CN103699744A - 一种基于有限元法的风电主控柜体热管理分析及优化方法 - Google Patents

一种基于有限元法的风电主控柜体热管理分析及优化方法 Download PDF

Info

Publication number
CN103699744A
CN103699744A CN201310727372.XA CN201310727372A CN103699744A CN 103699744 A CN103699744 A CN 103699744A CN 201310727372 A CN201310727372 A CN 201310727372A CN 103699744 A CN103699744 A CN 103699744A
Authority
CN
China
Prior art keywords
master control
control cabinet
wind
electricity generation
powered electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310727372.XA
Other languages
English (en)
Other versions
CN103699744B (zh
Inventor
谢李丹
沙玉婷
吴宏
师毓佳
刘海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guodian Nanjing Automation Co Ltd
Original Assignee
Guodian Nanjing Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guodian Nanjing Automation Co Ltd filed Critical Guodian Nanjing Automation Co Ltd
Priority to CN201310727372.XA priority Critical patent/CN103699744B/zh
Publication of CN103699744A publication Critical patent/CN103699744A/zh
Application granted granted Critical
Publication of CN103699744B publication Critical patent/CN103699744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于有限元法的风电主控柜体热管理分析及优化方法,包括以下步骤:从柜面布置图获取风电主控柜体的材料属性及其内部的断路器及继电器的参数;对断路器及继电器进行初始的几何建模得三维模型;将三维模型进行有限元网格划分,得有限元网格模型;获取加热器及风扇的设计参数;建立风电主控柜体及内部流体的三维模型;进行流体力学网格划分得到流场网格模型;对流场网格模型进行约束;确定流场内流体的物理参数;对流场网格模型的温度场和流场进行计算得到流场分析结果;判断风电主控柜体的流场分析结果是否符合行业标准,如果符合,则结束,如果不符合,则对设计方案进行优化。本发明无需制造出实体模型就能够得到精确的计算结果。

Description

一种基于有限元法的风电主控柜体热管理分析及优化方法
技术领域
本发明涉及一种基于有限元法的风电主控柜体热管理分析及优化方法,属于风电控制技术领域。
背景技术
随着不可再生能源在世界范围面临枯竭的窘境,为了满足工业化生产和人类生活的需要,人们对太阳能、风力发电等可再生能源的关注和利用日益提升。其中风力发电是一种已经发展比较成熟的能源开发技术。风力发电主控系统是风力发电系统的核心部件,所以如何合理设计风力发电主控系统成了风力发电系统开发过程中的重点之一。
风力发电主控系统通常包括风电主控系统柜体、位于柜体内的断路器、继电器等部件、控制器等。在风电主控系统的开发过程中,风电主控柜体的散热系统设计是其设计过程中的一个重要环节。现有的散热系统的热管理分析及优化主要通过理论研究和实验研究两种途径来实现。
通过对现有技术研究,申请人发现现有技术存在以下问题:
对于理论研究来说,通过普通的计算只适用于线性和简单的几何问题,且受限于解析方法求解能力,无法得到精确的计算结果。
实验研究虽然能够得到精确的计算结果,但前提是需要制造出实体模型,耗费较高、耗时较长,并且灵活性较差。
发明内容
针对现有技术存在的不足,本发明目的是提供一种无需制造出实体模型就能够得到精确计算结果的基于有限元法的风电主控柜体热管理分析及优化方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明包括以下几个步骤:
步骤S101:从柜面布置图获取风电主控柜体的材料属性及其内部的断路器及继电器的参数;
步骤S102:根据步骤S101获取的参数,利用3D建模软件对断路器及继电器进行初始的几何建模,得到风电主控柜体的三维模型;
步骤S103:首先,利用有限元前处理软件将步骤S102的三维模型进行有限元网格划分,并将有限元网格模型的参数与风电主控柜体内部的断路器及继电器的参数相匹配,得到风电主控柜体的有限元网格模型;
步骤S104:对所述有限元网格模型进行温度场分析,得到所述风电主控柜体的温度场分析结果;
步骤S201:获取所述风电主控柜体和风电主控柜体内部的加热器及风扇的设计参数;
步骤S202:根据步骤S201获取的设计参数,利用3D建模软件建立风电主控柜体及内部流体的三维模型;
步骤S203:将所述步骤S202得到的三维模型导入到计算流体力学软件中进行流体力学网格划分,得到所述内部流体的流场网格模型;
步骤S301:将风电主控柜体的温度场分析结果作为边界条件,对流场网格模型进行约束;
步骤S302:确定流场内流体的物理参数,以使得实验条件与模拟的环境相同;
步骤S303:利用流体力学计算软件对流场网格模型的温度场和流场进行计算,得到风电主控柜体的流场分析结果;
步骤S304:判断所述风电主控柜体的流场分析结果是否符合行业标准,如果不符合,则进入步骤S305;如果符合,则结束;
步骤S305:对步骤S304中风电主控柜体的设计方案进行优化,包括重新设计风电主控柜体、加热器及风扇的设计参数,并且根据优化后的设计方案返回步骤S201重新计算。
步骤S101中,所述参数包括断路器及继电器的几何尺寸、热力学属性、初始温度和工作时的生热率。
步骤S201中,所述风电主控柜体的设计参数包括风电主控柜体的几何尺寸、风道的位置及数目设计以及风道的尺寸;
所述加热器及风扇的设计参数包括设计位置及尺寸。
步骤步骤S302中,所述物理参数包括流体的介质材料、流速以及流入温度。
步骤S303中,所述流场分析结果为温度场和流场云图。
上述步骤S304的判断方法为:
通过所述温度场和流场云图计算风电主控柜体内断路器及继电器的温差大小,并将计算得到的温差大小与行业标准值进行对比,当计算得到的温差大小在行业标准的范围内,则符合行业标准;当计算得到的温差大小超出了行业标准的范围,则不符合行业标准。
本发明与理论研究相比,该方法可以更多的面向非线性和复杂结构外形的问题,由于采用离散的数值方法和模拟实验方法,可以不受数学解析能力的限制,从而具有更大的适应性和求解能力;与实验研究相比,该方法无需制造出实体模型,分析过程经济、迅速,并且具有更大的自由度和灵活性,可以突破实验上物质条件的限制而获得精确的计算结果。
附图说明
图1为本发明的工作流程图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
图1为本申请实施例提供的一种基于有限元法的风电主控柜体热管理分析及优化方法的流程图。
如图1所示,该方法包括以下步骤:
步骤S101:获取所述柜体的材料属性及内部的断路器及继电器的参数;
所述步骤S101中,参数包括:断路器、继电器等部件的几何尺寸、热力学属性、初始温度、断路器和继电器等部件工作时的生热率。
步骤S102:建立风电主控柜体内部的三维模型。
根据步骤S101中获取的风电主控柜体内部的断路器、继电器等部件的参数,利用3D建模软件对风电主控柜体内各部件进行初始的几何建模,得到风电主控柜体的三维模型。
步骤S103:首先利用有限元前处理软件将所述步骤S102的三维模型进行有限元网格划分,并将有限元网格模型的参数与风电主控柜体内部的断路器及继电器的参数相匹配,得到风电主控柜体的有限元网格模型(与前面的有限元网格模型是同一模型,因为如果网格的结构参数,如网格的大小与断路器等的结构参数不相匹配,可能会导致有限元网格模型出现计算不收敛的情况)。
步骤S103:对风电主控柜体的三维模型进行有限元网格划分,并将有限元网格模型的参数与风电主控柜体内部的断路器、继电器等部件的参数相匹配,得到风电主控柜体的有限元网格模型。
首先利用有限元前处理软件将风电主控柜体的三维模型划分成有限元网格,并且将有限元网格模型的参数与风电主控柜体内部的断路器、继电器等部件的参数相匹配,即根据步骤S101中获取的风电主控柜体内部的断路器、继电器等部件的参数,对风电主控柜体的有限元网格中的网格进行边界条件和初始条件约束,其中包括:热力学属性、初始温度、断路器、继电器等部件工作时的生热率以及柜体的材料属性,最后得到风电主控柜体的有限元网格模型。
步骤S104:对所述有限元网格模型进行温度场分析,得到所述风电主控柜体的温度场分析结果;
温度场分析具体方法为:将得到的有限元网格模型导入到温度场分析求解器中进行求解,得到风电主控柜体的温度场结果及温度分布云图
步骤S201:获取所述风电主控柜体和风电主控柜体内部的加热器及风扇的设计参数;
所述风电主控柜体的设计参数包括风电主控柜体的几何尺寸、风道的位置及数目设计以及风道的尺寸,所述加热器及风扇的设计参数包括设计位置及尺寸。
步骤S202:根据步骤S201获取的参数,利用3D建模软件建立风电主控柜体及内部流体的三维模型。
步骤S203:对柜体及内部流体的三维模型进行流体力学网格划分,得到风电主控柜体及内部流体的网格模型。
将步骤S202中得到的柜体及内部流体的三维模型导入到计算流体力学软件中进行流体力学划分,得到柜体内部流体的网格模型。
步骤S301:将所述柜体内各部件的温度场分析结果作为约束条件,对所述柜体内的流体网格模型中柜体内各部件进行约束。柜体内的温度场分析结果就是指S104中风电主控柜体的温度场分析结果,因为风电主控柜体的温度场包括柜体内的温度场分析结果。
该步骤通过温度-流体耦合的方式,将所述柜体内各部件的温度场分析结果和所述柜体内的流体网格模型进行耦合,即将所述柜体内各部件的温度场分析结果作为边界条件对流场网格模型进行约束。
步骤S302:确定流场内流体的物理参数。
确定流体的物理参数,包括确认流体的介质材料、流速以及流入温度,以使得实验条件与模拟的环境相同。
步骤S303:对约束后的所述柜体内流体的网格模型进行流体力学计算,得到所述柜体的流场分析结果。
确定流体的物理参数后,利用流体力学计算软件来对耦合后的风电主控柜体内流体的网格模型的温度场和流场进行计算,得到风电主控柜体的流场分析结果,风电主控柜体的温度场和流场云图。
步骤S304:判断所述柜体的流场分析结果是否符合预设条件,如果否,进入步骤S305;如果是,则结束。
得到风电主控柜体的温度场和流场云图后,通过风电主控柜体的温度场和流场云图计算该柜体中各部件的温差大小,并将得到的温差大小与预设条件进行对比,这里所说的预设条件一般为通用的行业标准。
当计算得到的温差大小在行业标准的范围内,即该通风系统设计合理,结束步骤;而当计算的温差大小超出了行业标准的范围,则该设计方案存在问题。
步骤S305:优化所述柜体的设计方案,并根据优化后的所述柜体的设计方案中的设计参数重新进行步骤S201。
对步骤S304中的柜体设计方案进行优化,包括重新设计风道位置、改变风口个数或位置,并且根据优化后的设计方案中柜体的设计参数,返回步骤S201重新计算。
本实施例中,采用Pro/E软件建立所述柜体内各部件的三维模型和所述柜体及柜体内的流体的三维模型。
采用有限元软件ANSYS对柜体内各部件的三维模型进行有限元网格划分,并对所述柜体内各部件的有限元网格模型进行温度场分析。
采用有限元软件ANSYS对柜体内流体的三维模型进行流体力学网格划分,并对约束后的所述柜体内流体的网格模型进行流体力学计算。
采用ANSYS软件将柜体内各部件的温度场分析结果作为约束条件,对所述柜体内流体的网格模型中柜体内各部件进行约束。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,包括以下几个步骤:
步骤S101:从柜面布置图获取风电主控柜体的材料属性及其内部的断路器及继电器的参数;
步骤S102:根据步骤S101获取的参数,利用3D建模软件对断路器及继电器进行初始的几何建模,得到风电主控柜体的三维模型;
步骤S103:首先,利用有限元前处理软件将步骤S102的三维模型进行有限元网格划分,并将有限元网格模型的参数与风电主控柜体内部的断路器及继电器的参数相匹配,得到风电主控柜体的有限元网格模型;
步骤S104:对所述有限元网格模型进行温度场分析,得到所述风电主控柜体的温度场分析结果;
步骤S201:获取所述风电主控柜体和风电主控柜体内部的加热器及风扇的设计参数;
步骤S202:根据步骤S201获取的设计参数,利用3D建模软件建立风电主控柜体及内部流体的三维模型;
步骤S203:将所述步骤S202得到的三维模型导入到计算流体力学软件中进行流体力学网格划分,得到所述内部流体的流场网格模型;
步骤S301:将风电主控柜体的温度场分析结果作为边界条件,对流场网格模型进行约束;
步骤S302:确定流场内流体的物理参数,以使得实验条件与模拟的环境相同;
步骤S303:利用流体力学计算软件对流场网格模型的温度场和流场进行计算,得到风电主控柜体的流场分析结果;
步骤S304:判断所述风电主控柜体的流场分析结果是否符合行业标准,如果不符合,则进入步骤S305;如果符合,则结束;
步骤S305:对步骤S304中风电主控柜体的设计方案进行优化,包括重新设计风电主控柜体、加热器及风扇的设计参数,并且根据优化后的设计方案返回步骤S201重新计算。
2.根据权利要求1所述的基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,
步骤S101中,所述参数包括断路器及继电器的几何尺寸、热力学属性、初始温度和工作时的生热率。
3.根据权利要求2所述的基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,
步骤S201中,所述风电主控柜体的设计参数包括风电主控柜体的几何尺寸、风道的位置及数目设计以及风道的尺寸;
所述加热器及风扇的设计参数包括设计位置及尺寸。
4.根据权利要求3所述的基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,
步骤步骤S302中,所述物理参数包括流体的介质材料、流速以及流入温度。
5.根据权利要求4所述的基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,
步骤S303中,所述流场分析结果为温度场和流场云图。
6.根据权利要求5所述的基于有限元法的风电主控柜体热管理分析及优化方法,其特征在于,
所述步骤S304的判断方法为:
通过所述温度场和流场云图计算风电主控柜体内断路器及继电器的温差大小,并将计算得到的温差大小与行业标准值进行对比,当计算得到的温差大小在行业标准的范围内,则符合行业标准;当计算得到的温差大小超出了行业标准的范围,则不符合行业标准。
CN201310727372.XA 2013-12-25 2013-12-25 一种基于有限元法的风电主控柜体热管理分析及优化方法 Active CN103699744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310727372.XA CN103699744B (zh) 2013-12-25 2013-12-25 一种基于有限元法的风电主控柜体热管理分析及优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310727372.XA CN103699744B (zh) 2013-12-25 2013-12-25 一种基于有限元法的风电主控柜体热管理分析及优化方法

Publications (2)

Publication Number Publication Date
CN103699744A true CN103699744A (zh) 2014-04-02
CN103699744B CN103699744B (zh) 2017-01-18

Family

ID=50361271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310727372.XA Active CN103699744B (zh) 2013-12-25 2013-12-25 一种基于有限元法的风电主控柜体热管理分析及优化方法

Country Status (1)

Country Link
CN (1) CN103699744B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243183A (zh) * 2015-09-09 2016-01-13 国家超级计算深圳中心(深圳云计算中心) 产品结构参数化设计的优化方法和系统
CN105243224A (zh) * 2015-10-28 2016-01-13 唐山轨道客车有限责任公司 客室内流场的参数化仿真方法、装置及列车
CN106529010A (zh) * 2016-11-01 2017-03-22 深圳供电局有限公司 一种利用有限元模型设计抗凝露型环网柜外壳的方法
CN106803002A (zh) * 2017-01-18 2017-06-06 北京林业大学 一种机械蒸汽再压缩主换热器出口布置方法
CN108121840A (zh) * 2016-11-29 2018-06-05 中车大同电力机车有限公司 一种牵引变流柜和列车供电柜间水路的分配方法
CN108656913A (zh) * 2018-05-09 2018-10-16 广州电力机车有限公司 自卸车储能模块柜体及其储能模块散热计算方法
CN109165423A (zh) * 2018-08-03 2019-01-08 北京航空航天大学 一种基于流函数的绕物流场建模方法
CN109657368A (zh) * 2018-12-24 2019-04-19 奥克斯空调股份有限公司 一种空调散热器的优化方法
CN110826278A (zh) * 2019-11-07 2020-02-21 雪龙集团股份有限公司 基于有限元的硅油风扇离合器散热性能分析方法
CN111611753A (zh) * 2020-05-13 2020-09-01 广东省智能制造研究所 一种温度均匀升温毯的设计方法
CN112016233A (zh) * 2020-08-31 2020-12-01 江苏骠马智能工业设计研究有限公司 轨道式巡检机器人驱动机构动力学优化仿真分析方法
CN112130492A (zh) * 2020-09-17 2020-12-25 东南大学 一种适用于大数据中心的电力能效管理系统及控制方法
CN106803002B (zh) * 2017-01-18 2024-04-19 北京林业大学 一种机械蒸汽再压缩主换热器出口布置方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196508A1 (en) * 2007-02-16 2008-08-21 Rolls-Royce Plc Lift measurement
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
CN102156431A (zh) * 2011-01-07 2011-08-17 国电南京自动化股份有限公司 基于plc系统的风电机组运行仿真系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196508A1 (en) * 2007-02-16 2008-08-21 Rolls-Royce Plc Lift measurement
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
CN102156431A (zh) * 2011-01-07 2011-08-17 国电南京自动化股份有限公司 基于plc系统的风电机组运行仿真系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
师毓佳 等: "基于PLC的风电机组仿真系统", 《中国电力》, vol. 45, no. 7, 31 July 2012 (2012-07-31), pages 68 - 72 *
范伟 等: "基于ADINA的风机增速箱冷却系统分析", 《计算机应用技术》, vol. 39, no. 4, 30 April 2012 (2012-04-30) *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243183A (zh) * 2015-09-09 2016-01-13 国家超级计算深圳中心(深圳云计算中心) 产品结构参数化设计的优化方法和系统
CN105243224A (zh) * 2015-10-28 2016-01-13 唐山轨道客车有限责任公司 客室内流场的参数化仿真方法、装置及列车
CN106529010A (zh) * 2016-11-01 2017-03-22 深圳供电局有限公司 一种利用有限元模型设计抗凝露型环网柜外壳的方法
CN106529010B (zh) * 2016-11-01 2020-04-24 深圳供电局有限公司 一种利用有限元模型设计抗凝露型环网柜外壳的方法
CN108121840A (zh) * 2016-11-29 2018-06-05 中车大同电力机车有限公司 一种牵引变流柜和列车供电柜间水路的分配方法
CN106803002A (zh) * 2017-01-18 2017-06-06 北京林业大学 一种机械蒸汽再压缩主换热器出口布置方法
CN106803002B (zh) * 2017-01-18 2024-04-19 北京林业大学 一种机械蒸汽再压缩主换热器出口布置方法
CN108656913B (zh) * 2018-05-09 2021-04-16 广州电力机车有限公司 自卸车储能模块柜体及其储能模块散热计算方法
CN108656913A (zh) * 2018-05-09 2018-10-16 广州电力机车有限公司 自卸车储能模块柜体及其储能模块散热计算方法
CN109165423A (zh) * 2018-08-03 2019-01-08 北京航空航天大学 一种基于流函数的绕物流场建模方法
CN109657368A (zh) * 2018-12-24 2019-04-19 奥克斯空调股份有限公司 一种空调散热器的优化方法
CN109657368B (zh) * 2018-12-24 2023-01-10 奥克斯空调股份有限公司 一种空调散热器的优化方法
CN110826278A (zh) * 2019-11-07 2020-02-21 雪龙集团股份有限公司 基于有限元的硅油风扇离合器散热性能分析方法
CN110826278B (zh) * 2019-11-07 2022-04-22 华南理工大学 基于有限元的硅油风扇离合器散热性能分析方法
CN111611753B (zh) * 2020-05-13 2024-01-30 广东省智能制造研究所 一种温度均匀升温毯的设计方法
CN111611753A (zh) * 2020-05-13 2020-09-01 广东省智能制造研究所 一种温度均匀升温毯的设计方法
CN112016233A (zh) * 2020-08-31 2020-12-01 江苏骠马智能工业设计研究有限公司 轨道式巡检机器人驱动机构动力学优化仿真分析方法
CN112016233B (zh) * 2020-08-31 2024-02-06 江苏骠马智能工业设计研究有限公司 轨道式巡检机器人驱动机构动力学优化仿真分析方法
CN112130492A (zh) * 2020-09-17 2020-12-25 东南大学 一种适用于大数据中心的电力能效管理系统及控制方法

Also Published As

Publication number Publication date
CN103699744B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN103699744A (zh) 一种基于有限元法的风电主控柜体热管理分析及优化方法
Bleicher et al. Co-simulation environment for optimizing energy efficiency in production systems
CN108153998B (zh) 离心鼓风机叶轮的全三维气动优化设计方法
CN103150460B (zh) 一种间接空冷塔的结构分析方法
TWI672665B (zh) 綠建築效能模擬分析系統及其最適化決策方法
CN108510104B (zh) 基于云计算的建筑能耗分析与优化运行方法
CN108090275B (zh) 一种面向参数化模型的涡轮气冷叶片构型方法
CN105260541A (zh) 一种基于bim模型的管线深化方法
CN112231945B (zh) 一种基于star CCM+与Amesim的动力电池系统热扩散联合仿真方法
CN104361157A (zh) 一种建筑物间风环境的评价方法
CN103324806A (zh) 一种基于ruby语言的sketchup厂房自动建模方法
CN106650086A (zh) 基于fluent软件的间接空冷系统数值模拟平台
CN113642069A (zh) 基于bim和异构系统的建筑风荷载快速迭代设计方法
CN104615835A (zh) 一种发动机中冷器分析方法
CN103093493A (zh) 既有电网设备的高精度三维对象建模方法
CN103678808A (zh) 基于元件库的变电站电磁场模拟方法
TWI671651B (zh) 淨零耗能建築的整合設計分析系統及其運作方法
Rao et al. Computational fluid dynamics-based thermal modeling for efficient building energy management
CN105302979A (zh) 两相流体网络模型中阀门组的建模方法和系统
CN105631073B (zh) 一种优化制造复合材料波纹梁的方法
CN114186353A (zh) 一种基于数值模拟的大空间空调交叉影响因子的计算方法
CN205091740U (zh) 三相感应电动机瞬态温升计算模型
CN103593531A (zh) 一种使用bp算法对发动机虚拟装配时间进行评价的方法
Liang et al. Evaluation of thermal insulation performance of building exterior wall based on multiobjective optimization algorithm
CN102682474A (zh) 水电行业中建筑的三维建模方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant