空气。在其他实施例中,该第一流体可以是在加热时呈现适合的膨胀的任何适合的流体,包括但并不受限于一种气体。一个功输出装置137传送来自膨胀器130的功,例如是轴功率形式的或者能够用于驱动一个发电机和/或提供其他有用功能的另一种能量形式。压缩机110和膨胀器130可以具有相异的工作流体体积,例如各自的工作流体体积并不重叠的。在一些实施例中,加热器120(例如,一个燃烧器)具有与压缩机工作流体体积和膨胀器工作流体体积两者均相异的工作流体体积。在至少一些实施例中,并非所有三个体积都是相异的。例如,该加热器体积可以与该膨胀器体积重叠(例如,包括或者被包括于其中)。
在一个具体实施例中,压缩流体加热器120是一个持续燃烧器,燃料通过一个燃料供应管线122被供应到该持续燃烧器以便与从热回收器150经由一个热回收器流体出流口152、一个预加热流体管线154以及一个加热器进流口124供应的第一流体(例如,空气)一起燃烧。在其他实施例中压缩流体加热器120可以是一个脉冲燃烧器或适合用于加热工作流体的任何通用加热器。当加热器120包括一个脉冲燃烧器时,该脉冲燃烧器可以被转变成与最后的压缩机输出端口的打开和关闭的频率、或者该膨胀器输入端口的打开和关闭的频率、或者该系统内的多种不同谐振的频率一致。这种协调的安排可以减少流体流动摩擦和流动泵送损失。该脉冲燃烧器可以被转变成与该系统的一些谐波错相以便降低振动和噪声。
压缩机110可以包括多个部分或压缩级。图1中,作为举例,示出了三个部分或压缩级111、112和113。在这个实施例中,空气作为工作流体通过一个周围空气进流口114而被顺序地供应给这些压缩级111、112和113。至少一个中冷器或其他热传递装置可以被流体联通地布置在两个相继的压缩级之间,并且可以被可操作地配置成用于接纳来自这两个相继的压缩级中第一压缩级的压缩的第一流体。该中冷器冷却压缩的第一流体并且将该压缩的第一流体提供给这两个压缩级中的第二压缩级。在图1示出的实例中,一个第一中冷器115被布置在第一压缩级111与第二压缩级112之间,并且一个第二中冷器116被布置在第二压缩级112与第三压缩级113之间。其他实施例可以包括更多或更少的压缩级并且一些紧接相继的压缩级可以彼此直接相连而无需在它们之间布置一个中冷器。在一些实施例中,这些压缩级可以是并联或串联运行的多个正排量压缩机机器的压缩级。
在压缩过程中,该工作流体(例如,空气)由于这些压缩级111、112和113中增大的压力而被加热。这会触及发动机的热力循环中的基本问题之一并且是对于潜在低效率的一种来源。在理想化的和理论的卡诺循环中,这种压缩是等温的。由于这种等温压缩在商业领域中经济可行的发动机中基本上是不可能实现的,根据本披露技术的实施例的发动机采用这些中冷器115和116来冷却这些压缩级之间的工作流体。在本披露中使用了短语“半等温压缩”来包括作为一个具体实施例来近似理想化卡诺循环的真正等温压缩的这种实践上的“中冷”。在其他实施例中,可以用其他技术来近似一个理想的等温压缩过程。
热回收器150被配置成用于通过提供压缩的第一流体与一种第二流体之间的热联通来预加热该压缩的第一流体。在展示的实施例中,该第二流体是来自正排量膨胀器130的一股排出流体,该排出流体通过一个热回收器加热流体进流口156以及一个排气管线132而从一个膨胀器排气端口或阀门134供应给热回收器150。在一个实施例中,热回收器150中已经使用过的排出流体然后在一个热回收器通风孔158处被泄放。在其他实施例中,该排出流体可以在通过热回收器150之后用于其他功能。例如,该排出流体可以用于空间加热(例如用于加热一个建筑物)、和/或在从相对低的等级和/或低温的热量中提取有用功能的其他情况中提供热量。
热回收器150的结构可以被确定成以多种不同方式中任一方式对压缩的第一流体进行预加热。例如,热回收器150可以包括一个热交换器159,该热交换器被配置成用于将热量从该排出流体传递给该工作流体。在本技术的一个实施例中,热回收器150包括膨胀器130的排气烟道中的逆流向盘绕的压缩空气管。在其他实施例中,这两种流体可以被由金属板或其他导热材料制成的一个壁分开以使它们保持分离避免彼此直接流体接触,同时允许热联通,即允许热量从热的第二流体传送到较冷的半等温压缩的第一流体。相应地,该热回收器可以包括第一和第二流动路径,该第一和第二流动路径彼此热联通但不流体联通。
热回收可以是一种非常能量有效的方法,该方法减少了燃料量或者达到该工作流体在膨胀之前希望的峰值温度所需要的加热能量。用于排气能量回收的一种常用技术是一个涡轮增压器,在该涡轮增压器中排气中的过量压力被用于驱动一个压缩泵以增大内燃发动机的进气压力。一些热能仍是从涡轮-膨胀过程提取的,尽管气体通常以非常高的温度离开该涡轮增压涡轮机,该气体通常被排出到大气中(或者偶尔被用于工业废热发电系统以提供工业废热)。通过一种逆流向热回收器策略,排气热量可以将其大百分比的热量传递给压缩的流体并且当该发动机是一个工业废热发电系统的一部分时还可以收获任何剩余的热量。
热回收在常规内燃发动机中是难以实现的,这是因为压缩空气或空气燃料混合物被直接点火和燃烧。当该压缩过程使用了同一排量的用于膨胀的装置时,通常不存在简单的方法来用于使那些空气重新导向至一个排气热量回收器。另外,一个单级压缩过程中的空气与带有一个中冷的或半等温的压缩过程相比会更热并且来自一个单级压缩过程的热的压缩的空气通常基本上不会比排气更冷。换一种说法,如果在压缩过程中没有冷却的话,就不能对压缩空气的温度加以实质性的热回收。总体上,本披露的实施例的热的压缩的气体会比用一种将平均温度保持得更低的过程来实现相同的压力的情况要提供更多的功,这是因为所需功的量与该气体的体积成比例并且与该气体的温度成比例。热回收是用于从新捕获这种能量的一种技术。
发动机系统100可以在膨胀器130的入口处包括一个高温进气阀140。通过该高温进气阀140将膨胀器130的内部与流体加热器120的内部分开的好处之一在于选择膨胀器130的具体技术方面提供了相当大的灵活性。例如,正排量膨胀器130可以包括一个往复式膨胀器136,并且高温进气阀140可以相应地控制从加热器120进入该往复式膨胀器136的加热的并且压缩的工作流体的流动。
压缩机110与膨胀器130的总体积比是来自膨胀器130的希望的出口压力的一个函数。膨胀到比周围外部压力高的出口压力不如膨胀到周围压力有效率,但对于膨胀阀130中的一个给定排量体积而言提供了更大的功率。这样,存在一系列的潜在适合选项,并且这些可能解决方案与可容易获得的正排量机器是可以相比较的,或者可以使用一种定制的机器。当使用中冷时半等温压缩机的第一级与其第二级相比(或者第二级与第三级相比)的体积比是与这两级的第一级中实现的压力比高度相关的。即,如果第一中冷器115使第一级中冷的流体温度回到接近在该流体进入第一压缩级111时其具有的(例如,周围)温度时,则离开第一中冷器115的流体体积与该第一级中增大的压力相当近似地成比例。
随着离开第一中冷器115的温度增大高于周围温度,离开的工作流体的体积也增大并且这将与压缩机110的第二压缩级112中需要的体积相关联。由一个前一级排出的工作流体的质量需要与由后一级或过程吸入的质量进行匹配。本领域有熟练的设计者所选择的不同压力和温度将决定各级之间使用的体积比。在多个具体实施例中,一个正排量机器可以吸入比其满排量小的工作流体体积。例如,在一个往复式机器中它可以通过在小于进气“冲程”的满180度上打开进气阀来做到。
在燃烧发生在膨胀器130的膨胀室之外的实施例中,一项挑战是热的高压工作流体必须从加热器120的燃烧室通入往复式膨胀器130的膨胀室中。在一个正排量膨胀器中,该工作流体的流动总体上必须间歇地被启动并且然后被停止。相应地,本技术的多个实施例包括高温阀140。
当采用气体作为一种工作流体时,该燃烧气体的希望温度典型地是和实际的一样高,这是由于在越高的温度下可获得的效率越高。这些温度可以超过1200K、1400K、1600K、1700K、2000K、2400K或2800K。这些温度通常将损坏未保护的金属。额外地,当往复式膨胀器136的膨胀室中的压力基本上在该热工作流体的压力之下时,通过该高温进气阀140的工作流体流量可以是高的。挑战是使进气阀140在热的加压流体的这种破坏性流动中幸存。相应地,在至少一些实施例中,进气阀140的结构可以与该热工作流体隔热和/或被主动地冷却。进一步的细节将在下文参照图8至图10D予以说明。
该膨胀器出口处的排气阀134控制该工作流体离开膨胀器130的流动。因为该膨胀器出口处的流体比该膨胀器入口处更冷,所以排气阀134可以不要求与进气阀140相同级别的耐热性。通过定制排气阀134关闭的时间,膨胀器130的排量腔中的剩余工作流体可以被压缩至高达接近燃烧器120中的压力。例如,如果膨胀器130包括一个活塞,则排气阀134可以在活塞完成一个类似发动机组的标准使用中的、被认为是排气冲程的最后一部分时关闭。这种正时可以被选择用来减小加热器120的燃烧室与膨胀器130的膨胀室之间的压力差,由此降低在进气阀140打开时的流动速度、相关联的热传递率、以及腐蚀动力。用于调节进气阀140正时的过程能够以简单的常规阀门正时技术(例如,这些阀门是通过曲轴/驱动轴与一个阀门致动机构之间的一个机械联动装置来驱动的)来控制,和/或该正时可以通过一个处理器来计算机控制,该处理器被编程有用于执行阀门正时功能的多个具体指令。类似的安排可以被用于控制该燃烧器处的一个间歇燃烧过程。
可以用多个传感器来对排出工作流体以及其他运行参数进行估计。这些可以被供给到一个或多个微处理器,这些微处理器可以调制多种参数,例如到加热器120的燃料流。该加热过程典型地包括将燃料添加到该压缩的第一流体(例如,工作流体)并且运行一次适合的燃烧过程。控制燃料流动的典型地是用于改变该系统的功率水平的主节气门调节技术。
在使用燃烧(例如,连续的、准连续的和/或间歇的燃烧)与膨胀器130分开的多种构型中,这种燃烧是以一种更不依赖于强加给内燃发动机的正时要求的方式运行的。相应地,燃烧器120可以是相对简单的具有即使有也是非常少的控制的。其他实施例包括多种更加精巧的设计。燃烧器120的一些设计允许改变这些燃烧技术和/或参数,例如通过预混合这些反应物、调节多个流动压力、和/或变更孔口大小。变更这些参数改变了燃烧后气体的温度和/或化学性质,其效果是改变温度和/或改变NOx、CO和/或未燃碳氢化合物的排放。在这些实施例的至少一些中,该燃烧器具有一个无中断的(例如,没有阀门的)进流口并且被定位成在多个膨胀器循环上对该膨胀器提供连续的燃烧产物流。这不同于常规的内燃发动机,常规内燃发动机提供多个分开的燃烧产物量,一个量用于一次膨胀循环。
改变进气阀140的正时可以变更这些系统运行特征,例如通过变更运行压力或者这些正排量腔被开放通向不同集气室或通路的时间。阀门如何快速打开和关闭以及气体如何流动通过该阀门开口的细节将影响阀门正时。此外,外部环境或控制设定(例如节气门设定)的改变可以变更该工作流体在贯穿该系统的不同点处的压力。这样,它可以有益于变更阀门140的运行正时。适合的技术包括现在已经在内燃机器中使用的那些,例如,变更一个阀门致动系统轴的“计时”位置。在一种典型的提升阀设计中,这个过程包括凸轮轴相对于曲轴位置“计时”,或者类似地通过一个旋转阀、对该阀体的角位置“计时”。做到这点的一种简单的方式是用凸轮/阀门传动带或链的一个可调节的惰轮来偏转这些角位置。更新的技术允许通过电子控制或液压致动来对这些阀门进行精细的动态操作。可以被采用来监控并且控制该发动机的其他控制参数包括但并不限于多个运行温度、润滑剂流动以及多个安全运行限制。
在本技术的几个实施例中,正排量膨胀器130可以被配置成通过例如将该膨胀器和半等温压缩机110这两个单元都放在同一个轴上来驱动该半等温压缩机,或者通过一个传动带驱动该半等温压缩机110。在其他实施例中,半等温压缩机110能够以一个分开的动力源来驱动。在多个具体实施例中,膨胀器130可以被联接到一个发电机以便产生电力,并且压缩机110可以被联接到一个电动机上,该电动机接收来自该发电机或另一种电源(例如,在能量存储实施例中)的电流。例如通过一个离合器或直接驱动机构来在该压缩机与膨胀器之间安排该电机/发电机可以允许多种运行模式,在这些运行模式中例如通过使用或创造存储的压缩流体而在一个给定的时间点只发生压缩或者只发生膨胀。这种安排还可以有利于压缩和膨胀过程同时发生的、但每种过程与当以相等的质量流量运行时相比具有不同的质量流量以及对应不同的功率的多种模式。
系统100还可以包括一个再生冷却装置160。再生冷却总体上是指一个过程,在该过程中一种流体被用于冷却一个系统元件并且在该冷却过程之后冷却剂然后被引入该工作流体或其他过程流中。薄膜冷却是一个具体的实例,在该实例中较冷的流体被引导在一个较热流体流与围绕该流体流的外壳之间,以便沿该外壳的多个表面降低该流体的平均温度。这种注入的流体变成总体工作流体的一部分。在另一个实施例中,该冷却流体通过一个实体边界而与该较热流体分开。一旦该较冷的流体通过其与该实体边界接近而被加热,该较冷的流体就可以被引入该较热流体(例如,该工作流体)中。
该再生冷却流体可以在被重新引入至该工作流体中之前被引导至多个部位。该流体可以被引导至多个单独的部位,和/或可以被并联引导至多个部位,和/或被串联引导至多个部位。代表性部位包括该燃烧器、该热回收器、该膨胀器和/或该压缩机。在图1示出的一个具体实施例中,该再生流体被引导至该膨胀器和/或该燃烧器以用于冷却,并且一旦被加热就被重新引导至该燃烧器上游的工作流体中。虽然该再生器在图1中被示意性示出为一个分开的装置,但该再生器可以与其所冷却的装置集成,例如是在下文通过参照图9A至图11C予以说明的多个主动冷却通道的形式。
图2示例性展示了根据示出的本技术的一个代表性发动机系统200的一个进一步的实施例。与图1中示出的那些相同的或者总体上等效的部件是以相同的参考号标注的。在这个实施例中,正排量膨胀器130包括一个旋转膨胀器236,该旋转膨胀器被联接到一个无阀端口240上。旋转膨胀器236是一个正排量机器,在该机器中一个旋转转子产生多个可变体积室。这种安排的多个实例包括汪克尔(Wankel)汽缸构型或一个旋转叶片泵。该发动机的其他子系统可以与图1中的实施例的这些子系统类似或相同并且能够以类似或相同的方式起作用。图2中的实施例的一个特别特征在于旋转膨胀器236可以具有一个或多个旋转构件并且通过其自身的旋转构件中的一个或多个而可以完成其自身的进气阀动作用。由此在这个实施例中免除了对高温进气阀的要求除。一种适合的旋转膨胀器236的一个非限制性实例是美国申请号13/038,345中描述的两瓣式双向旋转膨胀器,特此通过引用结合了该申请的说明书。
图3展示了根据本技术的一个进一步的方面的用于从一种燃料产生功率的一个过程300。在此通过参照图1的装置来描述的这个过程包括在一个压缩机(例如,图1中示出的压缩机110)中对一种工作流体进行半等温压缩(过程区段310)。过程区段320包括预加热该压缩的工作流体(例如,在热回收器150中)并且过程区段330包括通过将一种燃料添加到该工作流体中并且使得所导致的混合物燃烧来加热该压缩的工作流体(例如,在加热器120中)。过程区段340包括通过使用高温进气阀对这个压缩并且加热的工作流体(例如,从加热器120)进入一个膨胀器(例如,往复式膨胀器136)的一个膨胀室中的一次吸入进行控制。过程区段350包括让这种加热的并且压缩的工作流体膨胀。使用排出的工作流体的热量来预加热该工作流体(过程区段320)。对这种加热的并且压缩的工作流体进入该膨胀器(例如,通过一个高温进气阀)的吸入进行控制可以在超过1200K的温度下发生。在某些情况下该控制过程可以在超过1400K,例如1700K、2000K、2400K或2800K的温度下发生。在图2的装置的情况下,该方法除关于该膨胀过程(过程区段350)和该控制过程(过程区段340)之外至少总体上是类似的。例如,过程区段350可以发生在一个旋转膨胀器中并且过程区段340可以发生在该旋转膨胀器自身内,在图2示出的实施例中不存在进气阀140。过程区段345包括例如通过将一种冷却流体传送到该加热器和/或膨胀器并且将该冷却流体返回到例如在该加热器上游的总体过程流来再生热量。
在图1、图2以及图3中示出的这些示例性实施例中,该工作流体可以是空气并且用作一个第二反应物(除此之外还有该燃烧器处的燃料)。在本技术的一个更全面的实施例中,该热量可以是在该工作流体循环之外产生的。
对该第一工作流体进行半等温压缩(过程区段310)可以包括在多个压缩级中压缩该工作流体并且同时在这些压缩级中间对压缩的工作流体进行中冷。在一个实施例中,如图1、图2以及图3示出的,该半等温压缩过程包括第一压缩级111中的一个第一压缩过程(过程区段311)、第一中冷器115中的一个第一中冷过程(过程区段315)、第二压缩级112中的一个第二压缩过程(过程区段312)、第二中冷器116中的一个第二中冷过程(过程区段316)、以及一个第三压缩级113中的一个第三压缩过程(过程区段313)。
预加热过程(过程区段320)可以包括接收来自该膨胀器排气的热量(过程区段322)。过程区段322中回收的热量被引导至热回收器150以用于通过在该压缩的工作流体进入加热器120之前交换热量(过程区段324)而预加热该工作流体。
在图1和图2的这些实例中,该燃料与形成该工作流体的空气燃烧。相应地,尽管加热器120的内部是与膨胀器130的内部分开的,但这两个部件是通过进气阀140(图1)或进气端口240(图2)而保持间歇性流体联通的。因此,根据本披露技术的多个实施例的发动机在原理上是内燃发动机,原因是在这些内燃发动机中燃烧虽然不发生在该膨胀器的膨胀室内但像大部分内燃发动机中一样发生在该工作流体内。在其他实施例中,加热器120可以被外部地加热从而使得该燃料和该工作流体保持分离。
本披露技术的多个实施例包括对该第一流体,例如空气进行加热的多种方式。在此讨论的许多实施例包括将该压缩空气与一种燃料燃烧,该燃烧的产物然后流动进入如上述的膨胀器中。这种燃料可以是气体(例如天然气或丙烷,合成气)、液体(例如汽油、柴油燃料或船用油)、或者甚至固体(例如生物质/木材,煤炭,焦炭,木炭)。
使用固体燃料通常会导致灰尘以及可以沉积在该膨胀器表面上的其他材料。总体上,正排量机器与典型的以高速旋转(并且因而可以承受小的沉淀导致的不平衡)的、并且具有多个冷却管路(这些冷却管路可能由于碳烟而变得堵塞)的航空机器相比可以更加忍耐这些沉淀。
对于一些燃烧技术、特别是固体燃料而言一种替代方案是使该燃料在一个分开的腔中燃烧并且将热量传递跨过划分该压缩空气与这些燃烧燃烧产物的一个分隔物。例如一个煤炭发电厂的锅炉将热量从燃烧气体传递给携带工作流体的高压水管中。一种类似的策略是可以在这些管中使用空气以替代水。挑战是由于材料的限制或者传热壁的成本而可以传给该压缩空气的最高温度。另外,此类温度通常小于在同一种有待膨胀的气体中燃烧所获得的温度。然而,固体燃料与气体或液体燃料相比通常是大为便宜的和/或更易获得的,从而使得在至少一些实施例中较低的峰值温度以及相关联的较低热力学效率是一种可以接受的折衷办法。其他代表性热源包括太阳热量、或者来自工业过程的废热。
上述中冷过程增加了该发动机的功率效率。这样的原因之一是该中冷过程减少了寄生压缩。内燃发动机中的中冷已知为一种用于对给定排量而言提高功率的方法,典型地是与涡轮增压或超增压相结合。涡轮增压和超增压通常被用于在典型内燃发动机固有的膨胀不足流的排气中收获过量能量以增大发动机的压力。即,这种设计以一种更完全的膨胀收获的额外功率被用于增大功率。在一个典型的内燃发动机中,其中压缩和膨胀在相同的汽缸中发生,这些燃烧产物被膨胀到大于周围压力并且有可能从进一步的膨胀中获得的额外能量效率。在压缩和膨胀发生在不同体积中的一个发动机中,例如本披露技术的多个实施例中,总体上不存在效率利益去涡轮增压,因为由涡轮增压器消耗的能量是从该膨胀器输出中移除的,并且当该出口压力是外部周围压力时发生了最大膨胀器输出。
在一个标准内燃发动机中,其中最终的压缩阶段、燃烧、以及膨胀都发生在相同的气缸内并且具有交错的正时,通常不存在简单的方式来在最后的压缩阶段之后并且刚好在燃烧之前将废热提供给这些反应物。将该压缩体积与燃烧体积分开使得该系统能够预加热这种冷却的压缩空气。通过在本披露技术的发动机中结合压缩机110中的中冷以及热回收器150中的热回收,压缩功就可以被减少15%至25%。这导致显著的能量效率增益,例如高达25%。
压缩机110的第一压缩级111确定了作为工作流体的空气通过该发动机一直到加热器120处的流量。在本披露技术的发动机中,可以针对增大体积以及在该加热过程之后在加热器120中传导的工作流体流来独立地优化膨胀器130。膨胀器130中的膨胀比因此可以与来自加热器120的加热的空气相匹配。这是一个进一步的效率增益源,接近25%。这在压缩、加热以及膨胀都在相一室中发生的标准内燃机器中同样是管理上困难的或不可行的。
已经对于涡轮机器提出了在某种程度上与本披露技术的系统类似的那些系统。此类系统典型地包括一个燃烧器,该燃烧器被定位在一个旋转涡轮压缩机与一个旋转涡轮膨胀器之间,举例如一个航空器燃气涡轮发动机所使用的。此类系统与本技术的一个区别在于本技术的多个实施例包括多个正排量机器,在这些正排量机器中工作流体的多个离散体积被压缩或膨胀。相比之下,涡轮机器、如典型的燃气涡轮发动机是连续流机器。正排量膨胀器/压缩机典型地是每单位功率较不昂贵的并且具有较高的膨胀和压缩过程效率。尽管此类机器要求管理间歇流,但通过相对前一过程和后一过程定制进气流时期和排气流时期的正时以及在这些节点间流通路中使用适合的容积以缓冲这些流变化就可解决这种挑战。正排量机器总体上可以忍耐较高的峰值气体温度(如内燃发动机中高温是常见的)并且这是由于这些膨胀器部件经受该峰值温度与排气温度的一个平均值(并且通常该较冷的进气和这些压缩级也是这样)。隔热的使用典型地更易于在PDMs中实施。对于PDM实施这种循环而言的一个挑战是与对用于往复式机器的阀门进行冷却以及一个旋转式PDM中多个零件的热管理相关联的。用于往复式装置的代表性冷却技术将在下文通过参照图9至图11C予以说明。
以下实例提供了多种代表性正时安排。如果一个系统包括六个第一级压缩机汽缸,这些第一级压缩机汽缸供给两个第二级压缩机汽缸,则这些第一级汽缸可以被安排在一个曲轴上以彼此相隔60度的相位运行,这使得来自所有这些汽缸的进气和排气平滑。这两个第二级汽缸可以被正时成彼此相隔180度曲轴角以使得在所有时间上基本上总是有这两个汽缸中一个或另一个处于进气模式(取决于进气冲程是否是完整的180度曲轴角)。从这些压缩汽缸中任一汽缸输出的时间或角周期将随着压缩比而改变。即,如果压力比是十,则与该压力比为二时相比排放周期将更短。所以通过这些压缩汽缸的较短的排放,可能存在多个时间周期是没有排放流的。
在一个压缩级中有更多的并联运行的汽缸将帮助消除流动周期性。此外,增大这些间歇流来源与去处之间的封闭气体体积将减小这些压力振荡。从该压缩过程到该膨胀过程的这种流动包括一个热回收器并且包括注入该燃烧器/加热器中并且然后进入一个热气体歧管,在该歧管中该流体流然后流动通过这些膨胀汽缸的热气体阀门。该热回收器和热气体歧管的体积可以用作蓄积器,从而使得由多个第二级压缩机排放脉冲产生的压力振荡通过流入该加热器并且随后进入这些膨胀汽缸而得以平稳下来。
在这个实例中相对小的数目的第二级压缩汽缸产生了最不均匀的流量。根据该压力比,排放持续时间可以是每次仅仅80度曲轴角。这两个八十度周期可以被计时成相隔180度,但这仍然留下200度的曲轴角没有来自该压缩过程的流体流。可以如以上所述地在完整的360度上使该膨胀流平稳,或者在另一个实施例中,这些膨胀流可以被正时(例如,通过凸轮和/或旋转阀取向)成并非均匀分配而是被集中在来自该压缩机的这些高流量周期附近。如果这些膨胀器进气流被安排成与这些第二级压缩机排放流很好地相关,则这还可以减小该热回收器和热气体歧管中的压力振荡。这种方法的主要效果是产生进入该加热器的非稳态流。即,这些压力可以是相当稳定的但通过该加热器的流量将会改变。通过利用可获得的多个变量,包括该压缩机和膨胀曲轴角以及汽缸运行正时、阀门打开和关闭正时、这些节点间流通路的体积、以及该加热器中的这些孔口或流动控制特征,详细的设计过程就可以产生总体过程的不同阶段的宽范围的流动稳定性。
如果该进气阀的尺寸被适当确定的话,则往复式机器可以实现非常高的压缩/膨胀效率。根据本技术的多个实施例,与一个适合的高温进气阀一起来选择一个正排量膨胀器、或者如图2使用不需要进气阀的一个旋转膨胀器因此同样支持获得较高效率。如果这些流体流端口的尺寸被适当地确定并且该流体流的正时被小心地管理的话,则往复式机器或正排量机器(PDM)与涡轮机器相比可以具有总体上每压缩或膨胀单元更少的损耗。涡轮机器必需以高的桨尖速度运行并且这些高速流体流的边界层中产生的摩擦是难以消除的。简单地降低这些涡轮机器桨尖速度将使得这些涡轮机器每单位功率都非常昂贵。相应地,并且如以上所述的,如果该流动间歇性被适当管理则正排量机器可以是更加有效的。同时,归功于规模经济和较不严格的材料要求,商用正排量膨胀器系统以与涡轮机相比更低的单位成本是可获得的。
将加热器120与膨胀器130和压缩机110分开进而允许了在选择加热器120时明显地增加选择自由度。例如,该加热器可以包括燃烧或不包括燃烧。当该加热器包括燃烧时,该燃烧过程可以是连续的。这基本上不同于通常要求间歇燃烧的典型现有技术内燃发动机。使燃烧发生在该膨胀器的体积之外(例如以一种连续方式)允许更加优化的燃烧,这种更加优化的燃烧可以是更有效率的并且可以在宽范围的功率输出水平上产生降低的排放物。加热器120的这种分离还提供了在燃料选择方面的更大自由度。具体地讲,其允许使用低成本的天然气而同时避免火花点火式发动机中有限的压力比限制效率的挑战、或者压缩点火式天然气发动机中燃料注射和点火的挑战。其还允许使用较稀薄的燃料混合物或者不一致的并且低质量的多种燃料,这两者对于当今内燃发动机而言都特别成问题。
本技术采用的中冷、热回收以及膨胀改进(例如,优化)的组合结果是与可比较的高效率内燃发动机中可获得的净效率高相比较获得高出20%至50%的净效率。在这个方面,此类高效率内燃发动机的净能量效率是大约30%至45%,而本技术可以实现大于45%至65%的能量效率。以下的表1展示了对于一个发动机而言预期的循环效率,该发动机包括一个两级中冷压缩机、一个燃烧器、一个正排量膨胀器、以及膨胀后的热回收。该峰值压力通常是在该膨胀器的入口处测量的。隔热和/或再生冷却的有效性取决于多个因数,这些因数除其他因素之外尤其包括隔热厚度和隔热效率、多个冷却流量以及多个温度。进一步的细节将在下文参照图9A至图11B予以说明。取决于具体实施例,这些效率总体上可以超过40%、45%、50%、55%、60%或65%。
表1
可以将热量提供给该膨胀器上游的、或者在其他实施例中该膨胀器内的工作流体。相应地,虽然以上一些实施例是在分开的压缩机、燃烧器以及膨胀器的情况中予以说明的,但在至少一些实施例中该压缩机和膨胀器是分开的,而该燃烧器是与该压缩机或该膨胀器集成的。与该燃烧器和该膨胀器相结合(例如,在该膨胀器中燃烧该工作流体)相关联的优点包括消除了对于一个分开的燃烧器的要求、和/或实现较高的压力(以便降低对该压缩机的需求)。虽然从一些观点(例如,成分产物流)看该膨胀器内的燃烧过程可能不是最佳的形式,但在至少一些实施例中这些前述的优点可以胜过这些因素。当该膨胀器与该燃烧器相结合时,燃烧可通过火花点火、压缩、和/或其他点火形式来提供。
表1反映了一种分析,其中该燃烧过程并未将压力明显地添加给这种被压缩和热回收的空气,例如该燃烧过程是在该膨胀器之外执行的。在其他实施例中,该燃烧过程可以提高压力。一种方法包括在关闭一个进气阀之后在该膨胀器内执行该燃烧过程,如以上所述。当该工作流体在一个封闭的固定体积中被加热时,该压力总体上与该温度的上升成比例地上升。内燃发动机具有这种效果并且该效果的大小是与该膨胀过程的速度相对的该燃烧过程的速度相关的。这种效果在例如海洋应用中使用的那些低速柴油发动机中是特别明显的。通过使该膨胀器减速,单纯地通过该加热过程就提供了一次压力增高而无需机械地压缩该空气/流体所需要的寄生功。特别是往复式机器以及不同程度的其他PDM机器典型地需要随着他们尺寸的增加而被减速,这是由于增大的行程、较高的速度以及当部件改变方向时较高的加速度导致的物理限制。随着功率需求增大,排量也增大,并且最终旋转速度必须被降低以使加速度保持合理。这是为什么高功率PDM机器通常运行更缓慢的一个原因。由该燃烧过程明显比该膨胀过程更快完成所导致的效率升高会导致增大的压力,这对于大型PDM因为速度必须被降低而要求每单位功率更高的排量的一般问题而言是比较经济的缓解手段。
以下的表2指示对在此披露的技术而言这种压力增强的效果,假定的是已在任何实质性的膨胀发生之前完成了热量的添加。这可以借助于与上述那些总体上类似的实施例但却通过在靠近最低排量时将带有这些化学反应物的压缩工作流体(名义上是空气和一种碳氢燃料)注射到该膨胀室中并且当所有的阀门或端口被关闭时使该燃烧在该膨胀器中发生来实现。对于这种预期成为对某些应用而言有价值的实施例的技术,存在一个相当大的热力学效率益处。
表2
图4展示了根据本技术的一个进一步的方面配置的一个能量转换和存储系统400。该系统400包括许多以上相对于图1和图2的实施例所描述的相同元件,所有这些相同元件具有如图1和图2的相同编号。为了清楚起见,图1和图2中的这些实施例的不同元件被组合在一起作为一个能量提取子系统440。总体系统400进一步包括一个多路引导阀410、一个流体存储压缩机420以及一个高压流体存储体积430,该流体存储压缩机被配置成用于进一步地将该压缩的第一流体压缩到一个存储压力,该高压流体存储体积用于在该存储压力下存储这种进一步压缩的第一流体。该引导阀410被布置在半等温压缩机110与热回收器150之间的一个高压流体管线414中并且被可操作地配置成用于选择性地(a)将该高压管线中的压缩的第一流体从半等温压缩机110沿着该高压管线414引导至热回收器150,(b)将压缩的第一流体从半等温压缩机110沿着一个双向高压管线412引导至高压流体存储压缩机420,或者(c)将存储的压缩的第一流体从高压流体存储体积430进行引到通过双向高压管线412引导通过高压管线414而抵达热回收器150。
通过引导阀410抵达高压流体存储压缩机420的半等温压缩的第一流体被该流体存储压缩机420压缩到一个适合的存储压力,并且被沿着一个双向高压管线425引导以便以该存储压力存储在高压流体存储体积430中。存储体积430可以包括一个或多个流体罐、一个地下储库、和/或一个或多个水下封闭腔或其他压缩气体存储介质。在多个具体实施例中,存储体积430被隔热,例如以便避免在压缩过程中传给该流体的热能损失。在这些实施例的任一个中,半等温压缩该第一流体可以排除对其他系统元件的需求。例如,此类系统可以免除对一个涡轮增压器的需求而仍然在高效率水平下产生足够的功率。
以该存储压力存储在该高压流体存储体积430中的第一流体可以被释放到能量提取子系统440中以用于能量的提取。在一个实施例中,高压流体存储压缩机420可以装配有一个旁通阀(未示出)。该旁通阀允许第一流体以该存储压力流动绕过高压流体存储压缩机420并且沿着双向高压管线412流到多路引导阀410。在这种存储的高压流体回复的条件下,多路引导阀410被调整成将该高压第一流体沿高压管线414引导到热回收器150。从这个点之后,该第一流体在能量提取子系统440中经受能量提取。能量提取的过程是与上面已经描述的过程类似或相同的,并且可以包括在热回收器150中预加热该流体、在加热器120中加热该已预加热的流体、通过使用一个高温进气阀或者通过一个适合的旋转膨胀器的一个或多个构件对已加热的第一流体进入膨胀器130的吸入进行控制、在膨胀器130中让这种已加热的压缩的第一流体膨胀以便做功、并且将该排出流体从膨胀器130引导至热回收器150,其中该排出流体被用于对来自多路引导阀410的高压第一流体加以预加热。
在本技术的另一个实施例中,流体存储压缩机420是可以用多种不同的运行模式来配置的。系统400可以被运行成使得该系统正在只进行压缩、只进行膨胀或者同时进行膨胀和压缩。具体的运行模式可以响应于来自电网操作者给该系统的多个信号,或者设计成在某些时间或条件下提供、吸收或传送额外功率的多种算法来选择。在另一个实施例中,一个使用者可以提供多个实时命令以便不依赖于程序地改变构形。上文对其功能的描述表示出该压缩设置。在一种膨胀构形中,第一流体被以存储压力从高压流体存储罐430沿双向高压管线425释放到流体存储压缩机420,在该流体存储压缩机中该第一流体被膨胀并且流体存储压缩机420被用于做功。相应地,存储压缩机420可以反向操作(例如,作为一个膨胀器)并且这样做时可以提取额外的、例如轴功率形式的能量。在一个实施例中,膨胀的空气被泄放。在这些条件下,多路引导阀410可以被使用者配置或自动运行以便使半等温压缩机110和能量提取子系统440与包括流体存储压缩机420和高压流体存储体积430在内的流体回路相隔离,并且流体存储压缩机420中的旁通阀被关闭。在另一个实施例中,来自存储体积430的工作流体只被部分地膨胀(通过存储压缩机420)并且以一个足够高的压力离开而经由高压管线414通到能量提取子系统440。例如,该工作流体可以通过存储压缩机420来膨胀以便具有与其离开半等温压缩机110之后会具有的压力大致相同的压力。
图5展示了根据本技术的一个进一步的方面的一种用于转换能量的方法500。该方法500可以包括例如在一个半等温压缩机110中对第一流体进行半等温压缩(过程区段310)。过程区段510包括使该压缩的第一流体可选择性地经受例如在能量提取子系统440中能量提取(过程区段520)和在流体存储体积430处高压存储(过程区段530)之一。过程区段510可以由多路引导阀410来执行。过程区段530可以包括对来自半等温压缩机110的第一流体进行存储压缩(例如,进一步压缩)(过程区段540)并且例如在高压流体存储体积430中以一个存储压力收集该第一流体(过程区段550)。额外地,排出流体在离开热回收器322之后可以被用于例如通过该膨胀器和/或该流体收集/存储系统之中或周围的多个热交换器来使得该工作流体变暖。同样,压缩能量能够捕获并存储在一种热能介质(例如,水、固体或者甚至被加热的空气本身)中并且可以使这种热量可供在该膨胀过程中使用。即,带有热能存储的一个分段隔热压缩的空气能量存储(CAES)系统可以被用作一个更广义的能量系统的一部分,该更广义的能量系统还如上所述以高的效率将加压空气转换成轴功率并且总体上被标示为过程区段520。
过程区段520可以包括相对于图1、图2和图3已经说明的这些过程,即:例如在热回收器150中对该压缩工作流体进行预加热(过程区段320);例如在加热器120中通过使一种燃料与至少一种第二反应物发生反应来加热这种压缩的工作流体(过程区段330);对这种压缩并且加热的工作流体进入膨胀器的一个膨胀室中的吸入进行控制,并且在该膨胀器中使得这种加热的、压缩的工作流体膨胀(过程区段340);以及使该工作流体膨胀以便做功(过程区段350)。
图6展示了根据本技术的一个进一步的方面的一种用于转换能量的方法600。该方法600可以包括例如在一个半等温压缩机110中对一种第一流体进行半等温压缩(过程区段310)以及例如在流体存储体积430中以一个存储压力来高压存储这种半等温压缩的第一流体(过程区段530)。过程区段610包括使这种压缩的第一流体可选择性地经受能量提取过程520(例如在能量提取子系统440中)和一个膨胀过程620(例如在流体存储体积420中)之一。如果在由过程区段620得到的膨胀的流体中存在额外的能量,则该流体则可以经受能量提取过程520。例如,不带有外部热量添加(通过燃烧或除压缩热之外的其他热量源)的一个分段隔热CAES系统可以与能量提取过程520独立地或串联地运行,这取决于最后的膨胀是一直到周围压力还是到过程区段520的进气压力。否则的话该流体可以被泄放而无需进一步的能量提取。
能量提取过程520可以包括相对于图1、图2和图3已经说明的这些过程,即:例如在热回收器150中对该压缩工作流体进行预加热(过程区段320);通过使一种燃料与至少一种第二反应物发生反应来加热该压缩工作流体(过程区段330);对这种压缩并且加热的工作流体进入一个膨胀器的一个膨胀室中的吸入进行控制(过程区段340);以及在一个膨胀器中让这种加热的、压缩的工作流体膨胀(过程区段350);其中该预加热使用了来自该膨胀过程的排出工作流体的热量。
基于本披露技术的多种设计可以结合半等温压缩机110中的多个压缩级,该半等温压缩机总体上要求第一压缩级比第二级或随后的级多相当大的排量体积,并且膨胀器136由于该工作流体的加热和体积膨胀而总体上要求比压缩机110多相当大的排量体积。如果使用往复式正排量机器,则这些考虑隐含意味着相对大数目的活塞。
在本技术的一个具体实施例中,一个商用V-8柴油发动机的一个改进型汽缸组件非常好地起到往复式膨胀器136的作用。应用此类标准商用子系统的能力对本技术在不同商用实施例中的实际实施而言具有显著价值。一个实例使用了三个V-8发动机组。来自一个V-8发动机组的六个汽缸被用于该第一压缩级,并且这两个剩余的汽缸被用于该第二压缩级。另外两个V-8发动机组提供16个膨胀汽缸。其他实例采用用于膨胀器136的发动机组比用于半等温压缩机的发动机组具有更大的活塞排量,或者这两个压缩级使用两个不同的发动机组。
图7是根据本披露技术的具体实施例使用的一个发动机系统700的多个部分的局部示意性图示。发动机系统700可以包括多个发动机组701(被展示为一个第一发动机组701a和一个第二发动机组701b),其中每个发动机组都具有多个汽缸702(例如每组八个汽缸)。这些发动机组701可以是现有的汽车装置和/或工业装置,这些装置可以被适配、改装、和/或配置成用于执行总体上与上述那些类似的过程。例如,这些汽缸702中的一个或多个可以被用于在燃烧(或者其他形式的热量增加)之前压缩气体,并且其他汽缸702可以被用于让这种燃烧的或者另外加热的空气膨胀。不同的汽缸可以具有基于每组或者基于每个汽缸的不同体积,例如通过添加一个衬层、活塞顶、和/或其他元件以减少汽缸体积。相应地,相同的发动机组可以被用于协助多级压缩和/或多级膨胀。
图8展示了以上通过参考图7描述类型的一个具体发动机组的细节。图8相应地展示了一个膨胀器800和一个膨胀汽缸802,一个活塞840在该膨胀汽缸中往复运动。膨胀器800可以进一步包括一个阀门壳体810,该阀门壳体承载一个高温进气阀740和一个排气阀830。一个陶瓷衬层805可以在进气阀840处定位在阀门壳体810内。该阀门的一个内部腔或通道815可以运行为一个热气体歧管,该热气体歧管从一个共同燃烧器(图8中未示出)来供给多个阀门端口820。汽缸盖中的一个热气体端口825允许气体在进气端口825与阀门端口820随着整体阀门组件旋转而对齐时流入该汽缸。排气阀或排放阀门830可以使用类似的端口对齐技术以及隔热或冷却技术并且被相对活塞840的运动而正时。
在其他实施例中,该阀门的多个选定的元件可以被冷却,其中发动机冷却剂或未燃烧的空气是适合的冷却剂。在其他实施例中,可以采用具有高温性能的材料,例如耐火金属或陶瓷。在又进一步的多个实施例中,可以组合这些前述特征。虽然这些挑战在现有内燃发动机的排气阀方面是已知的,但本技术要求以已经讨论的更高的温度来输入到这些汽缸。
与用于内燃发动机的常规发动机组不同,燃烧不再发生在图7和图8中示出的这些汽缸中。而是,这些汽缸被用于压缩和/或膨胀,燃烧发生在一个分开的体积中。一个适合的燃烧器的进一步的细节以及这些阀门的细节将在以下通过参照图9B和图9C予以说明。
图9A是根据本技术的一个实施例配置的一个系统900的多个部件的局部图解、局部剖开的图示。在这个实施例的一个具体方面,该系统900可以包括与以上参照图7和图8描述的总体上类似的一个发动机组。在其他实施例中,以下描述的这些系统可以在其他情况中实施。在这些实施例的任意一个中,系统900可以包括一个膨胀器910,该膨胀器具有多个汽缸902,这些汽缸接纳燃烧产物或者在其他情况下是加热的流体流、并且通过使得这些流体流膨胀并产生轴功率来从这些流体流中提取能量。总体发动机系统900包括一个阀门系统920以用于控制在膨胀过程中进入和离开这些汽缸的流体流。因为该阀门系统920接纳温度大大升高的燃烧产物,所以该阀门系统特别地被配置和运行成应对这些温度而不过度地牺牲总体效率。以下进一步地说明用于实现这些功能的具体实施例的细节。
如图9A中示出的,阀门系统920可以包括一个阀门壳体或阀门体921,该阀门壳体或阀门体被定位在一排或其他安排的汽缸902上并且可以包括多个阀门元件922,例如一个进气阀元件922a和一个排气阀元件922b。进气阀元件922a控制热的燃烧产物进入汽缸902的流动,并且排气阀元件922b控制膨胀和冷却过的气体离开汽缸902的流动。相应地,进气阀元件922a可以包括一个阀门进气端口923,并且排气阀元件922b可以包括一个阀门排气端口924。两个阀门922都可以具有一个总体上圆柱形的形状以便有助于旋转。随着这些阀门922旋转(由多个箭头R指示),这些阀门的端口与该汽缸的对应端口对齐以协助或限制流进和流出这些汽缸902的流动。当这些零件移动到一个不同的旋转位置上时,这些阀门922防止流进和流出这些汽缸902的流动。
每个阀门元件922都可以包括隔热件926以保护该阀门元件免受通过这些阀门的气体的高温损坏。隔热件926可以被定位成邻近一个中央环形流动通道925,这些气体通过该中央环形流动通道进入或离开汽缸902。总体上,进气阀元件922a将经受比排气阀元件922b更高的温度并且可以相应地包括额外的隔热件和/或其他冷却特征,举例如以下将进一步说明的主动冷却特征。
在图9A示出的一个实施例中,进气阀元件922a的隔热件926是两个衬层927的形式,这两个衬层被展示为一个第一衬层927a和一个第二衬层927b。这些衬层927可以由一种陶瓷或其他适合的高温材料形成。第一衬层927a是从第二衬层927b向外环形地定位的,并且第二衬层927b可以形成中央流动通道925的内表面。第一衬层927a包括多个第一冷却通道928a,并且第二衬层927b包括多个第二冷却通道928b。一股冷却流体(例如一种气体、如空气,或者一种液体、如水)通过这些第一冷却通道928a(如由箭头A指示),然后通过这些第二冷却通道928b返回(如箭头B指示),并且与通入中央通道925的燃烧产物(如箭头C指示)混合。相应地,该冷却流一旦被加热就与这些燃烧产物一起膨胀以从该总体系统900提取额外的功。
排气阀元件922b可以具有与进气阀元件922a相比更简单的一种安排,例如不带冷却通道的一个单层隔热件926。在其他实施例中,排气阀元件922b可以包括多个主动冷却通道和/或其他冷却安排,这取决于通过该排气阀元件的气体温度。
图9B是进气阀元件922a的一个实施例的局部示意性剖开图示,该进气阀元件是与以上参照图9A描述的总体上类似的、是定位成与一个燃烧器940流体联通的。燃烧器940包括一个燃烧器进流口945和一个燃烧器出流口946。燃烧器进流口945被联接到一个燃烧器进气歧管941上,该燃烧器进气歧管给燃烧器940提供多种反应物。燃烧器进气歧管941可以包括一个压缩空气进流口942、一个燃料进流口943、以及一个点火源944(例如,一个火花源,火焰稳定器、和/或用于点火的其他适合装置),从而控制和/或维持燃烧器940内的燃烧反应,和/或优化或例如通过控制如NOx或CO品种的产生来改进这些燃烧产物的成分。然后将这些燃烧产物从燃烧出流口946引导进入进气阀元件922a中,如由箭头C指示的。
进气阀元件922a被定位在阀门壳体921中,该阀门壳体可以包括一个或多个冷却流导引器929(图9B中三个冷却流导引器是可见的),该一个或多个冷却流导引器引导压缩空气或其他冷却剂进入第一衬层927a的第一流动通道中。这个(些)冷却流导引器929可以与压缩空气进流口942一样联接到同一个压缩空气源上,或者可以被联接到另一个压缩空气源上。在任何一个实施例中,由该冷却流导引器929提供的压缩空气与引导至中央流动通道925中的这些燃烧流产物相比要明显更冷。
图9C是以上参照图9B描述的系统900的一部分的放大图示。如图9C中示出的,一个轴承930支撑进气阀元件922a以用于围绕环形流动通道925的主轴线而旋转。这些冷却流导引器929是与这些第一冷却通道928a径向对齐的。在图9C示出的一个实施例中,这些冷却流导引器929随着第一阀门元件922a旋转而间歇地与相对应的第一冷却通道928对齐。在其他实施例中,一个单一冷却流导引器929(例如,一个360°歧管)可以连续地提供该冷却流。在这两个前述实施例的任何一个中,该冷却流如箭头A指示地进入这些第一冷却通道928a并且经由这些第二冷却通道928b返回到邻近于燃烧器出口946的区域。通过一种安排该冷却流被从这些第一冷却通道928a重新引导至这些第二冷却通道928b,该安排的进一步的细节将在以下通过参照图9D予以进一步地说明。
图9D展示了图9C中示出的远离燃烧器出口946定位的膨胀器910的一部分。在这个区域中,第一阀门元件922a包括一个阀门末端壁932,该阀门末端壁形成中央流动通道925的一个边界。一个环形返回通道931可以被定位成邻近该端壁932。冷却流从这些第一冷却通道928a的暴露末端流出进入返回通道931中并且然后进入这些第二冷却通道928b。该冷却流然后在该燃烧器出口处附近与燃烧产物流C混合,如以上参照图9C所描述的。
以上在图9A至图9D的情况中将该膨胀器的多个具体实施例描述成包括一个旋转阀系统。在其他实施例中,该膨胀器可以包括具有其他构型的阀门系统。例如,该阀门系统可以包括多个提升阀。图10A至图10D展示了根据本技术的多个具体实施例配置的多种代表性冷却提升阀安排。
首先参见图10A,一个提升阀系统1020包括一个阀门壳体1021,该阀门壳体承载一个提升阀1022。提升阀1022上下往复以便允许或阻止燃烧产物C例如以与常规汽车发动机总体上类似的一种方式流入下面的汽缸。提升阀1022可以包括一个内部冷却通道1028,该内部冷却通道接收来自一个导引器1029的冷却流,该导引器由阀门壳体1021承载。在图10A示出的一个具体实施例中该内部冷却通道1028可以具有一个相对小的通道出口1033a。
在图10B示出的一个实施例中,内部冷却通道1028可以包括一个扩张的通道开口1033b,该扩张的通道出口可以在提升阀1022的末端处提供额外的冷却。在图10C示出的另一种安排中,提升阀1022包括具有多个通道出口1033c的多个流动通道1028。
在图10D示出的又另一个实施例中,提升阀1022不包括内部冷却通道。而是,导引器1029引导一个外部冷却薄膜D围绕该提升阀1022的外表面。在其他实施例中,外部冷却薄膜D可以作为多个内部冷却通道的增补,这些内部冷却通道具有以上参照图10A至图10C所描述构型中的任一种。
在至少一些实施例中,该总体发动机系统的其他元件可以被冷却以便提高该系统的总体效率和/或使局部温度保持在材料极限内。例如,图11A是一个膨胀汽缸1102和一个相关联的活塞的俯视图。图11B是图11A示出的汽缸和活塞的、基本上沿图11A的线11B-11B获取的局部示意性截面图示。首先参见图11A,汽缸1102包括一个汽缸壁1103以及一个隔热衬层1104,该隔热衬层是从该壁1103向外径向地布置的。该活塞(图11A中不可见)包括一个活塞顶1107,该活塞顶是从衬层1104向内径向地定位的。活塞顶1107与衬层1104分开一个空隙1108。活塞顶1107可以由一种隔热材料形成以保护该活塞下部免受汽缸1102内的高温和/或减少该膨胀流体的温度损失。对活塞顶1107和该总体系统的其他隔热元件而言适合的材料包括多种陶瓷,例如氧化铝、氧化锆、和/或这些材料的多种合金。
为了进一步地保护该活塞和汽缸1102,汽缸壁1103可以包括一个喷流器通道1129。喷流器通道1129将一个冷却流引导至一个圆周分布管路1109a,该圆周分布管路进而将该冷却流引导至一个或多个轴向分布管路1109b,这些轴向分布管路从图11A的平面向内延伸。在一个实施例中,该圆周分布管路1109a被形成在汽缸壁1103中,并且这些轴向分布管路1109b被形成在衬层1104中。在其他实施例中,这些圆周分布管路和轴向分布管路1109a、1109b的相对位置可以被反转,或者这两种类型的管路都可以由衬层1104或汽缸壁1103承载。
现在参见图11B,活塞顶1107被定位在一个活塞1105上,该活塞进而被联接到一个曲轴1106上。运行过程中,一个冷却流被引导至喷流器通道1129中,经由圆周分布管路1109a(图11A)圆周地围绕汽缸1102并且经由这些轴向分布管路1109b(其中之一在图11B中是可见的)在衬层1104与汽缸壁1103之间的接口处向下流通。该冷却流然后可以在活塞顶1107与衬层1104之间的空隙1108中向上流通。
在一个实施例中,该冷却流仅仅在活塞1105的向下行程期间才可以被引导至汽缸1102中。这种动作可以由联接到该喷流器通道1129上的一个阀门、或者由活塞1105来控制。例如,当活塞1105在汽缸1102中上升时,该活塞创造的额外压力可以防止额外的冷却流通过喷流器通道1129进入。在任意一个实施例中,汽缸1102还可以包括一个排放端口1135,该排放端口允许该冷却流的至少一部分离开汽缸1102而并不与活塞顶1107上方的排出流混合。这个排放的冷却流则可以被引导至该热回收器、该燃烧器、和/或该系统的其他元件,这取决于该排放冷却流的温度和压力。该排放的冷却流可以通过直接混合传递热量、或者通过一个壁或其他表面传递热量。
图11C是以上参照图11A和图11B所描述的汽缸1102的局部图解截面图示,其中一个阀门壳体1121被定位在汽缸1102上方。该阀门壳体1121可以包括进气阀元件和排气阀元件1122a、1122b,每个都具有一个中央通道1125。这些阀门端口以及相对应的汽缸端口在图11C中是不可见的。这些阀门元件1122a、1122b可以由一组隔热件或其他体积的隔热件1134至少部分地围绕。阀门壳体1121可以包括一个阀门喷流器通道1129a,该阀门喷流器通道引导冷却流进入一个或多个相对应的冷却通道1128中。这些冷却通道1128对隔热件1134与阀门壳体1121之间的界面加以冷却。该冷却流经由一个或多个冷却流出口1135a离开阀门壳体1121。这个排放的冷却流可以如上述地由其他系统元件(例如该热回收器、或该燃烧器)来再利用,这取决于该排放冷却流的温度和压力。在一个具体的实施例中,从阀门壳体1121离开的冷却流可以被重新引导以便以上文通过参照图11A和图11B所描述的方式来提供汽缸冷却。
上述这些再生冷却实施例可以捕获来自这些热气体部件的热量并且将该热量返回给该系统,例如将该热量返回给该工作流体。当再生冷却被有效执行时,该装置(例如该膨胀器)的外部隔热就可以进一步地减少该系统的热量损失。总体上,仅仅在再生冷却足以使该系统的这些隔热零件保持在其他情况下可接受的温度上或者该冷却机构被用于一次内部或外部生产性过程(例如工业废热发电/环流供暖)时,这样的隔热件才是有益的。如果收获的热量具有一种有用的用途,则外部隔热通常是有益的。如果不是,则被动对流冷却通常是帮助维持可接受的系统温度的一种廉价的方式。类似的分析可以应用到该压缩机。如果收集的热量将要被利用,则该压缩机可以被隔热,这允许收集更多的热量。然而,在一个压缩机中,通过该机器的热量损失实际上使得该压缩过程更有效率,这是因为较冷的气体密度较大并且因此需要较少的功来压缩。相对应地,压缩机可以被设计成从该工作流体中提取热量,这与膨胀器相反,在膨胀器中损失的热量导致功率输出的减少。如果该热量可以被收集并且具有一种有用的用途,则隔热是有益的。如果不是,则典型地可取的是尽可能凉地运行压缩机并且尽可能热的运行膨胀器。
上述系统的一些实施例已在往复式正排量机器的情况中进行了说明。在其他实施例中,该总体系统可以包括多个旋转正排量机器。例如,图12A是根据本披露的一个实施例配置的、具有一个整合的热交换器1258a的一种旋转排量装置1205a的部分示意性等距视图。该系统1205a是一个正排量机器并且可以通过在一个方向上旋转来作为一个膨胀器运行,并且通过在相反的方向上旋转来作为一个压缩机运行。相应地,两个此类装置可以与一个燃烧器一起使用以形成上述系统中的任一系统。一个此类装置可以作为以上参照图4描述的流体存储压缩机420来运行。同时待审的美国申请号13/038,345说明了一种适合的旋转压缩机/膨胀器的进一步的细节,该申请先前通过引用结合在此。
装置1205a可以包括具有一个内壁1220和一个外壁1222的一个室壳体1218(例如,一个压缩室和/或膨胀室),一个压力改变室1224,可转动地联接到一个轴1234上的一个转子1232,第一通路和第二通路1214、1216,以及在室1224中的在室1224与这些单独的通路1214、1216之间提供流体联通的第一端口和第二端口1226、1228。热交换器1258a被径向地定位在室壳体1218和这些通路1214、1216之外。当该旋转排量装置1205a作为一个压缩机运行时热交换器1258a可以作为一个中冷器来运行。热交换器1258a包括一个或多个热交换器供应管1259,该一个或多个热交换器供应管输送一种加热的或者冷却的热交换器流体。在这个展示的实施方案中,热交换器1258a包围室壳体1218的一部分并且是与来自压力改变室1224的工作流体处于流体联通的。确切地讲,经由第二端口1228离开室1224的工作流体在箭头F1的方向上径向向外地流动通过第二通路1216、并且进入一个热交换器通路1256以便与热交换器1258a进行接触。工作流体与供应管1259中的加热的或者冷却的热交换器流体交换热量。
该系统进一步包括一个外壳体1250(在图12A中示出了其一部分),该外壳体具有一个内表面1252和一个外表面1254。外壳体1250可以至少部分地包围和/或包绕该室壳体1218,压力改变室1224,这些通路1214、1216,以及热交换器1258a。在若干实施方案中,通过热交换器1258a的加压工作流体与外壳体1250的内表面1252相接触,该外壳体用作一个压力容器来容纳该工作流体。将外壳体1250的内部用作压力容器省却了对于若干管道配件以及在压力改变室1224与这些端口1226、1228,这些通路1214、1216,以及热交换器1258a之间的,以及在多级系统的一个级与下一级之间的通路的需要。
展示在图12A中的热交换器1258a是一个翅片管热交换器。其他实施例可以包括其他类型的热交换器,如壳管式热交换器、板式热交换器、气体对气体热交换器、直接接触式热交换器、流体热交换器、相变式热交换器、废热回收单元、或者其他类型的热交换器。
热交换器流体可以包括淡水、海水、蒸汽、冷却剂、油、或者其他适合的气态液体和/或双相流体。热交换器1258a可以在压缩与膨胀两种模式中运行以便支持一个双向的压缩机/膨胀器,并且可以与压缩的/膨胀的流体流在该流体流进入室1224之前或之后相互作用。在一些实施例中,该热交换器流体对于该装置的压缩与膨胀运行模式二者而言是同一种(当该装置被用于压缩和膨胀两者时),然而在其他实施例中使用了不同的热交换器流体。在一些实施例中,运行过程中在压缩模式下被加热的热交换器流体可以被存储在例如一个外部热存储器中,以用于在膨胀级的运行过程中使用。热交换器1258a可以由多种适合的材料或者多种材料的组合来制造,它们包括金属、陶瓷、或者塑料。在若干实施例中,该热交换器至少部分地是由抗腐蚀材料制成的(例如铜、铜镍合金、钛、不锈钢以及其他材料)以便允许使用多种多样的热交换流体。
如以下通过参照图12B将进一步详细讨论的,多个压力改变室1224(例如,多个级)可以是流体地相连的并且能够以串联形式运行。在一些多级实施例中,径向的热交换器1258a沿着多个室壳体1218的外壁1222轴向地延伸。在这样一个实施例中,压缩的/膨胀的工作流体从一个第一级的第一端口1228径向地向外行进(如由箭头F1指示的),进入热交换器1258a,轴向地沿着热交换器1258a并且然后径向地向内进入一个第二压力改变室的第二端口(未示出)。在该系统在压缩模式中运行时,该工作流体可以在多个级之间被冷却。当该系统在膨胀模式中运行时,该工作流体可以在多个级之间被加热。级间的加热和冷却可以减小(例如,最小化)多个级之间的温度改变,这种温度改变能够夺取装置1205a和该总体系统的运行效率。通过从室壳体1218径向地向外引导这些通路1214、1216中的工作流体,该系统可以减少多个级之间的压力振荡并且允许显著的热交换器长度。
图12B是根据本披露的另一个实施例配置的、具有多个整合的热交换器1258b的一种多级旋转排量装置1205b的部分示意性的等距侧视图。该装置1205b包括多个级(单独地编号成级1272-1275),这些级是沿着一个轴1234轴向地对齐的。出于清楚的目的,在图12B中并未示出由轴1234承载的这些转子。每个级可以包括具有第一端口和第二端口1226、1228的一个室壳体1218,一个第一通路1214,以及一个第二通路1216。每个级1272-1275可以额外地包括一个或多个隔板1262,该一个或多个隔板被定位成轴向地邻近相应的室壳体1218。
装置1205b进一步包括多个轴向的热交换器1258b,这些轴向的热交换器在压缩/膨胀级1272-1275之间是轴向地对齐的。这些热交换器1258b是与第一通路和/或第二通路1214、1216中的工作流体处于流体联通的。确切地讲,该工作流体在箭头F2的方向上从一个级行进到下一级以用于膨胀、或者在相反的方向上行进以用于压缩。例如,该工作流体可以通过一个相对应的第二端口1228离开一个第一级1272并且然后轴向地流入一个轴向相邻的热交换器1258b。该工作流体然后进入相邻的级1273的第一端口1226,并且这个过程随着该工作流体在图12B中从右至左行进而被重复。在一些实施例中,该工作流体直接从第二通路1216行进到热交换器1258b中,并且在其他实施例中,该工作流体行进穿过相邻的隔板1262中的一个或多个孔口并且然后进入该相邻的热交换器1258b。该工作流体在热交换器1258b中传递热能并且继续轴向地进入该相邻的第二级1273的第一通路1214和第一端口1226。后续级的第一端口1226和第二端口1228可以相对于彼此被顺时针或逆时针偏置,以便更好地引导该工作流体穿过该装置1205b。
像以上通过参照图12A讨论的径向的热交换器1258a一样,轴向的热交换器1258b可以在压缩和膨胀两种模式中运行以便支持一个双向的压缩机/膨胀器。以上说明的任何类型的热交换器和热交换器流体也都可以用于这种轴向的热交换器1258b。虽然在图12B中展示了三个热交换器1258b和四个压缩/膨胀级1272-1275,但其他实施例可以包括更多或者更少的级和/或热交换器1258b,并且这些级1272-1275和热交换器1258b的安排是可以变化的。例如,一种多级的设计可以使用在不具有整合的热交换器的系统中。此外,这些压缩/膨胀级1272-1275和这些热交换器的轴向长度可以在系统1205b内变化。例如,由于级到级的工作流体的密度改变,可以使用不同的轴向长度来维持从一个级到下一级的总体上一致的压力比率。
上述能量系统的若干实施例的一个特征在于这些能量系统可以被相对紧凑和便携的制成,以用于运输情况中、和/或以便从一个地点移动到另一个地点。以下将参照图13A至图13D说明的一个具体实施例中,该发动机系统可以被容纳在一个集装箱中。例如,从图13A开始,根据本技术的一个实施例配置的一个发动机系统1300被容纳在一个集装箱1350中。集装箱1350可以具有标准的尺寸和构型以便与现有集装箱搬运装置相适合。
图13B是图13A中示出的发动机系统1300的局部示例性图解。该发动机系统1300可以包括以上参照图1至图12描述的任意部件,其中若干部件在图13B中是可见的。这些部件包括一个压缩机1360、一个膨胀器1310、以及一个控制器1370。燃料和空气对应地经由多个燃料罐1382和多个空气罐1381而被提供给一个燃烧器(图13B中不可见)。在其他实施例中,可以用其他存储体积1380来容纳燃料和空气。
图13C展示了一个集装箱1350,该集装箱只包括多个存储体积1380,例如用于燃料和/或空气的多个堆叠的罐。相对应地,发动机系统1300可以包括存储燃料和/或空气专用的多个集装箱、这些发动机系统部件(例如,压缩机、膨胀器和/或燃烧器)专用的集装箱、和/或具有发动机系统部件和存储容量两者的多个集装箱。
图13D展示了一辆轨道车,该轨道车具有多个堆叠的集装箱1350,这些集装箱包括上述类型的一个或多个发动机系统1300。在一个实施例中,轨道车1383可以简单地将这些集装箱1350从一个地点运输到另一个地点。在另一个实施例中,这些轨道车1383可以被直接联接在一台机车之后、并且可以代替或者除由常规柴油或柴油电力机车发动机提供的动力之外对该机车提供动力。
图14A至图14C是上述类型发动机系统所预期的性能参数与常规发动机系统的那些参数进行比较的多个曲线图。图14A比较了对于根据本技术的一个实施例配置的一个系统(由线1400指示)和其他系统而言的根据能量存储量的一个函数的传送能量成本。具体地讲,线1400对应于一个发动机系统,该发动机系统具有一个正排量的中冷的压缩机、一个燃烧器、与该压缩机不同的一个正排量膨胀器、以及一个热回收器,该热回收器是被定位成将热量从该膨胀器排气传递给该压缩机流出流。其他系统包括多个电池系统,具体是一个钠硫电池(由线1401指示)、一个锂离子电池(由线1402指示)以及一个液流电池(由线1403指示)。如这些预期指示的,上述类型的能量系统的预期性能参数可以比现有电池系统明显要好。
图14B比较了本披露发动机系统与现有无电池系统的预期性能参数。具体地讲,与一个液电动力(线1412)泵送(例如,再循环)的液压流体/空气系统(线1411)、常规的地质压缩空气能量存储器(线1413)、带空气压缩和膨胀但无燃烧的一个环形正排量机器(线路1414)、以及一个基于制冷剂的闭环能量转换系统(线1415)相比,线1400再次指示了对于上述类型的一个发动机系统而言的根据存储量的一个函数的预期传送能量成本。
图14C是展示本技术与对电力网提供功率的其他技术相比而言的根据一个能力因数(例如,一年的几分之一)的一个函数的能量成本的曲线图。线1400再次展示了对于根据本技术的系统而言的预期性能,而线1421则展示了由一个固体氧化物燃料电池提供的电网电力。其他批量销售的电网电力供应装置包括气体涡轮机(线1422),天然气内燃发电机组(线1423),精制煤燃烧(线1424),先进的涡轮机(线1425),以及先进的组合循环发动机(线1426)。如图14C中示出的,包括一个压缩机(带级间冷却)、一个燃烧器、一个膨胀器(例如,带多个耐高温阀门)以及一个热交换器的本技术的多个实施例能够一直优于现有能量供送系统。
从前述内容应当理解的是:虽然为了说明的目的已经描述了本技术的多个具体实施例,但是可以做出不同修改而不偏离本技术。例如,前述说明阐述了多个压缩机、膨胀器、燃烧器以及相关联的阀门和其他系统的具体实施例。在其他实施例中,可以额外地或者代替这些所披露系统来使用总体上执行上述同样功能的其他装置、系统、和/或子系统。若干实施例是在以上在用于从该膨胀器捕获排气能量的热回收器的情况下说明的。在其他实施例中,该系统可以包括其他类型的排气能量回收装置。该系统的若干实施例已在燃烧加热器的情况下说明的。在其他实施例中,该加热器可以具有其他适合的构型。
前述系统的实施例可以被结合到多种适合的较大系统的任一种中。例如,这些前述系统可以被用来提供动力以用于运输和/或静止的应用。当用于静止的应用时,这些系统可以提供独立的动力、或者可以被联接到电网(例如区域、国家或国际电网)。
在具体实施例的情况中说明的本技术的某些方面可以在其他实施例中进行组合或者被省却。例如,某些系统可以包括一个不带高温阀门的中冷的压缩机。其他系统可以包括一个高温阀门而不带一个中冷的压缩机。这些总体系统可以包括在此描述的这些元件的任何适当组合。例如,该压缩机可以是一个往复式装置并且该膨胀器可以是一个旋转装置,或者相反。当采用了一个存储压缩机时,该存储压缩机可以是一个旋转压缩机,而初级压缩机是一个往复式压缩机,或者相反。高温旋转阀系统可以被用于膨胀器,并且一个提升阀系统可以被用于压缩机。在某些情况下,压缩机温度可以是足够高以致应当使用一个主动冷却阀门。在此类实施例中,该压缩机还可以包括前述的任意高温阀门安排。
虽然已经在本技术的某些实施例的情况下说明了与那些实施例相关联的优点,但其他实施例也可以展现出这样的优点并且并非所有的实施例都必需展现出这样的优点才落入本技术的范围之内。因此,本披露和相关联的技术可以涵盖在此未明确说明或者示出的其他实施例。

Claims (35)

1.一种发动机系统,包括:
一个压缩机,该压缩机具有一个压缩机进流口和一个压缩机出流口;
一个燃烧器,该燃烧器具有联接到该压缩机出流口上的一个燃烧器进流口,该燃烧器进一步具有一个燃烧器出流口;
一个正排量膨胀器,该膨胀器具有联接到该燃烧器出流口上的一个膨胀器进流口,该膨胀器进一步具有一个膨胀器出流口和一个功输出装置;
一个旋转阀,该旋转阀被联接在该燃烧器与该膨胀器之间以调节从该燃烧器通到该膨胀器的热的燃烧产物的流动,其中该旋转阀包括:
一个圆柱体,该圆柱体具有一个壁,该壁是围绕一个环形通道径向向外定位的,该圆柱体是围绕一条轴线可旋转的,该轴线与该环形通道是总体上轴向对准的,该壁具有一个端口,该端口在该圆柱体处于一个第一旋转位置时与该膨胀器进流口对准并且在该圆柱体处于同该第一旋转位置不同的一个第二旋转位置时不与该膨胀器进流口对准;以及
一个排气能量回收装置,该排气能量回收装置被联接到该膨胀器出流口以便从离开该膨胀器的燃烧产物中提取能量。
2.根据权利要求1所述的系统,其中该排气能量回收装置包括一个热交换器,该热交换器具有一个第一流动路径以及与该第一流动路径热联通的一个第二流动路径,该第一流动路径是被联接在该压缩机与该燃烧器之间,该第二流动路径是被联接到该膨胀器出流口上。
3.根据权利要求1所述的系统,其中该旋转阀包括一种主动冷却的旋转阀。
4.根据权利要求3所述的系统,其中该主动冷却的旋转阀包括至少一个冷却气体通道。
5.根据权利要求3所述的系统,其中该主动冷却的旋转阀包括至少一个轴向延伸的第一气体通道和至少一个轴向延伸的第二气体通道,该至少一个轴向延伸的第二气体通道是从该至少一个轴向延伸的第一气体通道向内环形定位的并且被联接到该至少一个轴向延伸的第一气体通道上,并且其中该至少一个轴向延伸的第一气体通道被定位成接纳冷却气体流并且在一个第一轴向方向上引导该冷却气体流并且引导至该至少一个轴向延伸的第二气体通道,并且其中该至少一个轴向延伸的第二气体通道被定位成接纳来自该至少一个轴向延伸的第一气体通道的该冷却气体流并且在与该第一轴向方向相反的一个第二方向上引导该冷却气体流。
6.根据权利要求5所述的系统,其中该至少一个轴向延伸的第二气体通道是被进一步地定位成将该冷却气体流引导至该环形通道中。
7.根据权利要求4所述的系统,其中该至少一个冷却气体通道具有与该环形通道流体联通的一个出口。
8.根据权利要求1所述的系统,其中该旋转阀是由额定承受持续超过1400K的温度的多种材料形成。
9.根据权利要求1所述的系统,进一步包括联接到该燃烧器上的一个燃料源。
10.根据权利要求1所述的系统,进一步包括联接在该压缩机与该燃烧器之间的一个压缩空气存储体积。
11.根据权利要求10所述的系统,进一步包括一个阀门,该阀门是被联接到该压缩机、该压缩空气存储体积以及该燃烧器之间,该阀门具有用于将空气从该压缩机引导至该压缩空气存储体积的一个第一位置,该阀门具有将空气从该压缩空气存储体积引导至该燃烧器的一个第二位置。
12.根据权利要求10所述的系统,其中该压缩空气存储体积包括一个便携式存储罐。
13.根据权利要求12所述的系统,其中该存储罐、该压缩机、该燃烧器、该膨胀器以及该排气能量回收装置是被容纳在一个便携式存储集装箱中。
14.根据权利要求12所述的系统,其中该存储罐、该压缩机、该燃烧器、该膨胀器以及该排气能量回收装置是被容纳在一辆轨道车中。
15.根据权利要求10所述的系统,其中该压缩空气存储体积包括一个地下体积。
16.根据权利要求10所述的系统,其中该压缩空气存储体积包括一个水下体积。
17.一种发动机系统,包括:
一个多级压缩机,该压缩机具有一个压缩机进流口和一个压缩机出流口;
一个中冷器,该中冷器是被流体联通地联接在该压缩机的多个级之间;
一个燃烧器,该燃烧器具有一个燃烧器进流口,该燃烧器进流口被联接到该压缩机出流口上,该燃烧器进一步具有一个燃烧器出流口;
一个正排量旋转膨胀器,该膨胀器具有联接到该燃烧器出流口上的一个膨胀器进流口,该膨胀器进一步具有一个膨胀器出流口和一个功输出装置;
一个端口,并且没有阀门被流体联通地联接在该膨胀器进流口与该燃烧器出流口之间;以及
一个排气能量回收装置,该排气能量回收装置被连接到该膨胀器出流口以便从离开该膨胀器的燃烧产物中提取能量。
18.根据权利要求17所述的系统,其中该排气能量回收装置包括一个热交换器,该热交换器具有一个第一流动路径以及与该第一流动路径热联通的一个第二流动路径,该第一流动路径是被联接在该压缩机与该燃烧器之间,该第二流动路径是被联接到该膨胀器出流口上。
19.根据权利要求17所述的系统,进一步包括一个再生流体系统,该再生流体系统是被连接到该燃烧器和该膨胀器中的至少一个上以便对该燃烧器和该膨胀器中的该至少一个进行冷却、并且是被进一步地联接到该燃烧器上以对该燃烧器输送一种再生流体。
20.根据权利要求17所述的系统,进一步包括一个控制器,该控制器是被操作性地联接到该燃烧器上以控制该燃烧器处的一种间歇燃烧过程。
21.根据权利要求20所述的系统,其中该控制器包括一种计算机可读媒介,该计算机可读媒介被编程有用于控制该燃烧器处的间歇燃烧过程的多个指令。
22.根据权利要求17所述的系统,其中该燃烧器具有一个无中断的进流口并且被定位成在多个膨胀器循环上对该膨胀器提供连续的燃烧产物流。
23.一种用于运行发动机系统的方法,该方法包括:
对空气进行压缩;
在一个燃烧器中使压缩的空气和一种燃料燃烧以形成燃烧产物;
使定位在该燃烧器与一个膨胀器之间的一个阀门从一个关闭位置运动到一个打开位置;
以一种冷却流体流冷却该阀门;
当该阀门处于这个打开位置时引导这些燃烧产物通过该阀门进入该膨胀器;
让这些燃烧产物膨胀并且从该膨胀器中的这些燃烧产物提取功;并且
从离开该膨胀器的燃烧产物中回收能量。
24.根据权利要求23所述的方法,其中该压缩的空气是一个第一体积的压缩空气并且其中该方法进一步地包括:
将从离开该膨胀器的燃烧产物中回收到的能量添加到一个第二体积的压缩空气中;以及
燃烧该第二体积的压缩空气。
25.根据权利要求23所述的方法,其中使该阀门运动包括旋转该阀门。
26.根据权利要求23所述的方法,其中使该阀门运动包括使该阀门往复。
27.根据权利要求23所述的方法,其中该冷却流体流的至少一部分包括水。
28.根据权利要求23所述的方法,进一步包括使该冷却流体流与燃烧产物结合并且引导这些燃烧产物和该冷却流体流两者通过该阀门。
29.根据权利要求23所述的方法,其中回收能量包括将热量从这些燃烧产物传递给进入该燃烧器的空气和燃料中的至少一个。
30.根据权利要求23所述的方法,其中压缩空气包括:
将该空气压缩到一个第一压力;
在压缩该空气之后,冷却该空气;
在冷却该空气之后,进一步地将该空气压缩到大于该第一压力的一个第二压力。
31.根据权利要求23所述的方法,其中这些压缩、燃烧、运动、引导、膨胀以及回收过程的组合热力学效率超过40%。
32.一种用于运行发动机系统的方法,该方法包括:
对空气进行压缩;
在压缩该空气之后,冷却该空气;
在冷却该空气之后,进一步压缩该空气;
在进一步压缩该空气之后,在一个燃烧器中使该空气和一种燃料燃烧以形成燃烧产物;
使定位在该燃烧器与一个正排量膨胀器之间的一个阀门从一个关闭位置运动到一个打开位置;
当该阀门处于这个打开位置时引导这些燃烧产物通过该阀门进入该膨胀器;
以一种冷却流体流冷却该阀门;
让这些燃烧产物膨胀并且从该膨胀器中的这些燃烧产物提取功;并且
从离开该膨胀器的燃烧产物中回收能量。
33.根据权利要求32所述的方法,进一步包括使用从冷却该空气的过程获得的热量来提供空间加热。
34.根据权利要求32所述的方法,其中压缩空气是在一个压缩机的一个第一级处执行的并且其中进一步压缩该空气是在该压缩机的一个第二级处执行的,并且其中冷却该空气包括在压缩该空气之后并且在进一步压缩该空气之前将该空气引导至一个中冷器。
35.根据权利要求32所述的方法,其中这些压缩、冷却、进一步压缩、燃烧、引导、膨胀以及回收过程的组合热力学效率超过40%。
CN201280040373.0A 2011-06-28 2012-06-28 带分开的燃烧器的发动机、以及相关联的系统和方法 Expired - Fee Related CN103748323B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161502308P 2011-06-28 2011-06-28
US61/502,308 2011-06-28
US201161569691P 2011-12-12 2011-12-12
US61/569,691 2011-12-12
PCT/US2012/044748 WO2013003654A2 (en) 2011-06-28 2012-06-28 Semi-isothermal compression engines with separate combustors and expanders, and associated system and methods

Publications (2)

Publication Number Publication Date
CN103748323A CN103748323A (zh) 2014-04-23
CN103748323B true CN103748323B (zh) 2016-06-29

Family

ID=47424810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280040373.0A Expired - Fee Related CN103748323B (zh) 2011-06-28 2012-06-28 带分开的燃烧器的发动机、以及相关联的系统和方法

Country Status (7)

Country Link
US (1) US9551292B2 (zh)
EP (1) EP2737183A4 (zh)
JP (1) JP2014522938A (zh)
KR (1) KR20140041774A (zh)
CN (1) CN103748323B (zh)
CA (1) CA2839949A1 (zh)
WO (1) WO2013003654A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076951A1 (en) * 2013-11-25 2015-05-28 Benson Dwayne M Integrated power, cooling, and heating device and method thereof
WO2016047630A1 (ja) * 2014-09-25 2016-03-31 株式会社神戸製鋼所 コンテナ型圧縮空気貯蔵発電装置
JP6452450B2 (ja) * 2014-09-25 2019-01-16 株式会社神戸製鋼所 コンテナ型圧縮空気貯蔵発電装置
FR3032234B1 (fr) * 2015-01-30 2020-01-17 Vianney Rabhi Moteur thermique a transfert-detente et regeneration
WO2017044658A1 (en) * 2015-09-08 2017-03-16 The Regents Of The University Of California Low-cost hybrid energy storage system
WO2017106330A2 (en) * 2015-12-14 2017-06-22 Eaton Corporation Optimized engine control with electrified intake and exhaust
US10533240B2 (en) * 2016-12-23 2020-01-14 Caterpillar Inc. High temperature alloy for casting engine valves
GB201701368D0 (en) * 2017-01-27 2017-03-15 Univ Newcastle Heat engine
FR3063311B1 (fr) * 2017-02-27 2019-07-19 Vianney Rabhi Systeme de refroidissement regeneratif
MX2020001643A (es) 2017-08-09 2020-08-03 Capricorn Power Pty Ltd Motor de recuperacion de calor eficiente.
US20190203633A1 (en) * 2017-12-19 2019-07-04 Peter Charles Cheeseman Split-cycle engine
US11261888B1 (en) 2018-12-12 2022-03-01 Brian Lee Davis Isothermal pump with improved characteristics
IT202000003539A1 (it) * 2020-02-20 2021-08-20 Gfm S P A Accumulatore di energia.
EP4107853A1 (en) * 2020-02-20 2022-12-28 GFM S.p.A. Energy storage system
CN112682213B (zh) * 2021-01-26 2021-09-10 江苏东煌轨道交通装备有限公司 实现高效加热的斯特林电动机
CN113401871B (zh) * 2021-07-06 2023-01-06 中石化宁波工程有限公司 一种列管式分段可控半等温变换炉
CN114352504B (zh) * 2021-12-31 2023-05-05 华北电力大学(保定) 一种降低布雷顿循环放热温度的多级压缩储质结构及应用

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US226052A (en) 1880-03-30 ericsson
US1310157A (en) 1919-07-15 Planoorapii co
US125166A (en) 1872-04-02 Improvement in gas-engines
US1297363A (en) 1917-03-03 1919-03-18 Buel Couch Heat and power producing apparatus.
US1641121A (en) 1918-02-13 1927-08-30 Edwin J Creel Method and apparatus for the compression or expansion of a gas
US1782314A (en) 1929-10-05 1930-11-18 Poirmeur Louis Ildevert Rotary pump of the oscillating-blade type
US1895816A (en) 1930-04-15 1933-01-31 Fuller Co Compressor and vacuum pump
US2298525A (en) 1941-10-08 1942-10-13 Arthur M Briggs Rotary internal combustion engine
US2693031A (en) 1945-05-09 1954-11-02 Clark Kendall Computing sight
US3295505A (en) 1963-05-31 1967-01-03 Jordan Alfred Rotary piston apparatus
US3225661A (en) 1964-03-10 1965-12-28 Smyser Fluid Motors Rotary fluid motors
US3190227A (en) 1964-09-04 1965-06-22 Marquardt Corp Fluid device
SE340198B (zh) 1967-05-09 1971-11-08 R Schmidt
US3426525A (en) 1967-08-10 1969-02-11 Gotthard G Rubin Rotary piston external combustion engine
CH494347A (de) 1968-05-02 1970-07-31 Leybold Heraeus Verwaltung Vakuumpumpe nach dem Drehkolbenprinzip
US3651641A (en) * 1969-03-18 1972-03-28 Ginter Corp Engine system and thermogenerator therefor
US3959907A (en) 1969-10-14 1976-06-01 Microseal Corporation Film record card
DE2017239A1 (de) 1970-04-10 1971-10-28 Daimler-Benz AG, 7000 Stuttgart-Untertürkheim Heißgas-Rotationskolbenmaschine
US3775973A (en) 1970-05-04 1973-12-04 P Hudson Combustion products pressure generators intermittent burner cycle and engines
US3621654A (en) 1970-06-15 1971-11-23 Francis R Hull Regenerative gas turbine power plant
NL153638B (nl) 1970-10-29 1977-06-15 Hubers Cornelius Expansiemachine van het trochoidale type.
US3677008A (en) 1971-02-12 1972-07-18 Gulf Oil Corp Energy storage system and method
GB1367901A (en) 1971-04-02 1974-09-25 Knee G J Rotary-piston internal combustion engine
US3744245A (en) 1971-06-21 1973-07-10 D Kelly Closed cycle rotary engine system
US3797973A (en) 1971-10-01 1974-03-19 Ramsey Corp Slipper type apex seal for rotary piston engine
BE790672A (fr) 1971-10-29 1973-04-27 Copeland Corp Compresseur a chambres rotatives
US3743454A (en) 1972-01-18 1973-07-03 Gen Electric Rotary compressor
US3791352A (en) 1972-10-25 1974-02-12 A Takacs Rotary expansible chamber device
US3844692A (en) 1973-05-16 1974-10-29 Olin Corp Protective shields for rotary internal combustion engine rotor tip seals
US3986359A (en) 1973-05-29 1976-10-19 Cryo Power, Inc. Thermodynamic engine system and method
US3891357A (en) 1974-05-03 1975-06-24 Curtiss Wright Corp Rotary mechanism of the type having a planetating rotor
US3899272A (en) 1974-05-13 1975-08-12 Curtiss Wright Corp Rotary mechanism having apex seals with low contact pressure
NL180868C (nl) * 1974-11-20 1987-05-04 Hubers Cornelius Verbrandingsmotor met een buiten de cilinders liggende verbrandingskamer.
JPS5154139A (ja) * 1974-11-06 1976-05-13 Inaba Seisakusho Ltd Nainenkikan
US4009573A (en) 1974-12-02 1977-03-01 Transpower Corporation Rotary hot gas regenerative engine
CA1066678A (en) 1975-01-14 1979-11-20 Bendix Corporation (The) Rotary compressor
US3958907A (en) 1975-01-20 1976-05-25 Caterpillar Tractor Co. Isothermal apex seal for rotary engines
US3970050A (en) 1975-03-07 1976-07-20 Hoadley Harry W Two-stage rotary engines
DE2510149C3 (de) 1975-03-08 1982-01-21 Audi Nsu Auto Union Ag, 7107 Neckarsulm Gehäuse einer Kreiskolbenmaschine in Trochoidenbauart
US3945220A (en) 1975-04-07 1976-03-23 Fedders Corporation Injection cooling arrangement for rotary compressor
US4023366A (en) 1975-09-26 1977-05-17 Cryo-Power, Inc. Isothermal open cycle thermodynamic engine and method
JPS5284509A (en) 1975-12-30 1977-07-14 Osaki Toshio Rotary piston compressors
US4058988A (en) 1976-01-29 1977-11-22 Dunham-Bush, Inc. Heat pump system with high efficiency reversible helical screw rotary compressor
US4215533A (en) 1976-09-03 1980-08-05 The United States Of America As Represented By The Secretary Of The Navy Rotary expander engine
US4106472A (en) 1976-11-08 1978-08-15 Glenn Rusk Rotary energy converter with respiring chambers
US4133172A (en) 1977-08-03 1979-01-09 General Motors Corporation Modified Ericsson cycle engine
DE2909157C2 (de) 1978-03-10 1984-05-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi Rotationsverdichter
US4187692A (en) 1978-05-03 1980-02-12 Midolo Lawrence L Liquid cooled rotary vane air cycle machine
US4300874A (en) 1978-06-12 1981-11-17 Capella Inc. Rotary machine with lenticular rotor and a circular guide member therefor
US4224798A (en) 1979-07-05 1980-09-30 Brinkerhoff Verdon C Split cycle engine and method
NZ191548A (en) 1979-09-12 1984-02-03 Walker Engines Ltd Rotary internal combustion engine-hinged shoes form combustion chambers
US4367638A (en) 1980-06-30 1983-01-11 General Electric Company Reversible compressor heat pump
CH659855A5 (de) 1981-11-16 1987-02-27 Bbc Brown Boveri & Cie Luftspeicher-kraftwerk.
US4760701A (en) 1984-03-06 1988-08-02 David Constant V External combustion rotary engine
EP0221151A1 (en) 1985-04-26 1987-05-13 WHITE, Michael C. Rotary engine
US4773846A (en) 1985-07-30 1988-09-27 Michael Munk Combustion system and method with fog injection and heat exchange
US4739632A (en) 1986-08-20 1988-04-26 Tecumseh Products Company Liquid injection cooling arrangement for a rotary compressor
US4759325A (en) 1987-01-28 1988-07-26 Deere & Company Rotary engine cooling system
GB8709376D0 (en) 1987-04-21 1987-05-28 Ae Plc Rotary valve
US4885909A (en) 1987-09-02 1989-12-12 Sundstrand Corporation Method of operating a multipurpose auxiliary power unit
US5050570A (en) 1989-04-05 1991-09-24 Thring Robert H Open cycle, internal combustion Stirling engine
WO1990014265A1 (de) 1989-05-24 1990-11-29 Laukien Guenther Verfahren und vorrichtung zum antreiben von wasserfahrzeugen
US5199864A (en) 1990-09-28 1993-04-06 Southwest Research Institute Spherical fluid pump or motor with spherical ball comprising two parts
US5212942A (en) * 1990-11-09 1993-05-25 Tiernay Turbines, Inc. Cogeneration system with recuperated gas turbine engine
US5127377A (en) 1990-12-06 1992-07-07 Yang Chung Chieh Rotary machine with oval piston in triangular chamber
US5239833A (en) 1991-10-07 1993-08-31 Fineblum Engineering Corp. Heat pump system and heat pump device using a constant flow reverse stirling cycle
JPH05280305A (ja) * 1992-04-01 1993-10-26 Mitsubishi Heavy Ind Ltd コンバインドサイクル発電装置
US6085506A (en) 1993-07-08 2000-07-11 Megadyne Inc. Quiet external combustion lawn mower
US5391067A (en) 1993-07-20 1995-02-21 Saunders; James E. Rotary fluid displacement device
US5590528A (en) 1993-10-19 1997-01-07 Viteri; Fermin Turbocharged reciprocation engine for power and refrigeration using the modified Ericsson cycle
EP0652372B1 (en) 1993-10-27 1998-07-01 Mitsubishi Denki Kabushiki Kaisha Reversible rotary compressor
DE4341720C1 (de) 1993-12-03 1995-06-08 Mannesmann Ag Einstufiger Flügelzellenverdichter
IL108546A (en) 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
KR0133154B1 (ko) 1994-08-22 1998-04-20 이종대 무단 압축형 스크류식 진공펌프
US5894729A (en) 1996-10-21 1999-04-20 Proeschel; Richard A. Afterburning ericsson cycle engine
US5839270A (en) 1996-12-20 1998-11-24 Jirnov; Olga Sliding-blade rotary air-heat engine with isothermal compression of air
US5832728A (en) 1997-04-29 1998-11-10 Buck; Erik S. Process for transmitting and storing energy
US6092365A (en) 1998-02-23 2000-07-25 Leidel; James A. Heat engine
JP2002521608A (ja) 1998-07-31 2002-07-16 ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム 準等温ブライトンサイクルエンジン
US5960625A (en) * 1998-08-21 1999-10-05 Zdvorak, Sr.; Edward H. Constant volume combustion turbine with plurality flow turbine wheels
US6718751B2 (en) 1999-10-08 2004-04-13 Jeffrey S. Melcher Engine having external combustion chamber
US20010025478A1 (en) 2000-03-14 2001-10-04 Fineblum Solomon S. Hot air power system with heated multi process expansion
GB0007917D0 (en) 2000-03-31 2000-05-17 Npower An engine
US6464467B2 (en) 2000-03-31 2002-10-15 Battelle Memorial Institute Involute spiral wrap device
US6749405B2 (en) 2000-06-16 2004-06-15 Stuart Bassine Reversible pivoting vane rotary compressor for a valve-free oxygen concentrator
US6575719B2 (en) 2000-07-27 2003-06-10 David B. Manner Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals
US20020112479A1 (en) 2001-01-09 2002-08-22 Keefer Bowie G. Power plant with energy recovery from fuel storage
US20060127264A1 (en) 2001-02-01 2006-06-15 Giovanni Aquino Multi-vane device
US6606864B2 (en) * 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
US6606860B2 (en) 2001-10-24 2003-08-19 Mcfarland Rory S. Energy conversion method and system with enhanced heat engine
US6499534B1 (en) 2002-02-15 2002-12-31 Aquacal Heat exchanger with two-stage heat transfer
US6604922B1 (en) 2002-03-14 2003-08-12 Schlumberger Technology Corporation Optimized fiber reinforced liner material for positive displacement drilling motors
US6659065B1 (en) 2002-08-12 2003-12-09 David C Renegar Flexible vane rotary engine
US7010936B2 (en) 2002-09-24 2006-03-14 Rini Technologies, Inc. Method and apparatus for highly efficient compact vapor compression cooling
US6672063B1 (en) 2002-09-25 2004-01-06 Richard Alan Proeschel Reciprocating hot air bottom cycle engine
US6796123B2 (en) 2002-11-01 2004-09-28 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
GB2396664A (en) 2002-12-24 2004-06-30 Thomas Tsoi Hei Ma Extended cycle reciprocating Ericsson cycle engine
GB2396887A (en) 2003-01-06 2004-07-07 Thomas Tsoi Hei Ma Extended cycle reciprocating Stirling engine
US20060248886A1 (en) 2002-12-24 2006-11-09 Ma Thomas T H Isothermal reciprocating machines
US7249459B2 (en) 2003-06-20 2007-07-31 Denso Corporation Fluid machine for converting heat energy into mechanical rotational force
US6926505B2 (en) 2003-07-23 2005-08-09 Joaseph A. Sbarounis Rotary machine housing with radially mounted sliding vanes
TWM250353U (en) 2003-08-06 2004-11-11 Hon Hai Prec Ind Co Ltd Electrical connector
MY142613A (en) 2003-08-27 2010-12-15 Kcr Technologies Pty Ltd Rotary mechanism
RU2415284C2 (ru) 2003-09-04 2011-03-27 Пауэр Сорс Текнолоджиз Инк. Планетарный роторный двигатель внутреннего сгорания (варианты)
US6955052B2 (en) 2003-12-11 2005-10-18 Primlani Indru J Thermal gas compression engine
US20050135934A1 (en) 2003-12-22 2005-06-23 Mechanology, Llc Use of intersecting vane machines in combination with wind turbines
US7745946B2 (en) 2004-01-10 2010-06-29 Gary Carter, Sr. Multifunction integrated portable power and utility apparatus
US7097436B2 (en) 2004-02-17 2006-08-29 Wells David S Apex split seal
US7168235B2 (en) 2004-04-05 2007-01-30 Mechanology, Inc. Highly supercharged regenerative gas turbine
US7028476B2 (en) * 2004-05-22 2006-04-18 Proe Power Systems, Llc Afterburning, recuperated, positive displacement engine
EP1809898A2 (en) 2004-08-17 2007-07-25 Hydro-Industries Tynat Ltd. Rotary fluid-driven motor with sealing elements
CN100480488C (zh) 2004-12-28 2009-04-22 蒋子刚 流体机械的揉动变容方法及其机构与用途
US8152989B2 (en) 2005-01-18 2012-04-10 Severn Trent De Nora, Llc System and process for treating ballast water
US7481189B2 (en) 2005-03-09 2009-01-27 Zajac Optimum Output Motors, Inc. Internal combustion engine and method
US7509797B2 (en) * 2005-04-29 2009-03-31 General Electric Company Thrust vectoring missile turbojet
US7401475B2 (en) 2005-08-24 2008-07-22 Purdue Research Foundation Thermodynamic systems operating with near-isothermal compression and expansion cycles
US7185625B1 (en) 2005-08-26 2007-03-06 Shilai Guan Rotary piston power system
US7765785B2 (en) 2005-08-29 2010-08-03 Kashmerick Gerald E Combustion engine
US7549841B1 (en) 2005-09-03 2009-06-23 Florida Turbine Technologies, Inc. Pressure balanced centrifugal tip seal
US20070145748A1 (en) 2005-12-23 2007-06-28 Caterpillar Inc. Power generation system
GB2435675B (en) 2006-03-02 2011-02-09 Boc Group Plc Rotor assembly
US7856843B2 (en) 2006-04-05 2010-12-28 Enis Ben M Thermal energy storage system using compressed air energy and/or chilled water from desalination processes
US8863547B2 (en) 2006-04-05 2014-10-21 Ben M. Enis Desalination method and system using compressed air energy systems
EP2204449A3 (en) 2006-04-05 2010-09-08 National Research Council of Canada Nucleotide sequences encoding enzymes in biosynthesis of dihydroartemisinic acid
JP4261620B2 (ja) 2006-10-25 2009-04-30 パナソニック株式会社 冷凍サイクル装置
US7784300B2 (en) 2006-12-22 2010-08-31 Yiding Cao Refrigerator
US8261552B2 (en) 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
US20080226480A1 (en) 2007-03-15 2008-09-18 Ion Metrics, Inc. Multi-Stage Trochoidal Vacuum Pump
US20090211260A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Multi-Spool Intercooled Recuperated Gas Turbine
US7866962B2 (en) 2007-07-30 2011-01-11 Tecumseh Products Company Two-stage rotary compressor
CA2696036C (en) 2007-08-07 2013-08-13 Scuderi Group, Llc Spark plug location for split-cycle engine
US20090081061A1 (en) 2007-09-21 2009-03-26 Chomyszak Stephen M Peripherally pivoted oscillating vane machine
DK2220343T3 (da) 2007-10-03 2013-08-05 Isentropic Ltd Apparat til energilagring og fremgangsmåde til energilagring
CN101652546B (zh) 2007-11-30 2011-09-07 阿尔法动力系统公司 与脉冲燃气涡轮机系统相结合的旋转式机械往复滑动金属叶片空气泵和边界层燃气轮机
KR20100096252A (ko) * 2007-12-21 2010-09-01 그린 파트너스 테크놀로지 홀딩스 게엠베하 피스톤 엔진 시스템 및 방법
US8051654B2 (en) * 2008-01-31 2011-11-08 General Electric Company Reheat gas and exhaust gas regenerator system for a combined cycle power plant
CA2732810A1 (en) 2008-08-04 2010-02-11 Liquidpiston, Inc. Isochoric heat addition engines and methods
US8006496B2 (en) 2008-09-08 2011-08-30 Secco2 Engines, Inc. Closed loop scroll expander engine
US9297306B2 (en) * 2008-09-11 2016-03-29 General Electric Company Exhaust gas recirculation system, turbomachine system having the exhaust gas recirculation system and exhaust gas recirculation control method
US20110262269A1 (en) * 2008-11-20 2011-10-27 Etv Energy Ltd. Valves for gas-turbines and multipressure gas-turbines, and gas-turbines therewith
US8156919B2 (en) 2008-12-23 2012-04-17 Darrow David S Rotary vane engines with movable rotors, and engine systems comprising same
CN104895745A (zh) 2009-05-22 2015-09-09 通用压缩股份有限公司 压缩机和/或膨胀机装置
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
EP2480790A4 (en) 2009-09-23 2015-11-11 Bright Energy Storage Technologies Llp COMPRESSED HYDRAULIC ENERGY SUBMARINE STORAGE SYSTEM AND METHOD FOR DEPLOYING THE SAME
JP5589358B2 (ja) 2009-11-12 2014-09-17 カルソニックカンセイ株式会社 コンプレッサ
RU2432474C2 (ru) 2010-01-11 2011-10-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Способ работы поршневого двигателя внутреннего сгорания
CN101761393A (zh) * 2010-02-11 2010-06-30 华北电力大学 汽轮机驱动压气机的燃气蒸汽联合循环系统
CN102859118A (zh) 2010-03-01 2013-01-02 布莱特能源存储科技有限责任公司 旋转压缩机-膨胀器系统以及相关联的使用和制造方法
CA2804910A1 (en) 2010-03-01 2011-09-09 Brian Von Herzen Apparatus for storage vessel deployment and method of making same
US20110204064A1 (en) 2010-05-21 2011-08-25 Lightsail Energy Inc. Compressed gas storage unit
WO2012009569A2 (en) 2010-07-14 2012-01-19 Brightearth Technologies, Inc. System and method for storing thermal energy
WO2012009584A1 (en) 2010-07-14 2012-01-19 Brian Von Herzen Pneumatic gearbox with variable speed transmission and associated systems and methods
US8171947B2 (en) 2010-08-24 2012-05-08 Leslie Glenn Hardie Automobile cover apparatus
WO2014005229A1 (en) * 2012-07-04 2014-01-09 Kairama Inc. Temperature management in gas compression and expansion
US9404392B2 (en) * 2012-12-21 2016-08-02 Elwha Llc Heat engine system

Also Published As

Publication number Publication date
US20150176526A1 (en) 2015-06-25
WO2013003654A3 (en) 2013-03-14
EP2737183A2 (en) 2014-06-04
EP2737183A4 (en) 2016-01-27
CN103748323A (zh) 2014-04-23
KR20140041774A (ko) 2014-04-04
JP2014522938A (ja) 2014-09-08
CA2839949A1 (en) 2013-01-03
WO2013003654A2 (en) 2013-01-03
US9551292B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
CN103748323B (zh) 带分开的燃烧器的发动机、以及相关联的系统和方法
KR100342338B1 (ko) 열기관
CN107810312B (zh) 用于储能的储能装置和储能方法
US8082892B2 (en) High efficiency integrated heat engine-2 (HEIHE-2)
US7975485B2 (en) High efficiency integrated heat engine (HEIHE)
CN107100736A (zh) 燃气轮机联合系统
AU2011311695B2 (en) Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
EP2691623B1 (en) A hot-air engine
US9945321B2 (en) Hot gas engine
CN103912324A (zh) 一种转子高低压动力设备及其做功方法
CN104088720A (zh) 一种高效热能动力发动机及其做功方法
CN203892009U (zh) 一种转子负压动力设备
EP3728815B1 (en) System and method for generating power
EP3377746B1 (en) System and method for generating power
CN103925006A (zh) 一种转子负压动力设备及其做功方法
CN210686064U (zh) 一种储压式发动机
CN209308835U (zh) 一种冷热联供燃气轮机
WO2014028405A1 (en) Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
CN202789098U (zh) 重型柴油机新型复合热力循环联合运行装置
CN104088695A (zh) 一种热能动力设备及其做功方法
CN203891947U (zh) 一种转子高低压动力设备
CN202811076U (zh) 间冷回热母管式分体压气机燃气轮机组
BG66898B1 (bg) Модулен комплекс за производство на ефективна мощност чрез изгаряне на течни и газообразни горива
RU2334886C1 (ru) Комбинированная силовая установка с охлаждаемой турбиной и регенерацией тепла
GB2544977A (en) Perpetual motion heat engines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160629

Termination date: 20200628