CN103682573B - 双波束扇区天线与阵列 - Google Patents

双波束扇区天线与阵列 Download PDF

Info

Publication number
CN103682573B
CN103682573B CN201310716957.1A CN201310716957A CN103682573B CN 103682573 B CN103682573 B CN 103682573B CN 201310716957 A CN201310716957 A CN 201310716957A CN 103682573 B CN103682573 B CN 103682573B
Authority
CN
China
Prior art keywords
antenna
bfn
port
row
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310716957.1A
Other languages
English (en)
Other versions
CN103682573A (zh
Inventor
M·日摩门
华言平
H·曹
I·季莫费耶夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Telecommunications China Co Ltd
Original Assignee
Kang Pu Science And Technology Ltd Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42198713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103682573(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kang Pu Science And Technology Ltd Co filed Critical Kang Pu Science And Technology Ltd Co
Publication of CN103682573A publication Critical patent/CN103682573A/zh
Application granted granted Critical
Publication of CN103682573B publication Critical patent/CN103682573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

公开了一种低旁瓣波束形成方法和双波束天线结构,其可以优选地用于3扇区和6扇区蜂窝通信系统。完整的天线将2列、3列或4列双波束子阵列(模块)与改进的波束形成网络(BFN)进行组合。这些模块可以作为阵列的一部分来使用,或者作为独立的2波束天线来使用。通过集成不同类型的模块来形成完整的阵列,本发明提供了改进的双波束天线,其具有宽频带操作中改进的方位角旁瓣抑制、期望的蜂窝扇区中改进的覆盖、以及对其它小区造成的较小的干扰。有利地,通过将高达95%的辐射功率指向期望的蜂窝扇区内来实现较佳的小区效率。

Description

双波束扇区天线与阵列
本申请是申请日为2009年11月12日,申请号为200980151807.2的发明专利申请的分案申请。
要求优先权
本申请要求于2008年11月19日提交的、题为双波束天线阵列的美国临时申请No.61/199,840的优先权,并将其教导并入本文。
技术领域
概括地说,本发明涉及无线通信,更具体地说,涉及在蜂窝通信系统中使用的多波束天线。
背景技术
蜂窝通信系统因通信覆盖的区域被映射到各小区的事实而得名。每个这种小区拥有为了向在地理上位于给定的小区内的移动用户提供双向无线/RF通信而配置的一个或多个天线。一个或多个天线可以向小区提供服务,其中,通常使用多个天线并且每个天线配置成向小区的一个扇区提供服务。典型地,这些多个扇区天线配置在一座塔上,并由每个朝向外面的天线生成的辐射波束来向各自的小区提供服务。
在普通的3扇区蜂窝配置中,每个扇区天线通常具有65°3dB方位角波束宽度(AzBW)。在另一配置中,6扇区小区还可以用于增加系统容量。在这种6扇区小区配置中,每个扇区天线可以具有针对6扇区应用最常用的33°或45°AzBW。然而,在一座塔上使用6个天线(其中,每个天线典型地比3扇区系统中使用的普通65°AzBW天线宽两倍)是不紧凑的,并且更加昂贵。
双波束天线(或多波束天线)可以用于减少塔上天线的数量。多波束天线的关键是波束形成网络(BFN)。在图1A和图1B中示出了现有技术的双波束天线的示意图。天线11使用具有在12处示出的3dB90°混合耦合器的2x2BFN10,并在信号端口14处在方位角平面中形成波束A和波束B两者。(2x2BFN意味着BFN通过使用2个列来生成2个波束)。两个辐射体耦合端口16连接到也被称为辐射体的天线元件,并且两个端口14耦合到提供仰角波束倾斜(见图1B)的移相网络。图1C中所示的这种现有技术天线的主要缺点是多于50%的辐射功率被浪费并指向了用于6扇区应用的期望的60°扇区之外,以及方位角波束太宽(150°@-10dB水平)造成对其它扇区的干扰(如图1D中所示)。此外,由于非预期小区内的一个天线生成的高干扰,低增益和较大的后瓣(大约-11dB)对于现代系统来说是不可接受的。另一个缺点是使用垂直极化并且没有极化分集。
在其它双波束的现有技术解决方案中(例如在美国专利申请U.S.2009/0096702Al中所示的),示出了3列阵列,但是这种阵列仍然生成非常高的旁瓣(大约-9dB)。
因此,需要一种改善的双波束天线,其在宽频带操作中具有改善的方位角旁瓣抑制、具有改善的增益、以及产生对其它扇区较小的干扰和期望扇区的更佳的覆盖范围。
发明内容
本发明通过将不同的双波束天线模块集成到天线阵列中来实现技术优势。这些模块(子阵列)的关键是改善的波束形成网络(BFN)。这些模块可以有利地用作阵列的一部分或独立的天线。完整阵列中的2x2、2x3以及2x4BFN的组合允许对两个波束的振幅和相位分布进行优化。因此,通过将不同类型的模块进行集成以形成完整阵列,本发明提供了一种改善的双波束天线,其具有在宽频带操作中改善的方位角旁瓣抑制、改善的期望的蜂窝扇区的覆盖、以及对其它小区造成的较小的干扰。有利的是,通过将高达95%的辐射功率指向期望的扇区,实现了较好的小区效率。对天线波束的形状进行优化并可连同非常低的旁瓣/后瓣一起进行调整。
在本发明的一个方面,通过使用M x N BFN(例如,针对3列阵列的2X3BFN和针对4列阵列的2X4BFN,其中M≠N)来实现一种天线。
在本发明的另一方面,可以制造2列、3列、以及4列的辐射体模块(诸如2X2、2X3、以及2X4模块)。每个模块可以在给定的列中具有一个或多个双极化辐射体。这些模块可以作为阵列的一部分或独立的天线来使用。
在本发明的另一方面,2X2和2X3辐射体模块的组合可以用于制造双波束天线,该双波束天线具有大约35°到55°AzBW并且具有针对两种波束较低的旁瓣/后瓣。
在本发明的另一方面,将2X3和2X4辐射体模块的组合集成以制造双波束天线,其具有大约25°到45°AzBW以及针对两种波束的较低的旁瓣/后瓣。
在本发明的另一方面,2X2、2X3和2X4辐射体模块的组合用于制造双波束天线,其具有大约25°到45°AzBW以及针对两种波束在方位角和仰角平面内的较低的旁瓣/后瓣。
在本发明的另一方面,2X2和2X4辐射体模块的组合可以用于制造双波束天线。
所有天线配置可以在接收模式或发射模式下操作。
附图说明
图1A、1B、1C和1D表示具有传统2x2BFN的传统双波束天线;
图2A表示根据本发明的一个实施例的2x3BFN,其使用3列辐射体形成2个波束;
图2B是包括针对两个波束的相关联的相位和振幅分布的2X4BFN的示意图,其使用4列辐射体形成2个波束。
图2C是2X4BFN的示意图(其使用4列辐射体形成2个波束),并且进一步配备移相器,其允许波束之间稍微不同的AzBW并配置用于小区扇区优化。
图3示出了如何将图1A的BFN有利地组合到双极化的2列天线模块中;
图4表示如何将图2A的BFN组合到双极化的3列天线模块中;
图5表示如何将图2B或图2C的BFN组合到双极化的4列天线模块中;
图6表示一种优选的天线配置,其采用针对2个都具有45°AzBW的波束的模块化方法、以及在辐射体附近表示的用于波束的振幅和相位分布;
图7A和图7B表示使用图6中示出的天线配置的在方位角和仰角平面中合成的波束图案;
图8A和图8B示出了当使用2x3和2x4模块时实际的双波束天线配置;以及
图9-10表示针对在图8A和图8B中所示的配置测量的具有低旁瓣的辐射图案。
具体实施方式
现在参考图2A,在20处示出了一个优选的实施例,该实施例包括为使用辐射体的3个列形成2个波束而配置的双向2x3BFN,其中,在信号端口24处形成这两个波束。提供了一个90°混合耦合器22,其可以是或可以不是3dB耦合器。通过90°混合耦合器22的分离系数(splitting coefficient)的变化,可以有利地针对辐射体耦合端口26获得波束的不同振幅分布:从均衡的(1-1-1)到重锥形的(0.4-1-0.4)。提供了具有均等分离(3dB耦合器)的0.7-1-0.7振幅。因此,2x3BFN20提供了一定程度的设计灵活性,这允许生成不同的波束形状和旁瓣水平。90°混合耦合器22可以是分支线耦合器、兰格耦合器或耦合线耦合器。针对180°均等分离器(180°equalsplitter)28的宽带解决方案可以是具有180°Shiftman移相器的Wilkinson分配器。然而,如果需要可以使用诸如环形波导(rat-race)180°耦合器或具有附加相移的90°混合耦合器之类的分配器。在图2A中的右侧表示了辐射体耦合端口26上针对波束1和波束2的振幅和相位分布。3个辐射体耦合端口26中的每一个可以连接到一个辐射体或一列辐射体,以作为偶极天线、缝隙天线、贴片天线等。成列的辐射体可以是垂直线型或稍微偏移的(交错的列)。
图2B是根据本发明的另一优选的实施例的双向2x4BFN30的示意图,其配置用于使用4列辐射体并使用作为一个组件的标准巴特勒矩阵38来形成2个波束。180°均等分离器34与上面描述的分离器28相同。在图的右边示出了波束1和波束2两者的相位和振幅。4个辐射体耦合端口40中的每一个可以连接到一个辐射体或一列辐射体,以作为偶极天线、缝隙天线、贴片天线等。成列的辐射体可以停留在垂直线上或者是稍微偏移的(交错的列)。
图2C是包括了位于50处的双向2X4BFN的另一实施例的示意图,其配置成使用4列辐射体形成2个波束。BFN50是图2B中示出的2X4BFN30的改进版本,并且包括向标准4X4巴特勒矩阵58馈送信号的两个移相器56。通过对移相器56的相位进行改变,可以选择波束之间稍微不同的AzBW(连同可调整的波束位置)以用于小区扇区优化。可以根据需要使用移相器56中的一个或两者。
改进的BFN20、30、50可以分开使用(BFN20用于3列2-波束天线,BFN30、50用于4列2-波束天线)。但是使用它们最有益的方式是模块化方式,即,具有不同数量的列的BFN模块的组合或者在同一天线阵列中有不同的BFN,如下面将要描述的。
图3表示具有2X2BFN的双极化2列天线模块(其大体在70处示出)。2x2BFN10与图1A中所示出的相同。如图所示,这种2X2天线模块70包括:使用-45°极化形成波束的第一2X2BFN10、以及使用+45°极化形成波束的第二2X2BFN10。每列辐射体76具有至少一个双极化辐射体,例如,交叉的偶极天线。
图4表示具有2X3BFN的双极化3列天线模块(其大体在80处示出)。2x3BFN20与图2A中所示出的相同。如图所示,这种2X3天线模块80包括:使用-45°极化形成波束的第一2X3BFN20、以及使用+45°极化形成波束的第二2X3BFN20。每列辐射体76具有至少一个双极化辐射体,例如,交叉的偶极天线。
图5表示具有2X4BFN的双极化4列天线模块(其大体在90处示出)。2x4BFN50与图2C中所示出的相同。如图所示,这种2X4天线模块90包括:使用-45°极化形成波束的第一2X4BFN50、以及使用+45°极化形成波束的第二2X4BFN50。每列辐射体76具有至少一个双极化辐射体,例如,交叉的偶极天线。
在下面的图6-10中,将针对具有45°和33°天线示出双波束形成的新模块化方法,其作为针对5扇区和6扇区应用是最可取的。
现在参考图6,在100处大体表示了用于两个波束(每个波束具有45°的AzBW)的双极化天线阵列。在相应的辐射体76附近示出了针对一个波束的相应的振幅和相位。可见天线配置100具有3个2x3模块80以及2个2x2模块70。这些模块与4个垂直分配器101、102、103、104连接,垂直分配器101、102、103、104具有与使用+45°极化的2个波束和使用-45°极化的2个波束相关的4个端口(如图6所示)。模块80中的辐射体列76之间的水平间距为X3,而模块70中的辐射体之间的水平间距为X2。优选地,尺寸X3小于尺寸X2(X3<X2)。然而,在某些应用中,尺寸X3可以等于X2(X3=X2)甚至X3>X2,这取决于期望的辐射图案。通常,间距X2和X3接近于半个波长(λ/2),并且对间距的调整提供了对所产生的AzBW的调整。将耦合器22的分离系数选择在了3.5dB处以得到较低的Az旁瓣和较高的波束交叉水平(3.5dB)。
参考图7A,在110处示出了由图6中示出的天线100提供的两个波束的模拟方位角图案,其中,X3=X2=0.46λ并在每个列76中具有相隔0.8λ的2个交叉偶极天线。如图所示,每个方位角图案具有相关联的旁瓣,该相关联的旁瓣比相关联的主波束(波束交叉水平为-3.5dB)至少低-27dB。有利地,本发明被配置以提供在两个平面上均具有较低旁瓣的辐射图案。如图7B中所示,较低水平的上旁瓣121也达到了仰角平面(<-17dB,其超过了<-15dB的工业标准)。如可在图6中所见到的,用较小的振幅锥度损失(0.37dB)实现了两个平面内的振幅分布和较低的旁瓣。因此,通过对2x2和2x3模块的数量、距离X2和X3、以及耦合器22的分离系数进行选择,可以达到期望的AzBW和期望的旁瓣水平。垂直分配器101、102、103、104可以与移相器相结合以用于仰角波束倾斜。
图8A示出了当从天线阵列的辐射体一侧观察时针对33°AzBW的实际的双波束天线配置,其具有3个3列辐射体模块80和2个4列模块90。每个列76具有2个交叉偶极天线。4个端口95与使用+45度极化的2个波束和使用-45度极化的2个波束相关联。
图8B表示当从背侧观察天线时的天线122,其中,2x3BFN133和2x4BFN134与相关联的移相器/分配器135放置在一起。由杆96机械地控制的移相器/分配器135向天线130提供针对两个波束的可独立选择的下倾角。
图9是描绘针对在图8A、8B中所示的天线阵列122、在1950MHz处测量的且具有33度AzBW的方位角双波束图案的曲线图。
参考图10,在140处示出了针对图8A、8B的天线阵列122、在频带1700-2200MHZ内测量的双波束方位角图案。如可以从图9和图10中所观测到的,在很宽(25%)的频带内达到了较低的旁瓣水平(<20dB)。仰角图案也具有较低的旁瓣(<-18dB)。
正如在图9和图10中意识到的,对每个主波束(波束1和波束2)来说,高达约95%的辐射功率指向了期望的扇区中,而仅约5%的辐射能量损失在旁瓣和扇区之外的主波束部分中,这显著地减少了当在扇区化的无线小区中使用时的干扰。此外,与传统的6扇区天线相比,显著地减小了天线122的整体物理尺寸,以允许更加紧凑的设计,并使得将这些扇区天线122方便地安装在天线塔上。3个天线122(而不是传统设计中的6个天线)可以方便地配置在天线塔上来向整个小区提供服务,而小区间干扰的很小且大部分的辐射功率指向该小区的预期的扇区。
例如,图8A、8B中的2波束天线122的物理尺寸为1.3x0.3m,与具有33度AzBW的传统单波束天线的尺寸相同。
在基于本发明的模块化方式的其它设计中,可以实现具有不同AzBW(针对不同的应用所需要的诸如25度、35度、45度或55度AzBW)的其它双波束天线。例如,55度和45度天线可以用于4和5扇区蜂窝系统。在这些配置的每一种中,通过2X2、2X3和2X4模块的组合、以及辐射体列(如图6和8A中所示)之间的相关联的间隔X2、X3和X4,可以在具有非常低的旁瓣和可调整的波束倾斜的情况下达到期望的AzBW。同样,耦合器22的分离系数提供了针对图案优化的另一自由度。因此,与现有技术相比,本发明允许将方位角旁瓣降低10-15dB。
虽然本发明已对具体的优选实施例进行了描述,但是对于本领域的技术人员来说,在阅读了本申请之后许多变化和修改将变得显而易见。例如,本发明能够适用于雷达多波束天线。因此,本发明意在考虑到现有技术的前提下将所附权利要求解释为尽可能广泛地包括所有的这些变化和修改。

Claims (5)

1.一种波束形成网络,包括2xN双向BFN和2xQ双向BFN,其中所述2xN双向BFN具有配置为通过第一波束发射/接收第一信号的第一端口和配置为通过第二波束发射/接收第二信号的第二端口,所述2xN双向BFN配置为通过至少一个180°3dB分离器在所述第一和第二端口与N个辐射体耦合端口之间将所述第一和第二信号耦合;并且
其中,所述2xQ双向BFN具有配置为通过第一波束发射/接收第一信号的第一端口和配置为通过第二波束发射/接收第二信号的第二端口,所述2xQ双向BFN配置为通过至少一个180°3dB分离器在所述第一和第二端口与Q个辐射体耦合端口之间将所述第一和第二信号耦合,其中,N不等同于Q。
2.根据权利要求1所述的波束形成网络,其中,所述BFN包括连接至所述180°3dB分离器的90°混合耦合器,所述180°3dB分离器的输出耦合到N=3个端口中的第一端口和第三端口。
3.根据权利要求1所述的波束形成网络,其中,所述BFN包括一对180°3dB分离器,每个180°3dB分离器耦合至所述第一和第二端口中的一个,并且还具有耦合至4x4巴特勒矩阵的两个输出,其中N=4。
4.根据权利要求3所述的波束形成网络,其中,所述BFN还包括插在所述180°3dB分离器中的一个和所述4x4巴特勒矩阵之间的至少一个移相器。
5.根据权利要求3所述的波束形成网络,其中,所述BFN还包括插在所述180°3dB分离器中的每个和所述4x4巴特勒矩阵之间的单独的移相器。
CN201310716957.1A 2008-11-20 2009-11-12 双波束扇区天线与阵列 Active CN103682573B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19984008P 2008-11-20 2008-11-20
US61/199,840 2008-11-20
CN200980151807.2A CN102257674B (zh) 2008-11-20 2009-11-12 双波束扇区天线与阵列

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980151807.2A Division CN102257674B (zh) 2008-11-20 2009-11-12 双波束扇区天线与阵列

Publications (2)

Publication Number Publication Date
CN103682573A CN103682573A (zh) 2014-03-26
CN103682573B true CN103682573B (zh) 2016-08-17

Family

ID=42198713

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980151807.2A Active CN102257674B (zh) 2008-11-20 2009-11-12 双波束扇区天线与阵列
CN201310716957.1A Active CN103682573B (zh) 2008-11-20 2009-11-12 双波束扇区天线与阵列

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200980151807.2A Active CN102257674B (zh) 2008-11-20 2009-11-12 双波束扇区天线与阵列

Country Status (7)

Country Link
US (4) US9831548B2 (zh)
EP (2) EP3686990B1 (zh)
CN (2) CN102257674B (zh)
BR (1) BRPI0921590A2 (zh)
ES (1) ES2747937T3 (zh)
PL (1) PL2359438T3 (zh)
WO (1) WO2010059186A2 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0921590A2 (pt) 2008-11-20 2019-09-24 Andrew Llc antena e arranjo de setores de duplo feixe
US8988274B2 (en) * 2009-11-16 2015-03-24 The Board Of Regents Of The University Of Oklahoma Cylindrical polarimetric phased array radar
KR101665158B1 (ko) * 2010-02-08 2016-10-11 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 조정가능한 빔 특성들을 갖는 안테나
CN102064379B (zh) * 2010-07-29 2013-08-28 摩比天线技术(深圳)有限公司 一种电调天线及基站
WO2012166030A1 (en) * 2011-06-01 2012-12-06 Telefonaktiebolaget L M Ericsson (Publ) A signal combiner, method, computer program and computer program product
US8199851B1 (en) * 2011-07-14 2012-06-12 The Aerospace Corporation Systems and methods for increasing communications bandwidth using non-orthogonal polarizations
CN202474226U (zh) * 2011-11-10 2012-10-03 广东博纬通信科技有限公司 一种用于移动通信基站的单极化十六波束天线
US8912957B2 (en) 2011-12-12 2014-12-16 Qualcomm Incorporated Reconfigurable millimeter wave multibeam antenna array
MX2014006388A (es) * 2011-12-13 2014-07-09 Ericsson Telefon Ab L M Un nodo en una red de comunicacion inalambrica con por lo menos dos columnas de antena.
US9091745B2 (en) * 2012-02-20 2015-07-28 Rockwell Collins, Inc. Optimized two panel AESA for aircraft applications
WO2012095056A2 (zh) * 2012-03-05 2012-07-19 华为技术有限公司 天线系统
CN103329355B (zh) * 2012-03-20 2016-01-20 华为技术有限公司 天线系统、基站系统和通信系统
WO2013143445A1 (zh) * 2012-03-26 2013-10-03 广东博纬通信科技有限公司 一种用于移动通信基站的双极化五波束天线
CN102834972B (zh) 2012-04-20 2015-05-27 华为技术有限公司 天线及基站
EP2846400B1 (en) 2012-05-30 2019-10-09 Huawei Technologies Co., Ltd. Antenna array, antenna device and base station
KR102182322B1 (ko) * 2012-07-31 2020-11-25 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 이용한 통신 방법 및 장치
US9413067B2 (en) * 2013-03-12 2016-08-09 Huawei Technologies Co., Ltd. Simple 2D phase-mode enabled beam-steering means
EP3017506A1 (en) * 2013-07-04 2016-05-11 Telefonaktiebolaget LM Ericsson (publ) A multi-beam antenna arrangement
WO2015006676A1 (en) 2013-07-12 2015-01-15 Andrew Llc Wideband twin beam antenna array
US10033111B2 (en) * 2013-07-12 2018-07-24 Commscope Technologies Llc Wideband twin beam antenna array
US9780457B2 (en) 2013-09-09 2017-10-03 Commscope Technologies Llc Multi-beam antenna with modular luneburg lens and method of lens manufacture
KR20150079039A (ko) * 2013-12-31 2015-07-08 한국전자통신연구원 공전 각운동량 모드들을 동시에 송신 및 수신하는 장치 및 방법
CN103825107A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种双极化双波束贴片阵列天线
US9899747B2 (en) * 2014-02-19 2018-02-20 Huawei Technologies Co., Ltd. Dual vertical beam cellular array
CN105098383B (zh) 2014-05-14 2019-01-25 华为技术有限公司 多波束天线系统及其相位调节方法和双极化天线系统
WO2016004553A1 (zh) * 2014-06-16 2016-01-14 华为技术有限公司 一种无线通信设备
CN107785665B (zh) * 2014-06-30 2020-02-14 华为技术有限公司 一种混合结构双频双波束三列相控阵天线
US9831549B2 (en) 2014-08-15 2017-11-28 Honeywell International Inc. Systems and methods for high power microwave combining and switching
CN107078403B (zh) * 2014-10-20 2021-12-10 株式会社村田制作所 无线通信模块
US9398468B1 (en) * 2014-12-29 2016-07-19 Huawei Technologies Co., Ltd. Cellular array with steerable spotlight beams
CN104600437B (zh) * 2014-12-30 2018-05-01 上海华为技术有限公司 一种交织极化的多波束天线
US10564249B2 (en) * 2015-07-17 2020-02-18 Huawei Technologies Canada Co., Ltd. Waveguide structure for use in direction-of-arrival determination system and associated determination method
US10418716B2 (en) 2015-08-27 2019-09-17 Commscope Technologies Llc Lensed antennas for use in cellular and other communications systems
WO2017085871A1 (ja) 2015-11-20 2017-05-26 日立金属株式会社 給電回路及びアンテナ装置
CN108352620B (zh) * 2015-11-27 2021-10-26 日立金属株式会社 天线装置
CN105390824B (zh) 2015-12-14 2018-06-19 华为技术有限公司 劈裂天线的馈电网络和劈裂天线
CN205319307U (zh) * 2015-12-16 2016-06-15 华为技术有限公司 平面阵列天线及通信设备
WO2017127378A1 (en) 2016-01-19 2017-07-27 Commscope Technologies Llc Multi-beam antennas having lenses formed of a lightweight dielectric material
CN113140915A (zh) 2016-03-25 2021-07-20 康普技术有限责任公司 具有由轻质介电材料形成的透镜和相关介电材料的天线
US11431100B2 (en) 2016-03-25 2022-08-30 Commscope Technologies Llc Antennas having lenses formed of lightweight dielectric materials and related dielectric materials
TWI582451B (zh) * 2016-06-15 2017-05-11 啟碁科技股份有限公司 車用雷達系統
US10581501B2 (en) * 2016-06-16 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Flexible analog architecture for sectorization
CN106159465B (zh) * 2016-09-05 2019-08-02 广东博纬通信科技有限公司 宽频五波束阵列天线
DE202017007455U1 (de) 2016-09-07 2021-08-30 Commscope Technologies Llc Mehrband-Mehrstrahl-Linsenantenne geeignet zur Verwendung in Mobilfunk- und anderen Kommunikationssystemen
WO2018089340A1 (en) 2016-11-10 2018-05-17 Commscope Technologies Llc Lensed base station antennas having azimuth beam width stabilization
CN116826399A (zh) * 2017-01-13 2023-09-29 迈特斯因公司 多波束多输入多输出天线系统和方法
US11018416B2 (en) 2017-02-03 2021-05-25 Commscope Technologies Llc Small cell antennas suitable for MIMO operation
US10530440B2 (en) * 2017-07-18 2020-01-07 Commscope Technologies Llc Small cell antennas suitable for MIMO operation
US11527835B2 (en) 2017-09-15 2022-12-13 Commscope Technologies Llc Methods of preparing a composite dielectric material
US11133586B2 (en) * 2017-10-31 2021-09-28 Communication Components Antenna Inc. Antenna array with ABFN circuitry
WO2020027914A1 (en) 2018-08-03 2020-02-06 Commscope Technologies Llc Multiplexed antennas that sector-split in a first band and operate as mimo antennas in a second band
US11264727B2 (en) 2018-08-24 2022-03-01 Commscope Technologies Llc Lensed base station antennas having staggered vertical arrays for azimuth beam width stabilization
US11539110B2 (en) 2018-10-12 2022-12-27 Commscope Technologies Llc Lensed base station antennas having heat dissipation elements
WO2020096896A1 (en) 2018-11-07 2020-05-14 Commscope Technologies Llc Lensed base station antennas having functional structures that provide a step approximation of a luneberg lens
CN111490356A (zh) 2019-01-28 2020-08-04 康普技术有限责任公司 具有堆叠反射器结构的紧凑全向天线
CN111817026A (zh) 2019-04-10 2020-10-23 康普技术有限责任公司 具有带有频率选择性共享辐射元件的阵列的基站天线
US11019506B2 (en) 2019-06-25 2021-05-25 Commscope Technologies Llc Multi-beam base station antennas having wideband radiating elements
CN110994203B (zh) * 2019-11-25 2022-04-01 广东博纬通信科技有限公司 一种宽频混合多波束阵列天线
CN112952375B (zh) 2019-11-26 2022-07-22 华为技术有限公司 形成波束的方法和装置
CN113629379A (zh) * 2020-05-09 2021-11-09 康普技术有限责任公司 双波束天线阵列
US10911963B1 (en) * 2020-05-11 2021-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Active antenna system
WO2021230922A1 (en) 2020-05-15 2021-11-18 John Mezzalingua Associates, Llc D/B/A Jma Wireless Antenna radiator with pre-configured cloaking to enable dense placement of radiators of multiple bands
CN111555015A (zh) * 2020-06-12 2020-08-18 中国气象局气象探测中心 一种双偏振相控阵天线及双偏振相控阵天气雷达
US11418975B2 (en) 2020-10-14 2022-08-16 Commscope Technologies Llc Base station antennas with sector splitting in the elevation plan based on frequency band
EP4264743A1 (en) 2020-12-21 2023-10-25 John Mezzalingua Associates, LLC Decoupled dipole configuration for enabling enhanced packing density for multiband antennas
US20220326347A1 (en) * 2021-01-22 2022-10-13 Uhnder, Inc. Sparse antenna arrays for automotive radar
WO2022192194A1 (en) 2021-03-08 2022-09-15 John Mezzalingua Associates, LLC Broadband decoupled midband dipole for a dense multiband antenna
SE544556C2 (en) * 2021-07-01 2022-07-12 Radio Innovation Sweden Ab Antenna with lobe shaping
CN113659339B (zh) * 2021-08-23 2023-07-25 深圳市塞防科技有限公司 车载毫米波雷达及其发射天线与接收天线系统、天线系统
WO2023177461A1 (en) * 2022-03-17 2023-09-21 Commscope Technologies Llc Base station antennas having multi-column sub-arrays of radiating elements
US11515652B1 (en) * 2022-05-26 2022-11-29 Isco International, Llc Dual shifter devices and systems for polarization rotation to mitigate interference

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638317A (en) * 1984-06-19 1987-01-20 Westinghouse Electric Corp. Orthogonal beam forming network
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN101051860A (zh) * 2007-05-24 2007-10-10 华为技术有限公司 一种馈电网络装置、天馈子系统和基站系统

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255450A (en) * 1960-06-15 1966-06-07 Sanders Associates Inc Multiple beam antenna system employing multiple directional couplers in the leadin
JPS5873206A (ja) 1981-10-27 1983-05-02 Radio Res Lab マルチビ−ム形成回路
US4524581A (en) * 1984-04-10 1985-06-25 The Halcon Sd Group, Inc. Method for the production of variable amounts of power from syngas
FR2652452B1 (fr) * 1989-09-26 1992-03-20 Europ Agence Spatiale Dispositif d'alimentation d'une antenne a faisceaux multiples.
US5177491A (en) 1990-09-06 1993-01-05 Hazeltine Corporation Navigation receiver with beam asymmetry immunity
US6768456B1 (en) * 1992-09-11 2004-07-27 Ball Aerospace & Technologies Corp. Electronically agile dual beam antenna system
DE69331540T2 (de) * 1992-12-01 2002-07-11 Ntt Mobile Communications Network Inc., Tokio/Tokyo Vorrichtung mit mehrstrahlantenne
US5506589A (en) * 1993-04-09 1996-04-09 Hughes Aircraft Company Monopulse array system with air-stripline multi-port network
CN1092454C (zh) 1994-02-04 2002-10-09 Ntt移动通信网株式会社 一种移动通信系统及其中的无线电信道分配方法
US5581260A (en) 1995-01-27 1996-12-03 Hazeltine Corporation Angular diversity/spaced diversity cellular antennas and methods
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
US5774022A (en) 1996-08-29 1998-06-30 Micron Communications, Inc. Digital clock recovery loop
SE509342C2 (sv) 1997-05-05 1999-01-18 Ericsson Telefon Ab L M Förfarande för användning av lobportar i ett lobformningsnät samt ett antennarrangemang
US6094165A (en) * 1997-07-31 2000-07-25 Nortel Networks Corporation Combined multi-beam and sector coverage antenna array
US6463301B1 (en) 1997-11-17 2002-10-08 Nortel Networks Limited Base stations for use in cellular communications systems
US6127972A (en) * 1998-04-29 2000-10-03 Lucent Technologies Inc. Technique for wireless communications using a multi-sector antenna arrangement
US6236866B1 (en) * 1998-05-15 2001-05-22 Raytheon Company Adaptive antenna pattern control for a multiple access communication system
US6034649A (en) 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
US6311075B1 (en) 1998-11-24 2001-10-30 Northern Telecom Limited Antenna and antenna operation method for a cellular radio communications system
US6167036A (en) 1998-11-24 2000-12-26 Nortel Networks Limited Method and apparatus for a sectored cell of a cellular radio communications system
US6198434B1 (en) 1998-12-17 2001-03-06 Metawave Communications Corporation Dual mode switched beam antenna
US6583760B2 (en) * 1998-12-17 2003-06-24 Metawave Communications Corporation Dual mode switched beam antenna
US6317100B1 (en) * 1999-07-12 2001-11-13 Metawave Communications Corporation Planar antenna array with parasitic elements providing multiple beams of varying widths
TW508966B (en) 1999-08-26 2002-11-01 Metawave Comm Corp Antenna deployment sector cell shaping system and method
US6480524B1 (en) 1999-09-13 2002-11-12 Nortel Networks Limited Multiple beam antenna
US6463303B1 (en) 2000-01-11 2002-10-08 Metawave Communications Corporation Beam forming and switching architecture
US6577879B1 (en) 2000-06-21 2003-06-10 Telefonaktiebolaget Lm Ericsson (Publ) System and method for simultaneous transmission of signals in multiple beams without feeder cable coherency
US6751206B1 (en) 2000-06-29 2004-06-15 Qualcomm Incorporated Method and apparatus for beam switching in a wireless communication system
ATE349080T1 (de) * 2000-07-10 2007-01-15 Andrew Corp Zellulare antenne
SE517758C2 (sv) * 2000-11-14 2002-07-09 Ericsson Telefon Ab L M Dubbelstråleantennapertur
US8504109B2 (en) 2000-12-11 2013-08-06 Apple Inc. Antenna systems with common overhead for CDMA base stations
GB0030932D0 (en) 2000-12-19 2001-01-31 Radiant Networks Plc Antenna apparatus, communications apparatus and method of transmission
US7031754B2 (en) 2001-06-11 2006-04-18 Kathrein-Werke Kg Shapable antenna beams for cellular networks
WO2003043127A2 (en) * 2001-11-14 2003-05-22 Qinetiq Limited Antenna system
EP1444852B1 (en) 2001-11-15 2016-05-25 Metave Asset Holdings, LLC Method for providing cell contouring in a communication network
FR2841343B1 (fr) 2002-06-19 2005-05-27 Tsurf Dispositif et produit-programme pour extraire un horizon geologique et des proprietes associees
US7742788B2 (en) 2002-10-01 2010-06-22 Motorola, Inc. Method and apparatus for using switched multibeam antennas in a multiple access communication system
US7102571B2 (en) * 2002-11-08 2006-09-05 Kvh Industries, Inc. Offset stacked patch antenna and method
US7792547B1 (en) 2003-02-05 2010-09-07 Nortel Networks Limited Downlink and uplink array and beamforming arrangement for wireless communication networks
US20040235528A1 (en) 2003-05-21 2004-11-25 Korisch Ilya A. Overlapped subarray antenna feed network for wireless communication system phased array antenna
WO2004107499A2 (en) 2003-05-22 2004-12-09 Paratek Microwave Inc. Wireless local area network antenna system and method of use therefore
US7817096B2 (en) * 2003-06-16 2010-10-19 Andrew Llc Cellular antenna and systems and methods therefor
US7038621B2 (en) 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
CN100488091C (zh) 2003-10-29 2009-05-13 中兴通讯股份有限公司 应用于cdma系统中的固定波束成形装置及其方法
WO2005053182A1 (fr) 2003-11-25 2005-06-09 Zte Corporation Procede et appareil pour la mise en forme de faisceaux dans un systeme de communication a acces multiple par code de repartition
WO2006004463A1 (en) 2004-06-30 2006-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Antenna beam shape optimization
JP2006066993A (ja) 2004-08-24 2006-03-09 Sony Corp マルチビームアンテナ
US7098848B2 (en) * 2004-10-12 2006-08-29 The Aerospace Corporation Phased array antenna intermodulation suppression beam smearing method
US7317427B2 (en) * 2005-01-25 2008-01-08 Raytheon Company Adaptive array
CN2916958Y (zh) 2005-12-10 2007-06-27 烟台高盈科技有限公司 90°双极化板状基站天线
DE602006021344D1 (de) 2006-01-04 2011-05-26 Ericsson Telefon Ab L M Gruppenantennenanordnung
CA2540218A1 (en) 2006-03-17 2007-09-17 Hafedh Trigui Asymmetric beams for spectrum efficiency
AU2007234730A1 (en) * 2006-04-06 2007-10-18 Andrew Llc A cellular antenna and systems and methods therefor
SE529885C2 (sv) * 2006-05-22 2007-12-18 Powerwave Technologies Sweden Dubbelbandsantennarrangemang
WO2009052218A1 (en) * 2007-10-16 2009-04-23 Powerwave Technologies, Inc. Dual beam sector antenna array with low loss beam forming network
CN201126857Y (zh) 2007-12-20 2008-10-01 京信通信系统(中国)有限公司 多系统共体天线
US8063822B2 (en) * 2008-06-25 2011-11-22 Rockstar Bidco L.P. Antenna system
BRPI0921590A2 (pt) 2008-11-20 2019-09-24 Andrew Llc antena e arranjo de setores de duplo feixe
KR101665158B1 (ko) * 2010-02-08 2016-10-11 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 조정가능한 빔 특성들을 갖는 안테나
EP2846400B1 (en) * 2012-05-30 2019-10-09 Huawei Technologies Co., Ltd. Antenna array, antenna device and base station
US9077083B1 (en) * 2012-08-01 2015-07-07 Ball Aerospace & Technologies Corp. Dual-polarized array antenna
US10033111B2 (en) * 2013-07-12 2018-07-24 Commscope Technologies Llc Wideband twin beam antenna array
US11855680B2 (en) * 2013-09-06 2023-12-26 John Howard Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage
US20150333884A1 (en) * 2014-05-08 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Beam Forming Using a Two-Dimensional Antenna Arrangement
US10263331B2 (en) * 2014-10-06 2019-04-16 Kymeta Corporation Device, system and method to mitigate side lobes with an antenna array
CN108352620B (zh) * 2015-11-27 2021-10-26 日立金属株式会社 天线装置
WO2017176372A1 (en) * 2016-04-06 2017-10-12 Commscope Technologies Llc Antenna system with frequency dependent power distribution to radiating elements
WO2019116648A1 (ja) * 2017-12-11 2019-06-20 ソニーセミコンダクタソリューションズ株式会社 バトラーマトリクス回路、フェーズドアレイアンテナ、フロントエンドモジュール及び無線通信端末
CN113629379A (zh) * 2020-05-09 2021-11-09 康普技术有限责任公司 双波束天线阵列
US20240162599A1 (en) * 2022-11-11 2024-05-16 Commscope Technologies Llc Base station antennas having f-style arrays that generate antenna beams having narrowed azimuth beamwidths

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638317A (en) * 1984-06-19 1987-01-20 Westinghouse Electric Corp. Orthogonal beam forming network
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN101051860A (zh) * 2007-05-24 2007-10-10 华为技术有限公司 一种馈电网络装置、天馈子系统和基站系统

Also Published As

Publication number Publication date
US20110205119A1 (en) 2011-08-25
US11469497B2 (en) 2022-10-11
US20180062258A1 (en) 2018-03-01
PL2359438T3 (pl) 2019-12-31
WO2010059186A2 (en) 2010-05-27
BRPI0921590A2 (pt) 2019-09-24
US20230018326A1 (en) 2023-01-19
WO2010059186A3 (en) 2010-08-26
US9831548B2 (en) 2017-11-28
EP3686990B1 (en) 2023-06-14
EP2359438A2 (en) 2011-08-24
EP2359438B1 (en) 2019-07-17
CN103682573A (zh) 2014-03-26
US20200381821A1 (en) 2020-12-03
CN102257674A (zh) 2011-11-23
ES2747937T3 (es) 2020-03-12
EP3686990A3 (en) 2020-11-04
EP2359438A4 (en) 2014-07-23
CN102257674B (zh) 2014-03-12
EP3686990A2 (en) 2020-07-29
US10777885B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
CN103682573B (zh) 双波束扇区天线与阵列
US8237619B2 (en) Dual beam sector antenna array with low loss beam forming network
JP5584783B2 (ja) 可変ビーム特性を有するアンテナ
CN101320846B (zh) 基片集成波导多波束智能天线
US6608591B2 (en) Dual-beam antenna aperture
CN106602265A (zh) 波束成形网络及其输入结构、输入输出方法及三波束天线
CN106571537A (zh) 一种双极化二波束低副瓣快速跌落矩形赋形阵列天线
US11411301B2 (en) Compact multiband feed for small cell base station antennas
CN201266675Y (zh) 低损耗高增益多波束智能天线
CN116780187A (zh) 具有提供改善的列内和/或相邻跨列隔离的校准电路连接的基站天线
US20230395974A1 (en) Mixed element beam forming antenna
CN113644955A (zh) 一种星载多馈源合成多波束天线波束优化设计方法
US12040558B1 (en) Ultrawideband beamforming networks
CN117039426A (zh) 一种星载多波束天线及馈电网络
US20240128638A1 (en) Twin-beam antennas having hybrid couplers
WO2023154082A2 (en) Compact mimo base station antennas that generate antenna beams having narrow azimuth beamwidths
WO2019184008A1 (zh) 一种宽频九波束阵列天线
CN118213760A (zh) 一种大射频通道间距相控阵天线及电子设备
CN115149262A (zh) 一种多波束环阵天线
CN117981174A (zh) 四重极化分集天线系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: North Carolina

Applicant after: Kang Pu science and technology limited Company

Address before: North Carolina

Applicant before: Andrew LLC

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: ANDREW LLC TO: KANGPU TECHNOLOGY LLC

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210806

Address after: No. 68, Suhong West Road, Suzhou Industrial Park, Suzhou, Jiangsu

Patentee after: CommScope communication technology (China) Co.,Ltd.

Address before: North Carolina, USA

Patentee before: CommScope Technologies LLC

TR01 Transfer of patent right