CN103713772B - A kind of processing technology of the touch screen of GF monolayer multipoint configuration - Google Patents

A kind of processing technology of the touch screen of GF monolayer multipoint configuration Download PDF

Info

Publication number
CN103713772B
CN103713772B CN201310753438.2A CN201310753438A CN103713772B CN 103713772 B CN103713772 B CN 103713772B CN 201310753438 A CN201310753438 A CN 201310753438A CN 103713772 B CN103713772 B CN 103713772B
Authority
CN
China
Prior art keywords
touch screen
conductive film
processing technology
multipoint configuration
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310753438.2A
Other languages
Chinese (zh)
Other versions
CN103713772A (en
Inventor
李林波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Pingbo Electronic Co Ltd
Original Assignee
Dongguan Pingbo Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Pingbo Electronic Co Ltd filed Critical Dongguan Pingbo Electronic Co Ltd
Priority to CN201310753438.2A priority Critical patent/CN103713772B/en
Publication of CN103713772A publication Critical patent/CN103713772A/en
Application granted granted Critical
Publication of CN103713772B publication Critical patent/CN103713772B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to touch screen technology field, it is specifically related to the processing technology of the touch screen of a kind of GF monolayer multipoint configuration, the present invention is not only more frivolous than conventional double glass touch screen, and it is applicable to the smart mobile phone touch screen of below 6.3inch, and the present invention uses overall printing conductive silver paste, conductive silver paste is carried out laser-induced thermal etching by formed silver slurry bridging circuit in the way of, effectively prevent silver slurry bridging circuit difficult processing easy fracture problem, it is ensured that product yield.The present invention adds the operation of pasting protective film in processing technology, prevents product to be scratched in process of production, affects product yield.To sum up, making the product yield for preparing high by above-mentioned processing technology and performance is good and opening period is shorter more adapts to customized smart mobile phone touch screen, relatively like product also improves a lot.

Description

A kind of processing technology of the touch screen of GF monolayer multipoint configuration
Technical field
The present invention relates to touch screen technology field, be specifically related to the making work of the touch screen of a kind of GF monolayer multipoint configuration Skill.
Background technology
Touch screen is a kind of input equipment significantly improving man machine operation interface, have directly perceived, simply, advantage efficiently. Touch screen has been obtained for being widely applied in many electronic products, and such as smart mobile phone, PDA, multimedia, public information are looked into Inquiry system etc..
Conventional touch technology uses double glazing touch screen, and it is the most thick and heavy, and can not make the touch screen of narrow frame. The touch screen of GF monolayer multipoint configuration is made up of conducting film+safety glass cover plate, the touch screen of GF monolayer multipoint configuration due to Only have one layer of glass, and other one layer has been selected ITO conducting film so that it is cost, thickness, weight have all obtained significantly changing Kind, but in its processing technology can not handling factor many, cause that product yield is low, poor performance.
Summary of the invention
Present invention aims to the deficiencies in the prior art, it is provided that a kind of cause the GF that product yield is high, performance is good The processing technology of the touch screen of monolayer multipoint configuration.
To achieve these goals, the present invention adopts the following technical scheme that the touch screen of a kind of GF monolayer multipoint configuration Processing technology, it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, to the ITO in conductive film viewfinder area Layer etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then leading Overall printing conductive silver paste in the ITO layer of conductive film rim area, carries out laser-induced thermal etching to form silver slurry bridging line to conductive silver paste Road;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, at the side laminating optical cement that sensor has ITO cabling, pass through Thin film sensor and glass cover-plate are combined by optical cement, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;;
Step B3, finally FPC is bound on thin film sensor, obtains the touch screen of GF monolayer multipoint configuration.
Preferably, in step A1, the baking temperature of conductive film is 135-145 DEG C, and baking time is 55-65min.
Preferably, the substrate layer in step A1 is PET base material layer.
Preferably, in step A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching Liquid is made up of the HCL solution that mass ratio is 4:1 and ferric chloride solution, and the mass percent concentration of HCL solution is 15-25%, chlorination The mass percent concentration of ferrous solution is 2-8%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 3-5%.
Preferably, the conductive silver paste in step A3 comprises the following raw materials by weight percent:
Silver powder 55-70 %
Epoxy resin 5-15%
Polyester resin 5-15%
Powdered graphite 0.1-1%
SiO 2 powder 1-2%
Diethylene glycol ether acetate 5-15%
Butyl acetate 5-15%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin.
Wherein, described polyester resin is acrylic type polyester resin.
PU modified epoxy vinyl ester resin and acrylic type polyester resin in conductive silver paste can be completely dissolved in diethyl In the dicyandiamide solution of glycol monobutyl ether acetate and butyl acetate, form organic carrier, there is the silver of electric conductivity Powder, powdered graphite can well be disperseed after adding, and improve the electric conductivity of conductive silver paste, PU modified epoxy vinyl esters Resin, acrylic type polyester resin, the employing of SiO 2 powder also make the pulp strength after conductive silver paste sintering high and base The adhesive force of sheet material layers is good, the requirement that the live width of the electrocondution slurry that can meet touch screen circuit is the thinnest.
Preferably, described silver powder is by the micro-silver powder end that mass ratio is 1:20-1:30 and nanometer silver powder constituent, described The particle diameter at micro-silver powder end is 10-20 μm, and the particle diameter of described nanometer silver powder is 60-90nm.In this particle diameter and ratio range Micro-silver powder end and nanometer silver powder can preferably coordinate, both may utilize little quality and the high surface energy of nanometer silver powder, made Obtain nanometer silver powder and be attached to surface, micro-silver powder end, form the composite construction of He shell, make again in follow-up mixed process In, nanometer silver powder be attached to micro-silver powder end surface along with moving together at micro-silver powder end, effectively prevent nanometer silver powder The agglomeration at end;Additionally, due to nanometer silver powder, there is high surface energy, it and the high score in epoxy resin and polyester resin The combination of subchain is more tight, therefore micro-silver powder end can by be attached to the nanometer silver powder on its surface and epoxy resin and The combination of the macromolecular chain in polyester resin, the nanometer silver powder being not adhered to surface, micro-silver powder end is filled into asphalt mixtures modified by epoxy resin Fat and the various gaps of polyester resin, final all micro-silver powders end and nanometer silver powder all obtain dispersed, improve this The electric conductivity of invention.
Preferably, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 10-20%
Epoxy novolac acrylic resin 5-15%
Amino acrylic resin 5-15%
Aliphatic polyurethane acrylic resin 5-15%
Acrylic monomers 5-15%
Light curing agent 1-5%
Silicon dioxide 0.1-1%
Barium sulfate 15-25%
Pulvis Talci 10-20%
Organic pigment 0.1-1%,
Above-mentioned protection glue uses four kinds of different resins to cooperate, and learns from other's strong points to offset one's weaknesses, the peelable blue gel good film-forming property prepared, heat There is after film-forming good toughness, flexibility and acid-proof alkaline;And conducting film protection in touch screen manufacturing process After technique completes, it is easily peeled off, does not have and remain in material surface or contaminated materials.
Preferably, described light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
Preferably, before the conductive film opened greatly is cut by step A4, cover last layer PE protecting film, enter in step B1 Tear off during row combination.
The present invention compared with prior art, has the beneficial effects that: the present invention is not only than conventional double glass touch screen more Frivolous, while being applicable to the smart mobile phone touch screen of below 6.3inch, and the present invention uses overall printing conductive silver paste, right Conductive silver paste carry out laser-induced thermal etching by formed silver slurry bridging circuit in the way of, effectively prevent silver slurry bridging circuit difficult processing easy fracture Problem, it is ensured that product yield.The present invention adds the operation of pasting protective film in processing technology, prevents product from producing Journey is scratched, affects product yield.To sum up, make the product yield for preparing high and property by above-mentioned processing technology Can also improve a lot by the most relatively like product.
Detailed description of the invention
Below in conjunction with embodiment, the present invention is further illustrated.
Embodiment 1.
A kind of processing technology of the touch screen of GF monolayer multipoint configuration, it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, to the ITO in conductive film viewfinder area Layer etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then leading Overall printing conductive silver paste in the ITO layer of conductive film rim area, carries out laser-induced thermal etching to form silver slurry bridging line to conductive silver paste Road;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, at the side laminating optical cement that sensor has ITO cabling, pass through Thin film sensor and glass cover-plate are combined by optical cement, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;;
Step B3, finally FPC is bound on thin film sensor, obtains the touch screen of GF monolayer multipoint configuration.
Wherein, in step A1, the baking temperature of conductive film is 135 DEG C, and baking time is 65min.
Wherein, the substrate layer in step A1 is PET base material layer.
Wherein, in step A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching solution HCL solution and ferric chloride solution by mass ratio is 4:1 form, and the mass percent concentration of HCL solution is 15%, and iron chloride is molten The mass percent concentration of liquid is 2%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 3%.
Wherein, the conductive silver paste in step A3 comprises the following raw materials by weight percent:
Silver powder 55%
Epoxy resin 10%
Polyester resin 5%
Powdered graphite 1%
SiO 2 powder 2%
Diethylene glycol ether acetate 15%
Butyl acetate 12%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin,
Wherein, described polyester resin is acrylic type polyester resin,
Wherein, described silver powder is by the micro-silver powder end that mass ratio is 1:20 and nanometer silver powder constituent, described micron silver The particle diameter of powder is 10 μm, and the particle diameter of described nanometer silver powder is 60nm.
Wherein, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 10%
Epoxy novolac acrylic resin 10%
Amino acrylic resin 15%
Aliphatic polyurethane acrylic resin 10%
Acrylic monomers 10%
Light curing agent 5%
Silica 1 %
Barium sulfate 20%
Pulvis Talci 18%
Organic pigment 1%,
Wherein, described light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
Wherein, before the conductive film opened greatly is cut by step A4, cover last layer PE protecting film, carry out in step B1 Tear off during combination.
Wherein, before the glass opened greatly is cut by step B4, cover last layer PE protecting film, be combined in step B1 Time tear off.
Embodiment 2.
A kind of processing technology of the touch screen of GF monolayer multipoint configuration, it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, to the ITO in conductive film viewfinder area Layer etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then leading Overall printing conductive silver paste in the ITO layer of conductive film rim area, carries out laser-induced thermal etching to form silver slurry bridging line to conductive silver paste Road;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, at the side laminating optical cement that sensor has ITO cabling, pass through Thin film sensor and glass cover-plate are combined by optical cement, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;;
Step B3, finally FPC is bound on thin film sensor and glass sensor, obtains touching of GF monolayer multipoint configuration Touch screen.
Wherein, in step A1, the baking temperature of conductive film is 140 DEG C, and baking time is 60min.
Wherein, the substrate layer in step A1 is PET base material layer.
Wherein, in step A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching solution HCL solution and ferric chloride solution by mass ratio is 4:1 form, and the mass percent concentration of HCL solution is 20%, and iron chloride is molten The mass percent concentration of liquid is 4%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 4%.
Wherein, the conductive silver paste in step A3 comprises the following raw materials by weight percent:
Silver powder 70%
Epoxy resin 5%
Polyester resin 5%
Powdered graphite 0.5%
SiO 2 powder 1.5%
Diethylene glycol ether acetate 10%
Butyl acetate 8%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin,
Wherein, described polyester resin is acrylic type polyester resin,
Wherein, described silver powder is by the micro-silver powder end that mass ratio is 1:25 and nanometer silver powder constituent, described micron silver The particle diameter of powder is 15 μm, and the particle diameter of described nanometer silver powder is 75nm.
Wherein, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 15%
Epoxy novolac acrylic resin 10%
Amino acrylic resin 10%
Aliphatic polyurethane acrylic resin 10%
Acrylic monomers 10%
Light curing agent 4%
Silica 1 %
Barium sulfate 22.5%
Pulvis Talci 17%
Organic pigment 0.5%,
Wherein, described light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
Wherein, before the conductive film opened greatly is cut by step A4, cover last layer PE protecting film, carry out in step B1 Tear off during combination.
Wherein, before the glass opened greatly is cut by step B4, cover last layer PE protecting film, be combined in step B1 Time tear off.
Embodiment 3.
A kind of processing technology of the touch screen of GF monolayer multipoint configuration, it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, to the ITO in conductive film viewfinder area Layer etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then leading Overall printing conductive silver paste in the ITO layer of conductive film rim area, carries out laser-induced thermal etching to form silver slurry bridging line to conductive silver paste Road;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, there is the side laminating optical cement of ITO cabling at glass sensor, By optical cement, thin film sensor and glass cover-plate are combined, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;;
Step B3, finally FPC is bound to thin film sensor, obtains the touch screen of GF monolayer multipoint configuration.
Wherein, in step A1, the baking temperature of conductive film is 140 DEG C, and baking time is 60min.
Wherein, the substrate layer in step A1 is PET base material layer.
Wherein, in step A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching solution HCL solution and ferric chloride solution by mass ratio is 4:1 form, and the mass percent concentration of HCL solution is 22%, and iron chloride is molten The mass percent concentration of liquid is 7%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 4%.
Wherein, the conductive silver paste in step A3 comprises the following raw materials by weight percent:
Silver powder 60%
Epoxy resin 8%
Polyester resin 8%
Powdered graphite 0.1%
SiO 2 powder 1.9%
Diethylene glycol ether acetate 11%
Butyl acetate 11%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin,
Wherein, described polyester resin is acrylic type polyester resin,
Wherein, described silver powder is by the micro-silver powder end that mass ratio is 1:27 and nanometer silver powder constituent, described micron silver The particle diameter of powder is 16 μm, and the particle diameter of described nanometer silver powder is 75nm.
Wherein, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 12%
Epoxy novolac acrylic resin 12%
Amino acrylic resin 8%
Aliphatic polyurethane acrylic resin 8%
Acrylic monomers 11%
Light curing agent 2%
Silica 1 %
Barium sulfate 25%
Pulvis Talci 20%
Organic pigment 1%,
Wherein, described light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
Wherein, before the conductive film opened greatly is cut by step A4, cover last layer PE protecting film, carry out in step B1 Tear off during combination.
Wherein, before the glass opened greatly is cut by step B4, cover last layer PE protecting film, be combined in step B1 Time tear off.
Embodiment 4.
A kind of processing technology of the touch screen of GF monolayer multipoint configuration, it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, to the ITO in conductive film viewfinder area Layer etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then leading Overall printing conductive silver paste in the ITO layer of conductive film rim area, carries out laser-induced thermal etching to form silver slurry bridging line to conductive silver paste Road;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, at the side laminating optical cement that sensor has ITO cabling, pass through Thin film sensor and glass cover-plate are combined by optical cement, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;;
Step B3, finally FPC is bound on thin film sensor, obtains the touch screen of GF monolayer multipoint configuration.
Wherein, in step A1, the baking temperature of conductive film is 145 DEG C, and baking time is 55min.
Wherein, the substrate layer in step A1 is PET base material layer.
Wherein, in step A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching solution HCL solution and ferric chloride solution by mass ratio is 4:1 form, and the mass percent concentration of HCL solution is 25%, and iron chloride is molten The mass percent concentration of liquid is 8%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 5%.
Wherein, the conductive silver paste in step A3 comprises the following raw materials by weight percent:
Silver powder 70%
Epoxy resin 5%
Polyester resin 5%
Powdered graphite 1%
SiO 2 powder 2%
Diethylene glycol ether acetate 7%
Butyl acetate 10%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin,
Wherein, described polyester resin is acrylic type polyester resin,
Wherein, described silver powder is by the micro-silver powder end that mass ratio is 1:30 and nanometer silver powder constituent, described micron silver The particle diameter of powder is 20 μm, and the particle diameter of described nanometer silver powder is 90nm.
Wherein, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 20%
Epoxy novolac acrylic resin 12%
Amino acrylic resin 10%
Aliphatic polyurethane acrylic resin 15%
Acrylic monomers 15%
Light curing agent 1%
Silica 1 %
Barium sulfate 15%
Pulvis Talci 10%
Organic pigment 1%,
Wherein, described light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
Wherein, before the conductive film opened greatly is cut by step A4, cover last layer PE protecting film, carry out in step B1 Tear off during combination.
Wherein, before the glass opened greatly is cut by step B4, cover last layer PE protecting film, be combined in step B1 Time tear off.
When above-described embodiment uses with touch screen, the back side and the front of indication are as the criterion.
The touch screen of GF monolayer multipoint configuration embodiment 1-4 prepared carries out following test, refers to following table.
By upper table can be seen that the touch screen product yield height of GF monolayer multipoint configuration that the present invention prepares, light transmittance, Thermal shock, hot and humid, high-temperature storage performance are good, and b value, haze value are low.
Last it should be noted that, above example is only in order to illustrate technical scheme, rather than the present invention is protected Protecting the restriction of scope, although having made to explain to the present invention with reference to preferred embodiment, those of ordinary skill in the art should Work as understanding, technical scheme can be modified or equivalent, without deviating from the reality of technical solution of the present invention Matter and scope.

Claims (8)

1. the processing technology of the touch screen of a GF monolayer multipoint configuration, it is characterised in that: it includes following operation:
A, conductive film sensor manufacturing process, it comprises the following steps successively:
Step A1, being toasted by conductive film, this conductive film includes substrate layer and be arranged at the ITO layer in substrate layer front;
Step A2, in the ITO layer of conductive film rim area print acid-proof ink, in conductive film viewfinder area ITO layer use Etching solution is etched, and obtains the conductive film having ITO cabling, then removes acid-proof ink with alkali liquor;
Step A3, and the scraping the most contaminated with protection group sheet material layers at conductive film substrate layer printing protection glue, then at conductive thin Overall printing conductive silver paste in the ITO layer of film rim area, carries out laser-induced thermal etching to form silver slurry bridging circuit to conductive silver paste;
Step A4, the conductive film opened greatly is cut, obtain thin film sensor;
B, binding operation, it comprises the following steps successively:
After step B1, thin film sensor test passes, there is the side laminating optical cement OCA of ITO cabling at thin film sensor, By optical cement, thin film sensor and glass cover-plate are combined, then deaeration;
Step B2, conducting resinl ACF is fitted on FPC flexible PCB;
Step B3, finally FPC is bound on thin film sensor, obtains the touch screen of GF monolayer multipoint configuration,
Wherein, the protection glue in step A3 comprises the following raw materials by weight percent:
Organic fluorinated silicone modified acrylic resin 10-20%
Epoxy novolac acrylic resin 5-15%
Amino acrylic resin 5-15%
Aliphatic polyurethane acrylic resin 5-15%
Acrylic monomers 5-15%
Light curing agent 1-5%
Silicon dioxide 0.1-1%
Barium sulfate 15-25%
Pulvis Talci 10-20%
Organic pigment 0.1-1%.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: step In A1, the baking temperature of conductive film is 135-145 DEG C, and baking time is 55-65min.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: step Substrate layer in A1 is PET base material layer.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: step In A2, acid-proof ink is the acid-proof ink that model is TPER-194B-2 of Japan's mutual induction;Etching solution is the HCL of 4:1 by mass ratio Solution and ferric chloride solution composition, the mass percent concentration of HCL solution is 15-25%, and the mass percent of ferric chloride solution is dense Degree is 2-8%, and alkali liquor uses mass percent concentration to be the sodium hydroxide solution of 3-5%.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: step Conductive silver paste in A3 comprises the following raw materials by weight percent:
Silver powder 55-70%
Epoxy resin 5-15%
Polyester resin 5-15%
Powdered graphite 0.1-1%
SiO 2 powder 1-2%
Diethylene glycol ether acetate 5-15%
Butyl acetate 5-15%,
Wherein, described epoxy resin is PU modified epoxy vinyl ester resin,
Wherein, described polyester resin is acrylic type polyester resin.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 5, it is characterised in that: described Silver powder by the micro-silver powder end that mass ratio is 1:20-1:30 and nanometer silver powder constituent, the particle diameter at described micro-silver powder end is 10-20 μm, the particle diameter of described nanometer silver powder is 60-90nm.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: described Light curing agent is made up of the benzophenone that mass ratio is 1:1 and methyl o-benzoylbenzoate.
The processing technology of the touch screen of a kind of GF monolayer multipoint configuration the most according to claim 1, it is characterised in that: step Before the conductive film opened greatly is cut by A4, cover last layer PE protecting film, tear off when step B1 is combined.
CN201310753438.2A 2013-12-31 2013-12-31 A kind of processing technology of the touch screen of GF monolayer multipoint configuration Active CN103713772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310753438.2A CN103713772B (en) 2013-12-31 2013-12-31 A kind of processing technology of the touch screen of GF monolayer multipoint configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310753438.2A CN103713772B (en) 2013-12-31 2013-12-31 A kind of processing technology of the touch screen of GF monolayer multipoint configuration

Publications (2)

Publication Number Publication Date
CN103713772A CN103713772A (en) 2014-04-09
CN103713772B true CN103713772B (en) 2016-08-24

Family

ID=50406804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310753438.2A Active CN103713772B (en) 2013-12-31 2013-12-31 A kind of processing technology of the touch screen of GF monolayer multipoint configuration

Country Status (1)

Country Link
CN (1) CN103713772B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468178B (en) * 2014-06-30 2019-04-19 深圳市比亚迪电子部品件有限公司 Touch screen and preparation method thereof, touch device
CN104216569B (en) * 2014-09-30 2017-06-13 江西省平波电子有限公司 A kind of manufacture craft of the touch-screen of improved GF individual layers multipoint configuration
CN104407734B (en) * 2014-11-04 2018-04-27 苏州欧菲光科技有限公司 The manufacture method and touch screen of touch screen
CN105511681B (en) * 2015-12-31 2019-03-08 东莞市平波电子有限公司 A kind of GG single layer multiple spot Rimless touch screen and its preparation process
CN105426014B (en) * 2015-12-31 2019-03-08 东莞市平波电子有限公司 A kind of GF single layer multiple spot Rimless touch screen and its preparation process
CN106020560B (en) * 2016-07-29 2019-09-27 江苏宇天港玻新材料有限公司 A kind of two-sided shadow touch panel sensor and its production technology of disappearing
CN108016155A (en) * 2016-11-03 2018-05-11 北京中科纳通电子技术有限公司 A kind of novel touch screen low temperature manufacturing process
CN108733243B (en) * 2017-04-17 2021-11-02 蓝思科技(长沙)有限公司 Method for manufacturing touch screen based on nano silver film
CN111261322A (en) * 2020-02-13 2020-06-09 轻工业部南京电光源材料科学研究所 Silk-screen conductive silver paste for touch screen and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576581A (en) * 2009-10-15 2012-07-11 东洋纺织株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
CN202904547U (en) * 2012-11-09 2013-04-24 赣州市德普特科技有限公司 Capacitive touch screen
CN103258584A (en) * 2013-01-09 2013-08-21 深圳市创智材料科技有限公司 Electric conductive silver paste and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999197B (en) * 2011-09-10 2016-06-08 宸鸿科技(厦门)有限公司 There is contact panel and the manufacture method thereof of shielding construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576581A (en) * 2009-10-15 2012-07-11 东洋纺织株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
CN202904547U (en) * 2012-11-09 2013-04-24 赣州市德普特科技有限公司 Capacitive touch screen
CN103258584A (en) * 2013-01-09 2013-08-21 深圳市创智材料科技有限公司 Electric conductive silver paste and manufacturing method thereof

Also Published As

Publication number Publication date
CN103713772A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103605444B (en) A kind of processing technology of the touch screen of G1F structure
CN103713772B (en) A kind of processing technology of the touch screen of GF monolayer multipoint configuration
CN103729089B (en) A kind of manufacture method of the touch screen of GFF structure
CN103593089B (en) A kind of processing technology of the touch screen of GG structure
CN106029365B (en) Transfer film, the manufacture method of transfer film, Sparent laminate, the manufacture method of Sparent laminate, capacitive input device and image display device
JP2011134695A (en) Transparent electrode film, and method of manufacturing the same
CN103971784A (en) Novel organic/inorganic nano-composite electric conduction slurry and preparing method of novel organic/inorganic nano-composite electric conduction slurry
CN102732172A (en) Pressure-sensitive adhesive layer-attached transparent resin film, laminated film, and touch panel
CN104479581A (en) Protective film with blue-light resistant function
CN104231259B (en) A kind of polyfunctional group polyphenylene oxide resin and preparation method thereof
CN103605443B (en) A kind of manufacture craft of touch-screen of PG structure
CN103593090B (en) The two-sided conductive film of a kind of GF2, the touch module processing technology of elargol wire structures
CN204434532U (en) A kind of for glass material up to because of value black ink coating structure
CN104804516A (en) Graphene cover plate glass printing ink
CN104485157A (en) Graphene composite material and preparation method thereof
CN104350121A (en) Adhesive, and transparent substrate using same
CN104238825B (en) A kind of manufacture craft of the touch-screen of improved PG structures
CN104292974B (en) A kind of touch-screen acid-proof ink and preparation method thereof
CN104497902A (en) Blue-light-resistant optical adhesive tape applied to display screen
CN103677409B (en) A kind of processing technology of the touch module of the two-sided conducting membrane structure of GF2
CN104216569B (en) A kind of manufacture craft of the touch-screen of improved GF individual layers multipoint configuration
CN104298401A (en) Manufacturing process of improved touch screen of GG structure
CN104216568A (en) Manufacturing process of improved touch screen with G1F structure
CN106775073A (en) A kind of sensor glass adds safety glass structure touch-screen and preparation method thereof
CN104238824A (en) Manufacturing technology for touch screen of improved GFF structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant