CN111817026A - 具有带有频率选择性共享辐射元件的阵列的基站天线 - Google Patents

具有带有频率选择性共享辐射元件的阵列的基站天线 Download PDF

Info

Publication number
CN111817026A
CN111817026A CN201910282492.0A CN201910282492A CN111817026A CN 111817026 A CN111817026 A CN 111817026A CN 201910282492 A CN201910282492 A CN 201910282492A CN 111817026 A CN111817026 A CN 111817026A
Authority
CN
China
Prior art keywords
radiating elements
array
base station
port
station antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910282492.0A
Other languages
English (en)
Inventor
李昀喆
李曰民
许国龙
吴博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Original Assignee
Commscope Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commscope Technologies LLC filed Critical Commscope Technologies LLC
Priority to CN201910282492.0A priority Critical patent/CN111817026A/zh
Priority to US16/829,152 priority patent/US11031678B2/en
Priority to EP20168939.5A priority patent/EP3723194B1/en
Publication of CN111817026A publication Critical patent/CN111817026A/zh
Priority to US17/307,209 priority patent/US11283160B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了具有带有频率选择性共享辐射元件的阵列的基站天线。基站天线包括通过第一馈送网络耦合到第一RF端口的第一辐射元件阵列、通过第二馈送网络耦合到第二RF端口的第二辐射元件阵列,以及第一电路元件和第二电路元件。第一电路元件具有耦合到第一馈送网络的第一端口、耦合到第二电路元件的第一端口的第二端口和耦合到第一辐射元件阵列的第一辐射元件的第三端口。第二电路元件具有耦合到第二辐射元件阵列的第一辐射元件的第二端口和耦合到第二馈送网络的第三端口。

Description

具有带有频率选择性共享辐射元件的阵列的基站天线
技术领域
本发明涉及无线电通信,并且更具体地涉及用于蜂窝通信的基站天线。
背景技术
蜂窝通信系统在本领域中是众所周知的。在典型的蜂窝通信系统中,地理地区被划分为一系列被称为“小区”的区域,并且每个小区由基站服务。基站可以包括基带装备、无线电装置和基站天线,它们被配置为提供与在整个小区中定位的订户的双向射频(“RF”)通信。在许多情况下,小区可以被划分为多个“扇区”,并且不同的基站天线向扇区中的每个扇区提供覆盖。天线常常安装在塔上,由每个天线生成的辐射波束(“天线波束”)向外指向,以服务相应的扇区。通常,基站天线包括辐射元件的一个或多个相控阵列,当天线被安装使用时,辐射元件布置在一个或多个垂直列中。在本文中,“垂直”是指垂直于由地平线定义的水平面的方向。还将参考方位角平面(它是将基站天线一分为二的水平平面),并参考仰角平面(它是沿着天线的视轴(boresight)指向方向延伸的、垂直于方位角平面的平面)。
常见的基站配置是“三扇区”配置,其中小区在方位角平面中被划分为三个120°扇区。为每个扇区提供基站天线。在三扇区配置中,由每个基站天线生成的天线波束通常在方位角平面中具有大约65°的半功率波束宽度(“HPBW”),使得每个天线波束在整个120°扇区中提供良好的覆盖。这些基站天线中的三个将在方位角平面上提供全360°覆盖。通常,每个基站天线将包括辐射元件的所谓“线性阵列”,该“线性阵列”包括被布置在垂直延伸的列中的多个辐射元件。每个辐射元件可以具有大致65°的方位角HPBW,使得由线性阵列生成的天线波束在方位角平面中将具有大约65°的HPBW。通过提供沿着仰角平面延伸的辐射元件列,天线波束在仰角平面中的HPBW可以缩窄到显著小于65°,缩窄量随着垂直方向上的列的长度而增加。
随着对蜂窝服务的需求增长,蜂窝运营商已经升级他们的网络以支持新一代服务。当引入这些新服务时,通常必须维持现有的“遗留”服务以支持遗留移动设备。因此,随着新服务的引入,必须部署新的蜂窝基站或者必须升级现有的蜂窝基站以支持新服务。为了降低成本,许多蜂窝基站支持两代、三代、四代或更多代的蜂窝服务。但是,由于本地分区条例和/或重量和风荷载限制,常常存在关于能够在给定基站处部署的基站天线的数量的限制。为了减少天线的数量,许多运营商部署了在多个频带中进行通信的天线,以支持多种不同的蜂窝服务。
对包括辐射元件的两个线性阵列的基站天线存在相当大的兴趣,所述辐射元件用于在1427-2690MHz频带的一些或全部中提供服务,该频带常常被称为“中频带”频率范围。辐射元件的这两个线性阵列通常以并排方式安装。图1是常规基站天线10的示意性前视图,基站天线10包括辐射元件16的第一和第二列12-1、12-2。每个辐射元件16在图1(和本文中的其它图)中被描绘为“X”,以示出辐射元件是双极化交叉偶极子辐射元件。辐射元件16的每一列12-1、12-2形成辐射元件16的相应线性阵列14-1、14-2。具有图1中所示的配置的天线可以用于各种应用,包括4xMIMO(即,多输入多输出)应用,或者用作支持1427-2690MHz频带内的两个不同子频带中的蜂窝服务的多频带天线(例如,线性阵列14-1、14-2可以在例如1427-1518MHz、1710-1880MHz、1850-1995MHz、1695-2180MHz、2300-2400MHz、2496-2690MHz和2300-2690MHz频率子频带当中的不同的非重叠的频率子频带中操作)。在一些情况下,线性阵列14-1、14-2可以是被包括在基站天线10中的仅有的阵列,而在其它情况下,在其它频带(诸如(从617-960MHz延伸的)低频带频率范围或高频带频率范围(可以包括3.4-3.8GHz和/或5.1-5.8GHz频带)中的一些或全部)中操作的辐射元件的一个或多个附加阵列(未示出)也可以被包括在天线10中。
应当注意的是,在本文中,当提供多个相同或相似的元件时,可以使用两部分标号在附图中标记它们(例如,阵列14-1、14-2)。这些元件在本文中可以通过它们的完整标号(例如,阵列14-2)单独地指代,并且可以通过它们的标号的第一部分(例如,阵列14)集体地指代。
附图说明
图1是包括辐射元件的两个线性阵列的常规基站天线的示意性前视图。
图2A-2C是若干常规基站天线的示意性前视图,这些常规基站天线具有双极化交叉偶极子辐射元件的阵列,其具有增加的水平孔径,这些增加的水平孔径生成具有减小的方位角HPBW的天线波束。
图3A是根据本发明实施例的基站天线的示意性前视图。
图3B是图示用于图3A的基站天线的馈送网络的示意性框图。
图4A是可以用于实现图3A的基站天线的第一电路元件和/或第二电路元件中的任一个或两者的基于印刷电路板的双工器的前视图。
图4B是示出图4A的双工器的模拟响应的曲线图。
图5A是可以用于实现图3A的基站天线的第二电路元件的基于印刷电路板的功率分割器的前视图,该功率分割器具有在其一个输出端处的低通滤波器。
图5B是示出图5A的功率分割器/低通滤波器电路的模拟响应的曲线图。
图6A是,与针对辐射元件的可比较的单列线性阵列的方位角HPBW相比,针对使用图4A的双工器作为第一电路元件并使用图5A的分路器/低通滤波器电路作为第二电路元件来实现的图3A-3B的基站天线的辐射元件的第二阵列,作为频率的函数的模拟方位角HPBW的曲线图。
图6B是,与针对辐射元件的可比较的单列线性阵列的模拟增益相比,针对使用图4A的双工器作为第一电路元件并使用图5A的分路器/低通滤波器电路作为第二电路元件来实现的图3A-3B的基站天线的辐射元件的第二阵列,作为频率的函数的模拟增益的曲线图。
图7是,与针对辐射元件的可比较的单列线性阵列的方位角HPBW相比,针对使用图4A的双工器作为第一电路元件和第二电路元件来实现的图3A-3B的基站天线的辐射元件的第二阵列,作为频率的函数的模拟方位角HPBW的曲线图。
图8A是根据本发明的进一步实施例的基站天线的示意性前视图。
图8B是图示用于图8A的基站天线的馈送网络的示意性框图。
图9A是根据本发明的进一步实施例的基站天线的示意性前视图,该基站天线包括三列辐射元件。
图9B是图示用于图9A的基站天线的馈送网络的示意性框图。
图10是图示根据本发明的更进一步的实施例的基站天线的示意性框图。
具体实施方式
设计基站天线的一个挑战是辐射元件的方位角波束宽度趋于随频率而变化,其中在辐射元件以较低频率操作时方位角波束宽度较宽,并且当辐射元件以较高频率操作时方位角波束宽度较窄。对于诸如传统低频带频率范围(690-960MHz)之类的操作频率范围,这不是一个重大的问题,因为操作频率范围并不是那么宽。在设计具有可以在传统中频带操作频率范围(1695-2690MHz)的整个范围内操作的线性阵列的基站天线时遇到更多困难,但是最终开发出了合适的设计。但是,最近,1427-1518MHz频带已经被开放用于蜂窝服务,因此现在需要具有可以跨整个1427-2690MHz频带操作的辐射元件的阵列的基站天线。遗憾的是,设计将在该整个频率范围上操作并且在操作频率范围的下端和上端二者处都具有合适的方位角波束宽度的辐射元件的阵列是一项重大的挑战。
根据本发明的实施例,提供了具有辐射元件的两个或更多个阵列的基站天线,这些阵列共享一个或多个辐射元件。(一个或多个)共享的辐射元件可以被用于减小阵列中的一个或两个阵列的方位角波束宽度,其中方位波束宽度的减小量取决于频率。具体而言,方位角波束宽度的减小在操作频带的下部可以相对大,并且在操作频带的上部可以相对小(或不存在)。因此,(一个或多个)共享的辐射元件可以被用于抵消方位角波束宽度随频率降低而增加的自然趋势,从而允许天线波束随频率具有较小的变化。因此,根据本发明实施例的基站天线可以包括一个或多个线性阵列,这些阵列可以被用于在整个1427-2690MHz频带的任何部分上支持蜂窝服务,同时跨整个频带具有合适的方位角波束宽度。而且,虽然下面的公开内容将聚焦于具有在1427-2690MHz频带(或其部分)中操作的中频带阵列的基站天线,但是将认识到的是,可以在例如低频带或高频带阵列中使用这些相同的技术,以扩展这些阵列的操作频带和/或减少方位角波束宽度在操作频率范围上的变化量。
根据本发明实施例的基站天线可以与相邻的第二线性阵列共享第一线性阵列的辐射元件。共享的辐射元件相对于第二线性阵列水平偏移,并且因此可以被用于缩窄第二线性阵列的方位角波束宽度。共享的辐射元件可以通过依赖频率的电路元件(诸如双工器)耦合到用于第二线性阵列的馈送网络,使得共享的辐射元件将仅针对选定(通常较低)频率子频带中的RF信号对由第二阵列形成的天线波束实质地产生贡献。通过与第二阵列共享第一阵列的辐射元件中的一个或多个辐射元件(但仅针对某些频率子频带),由第二阵列形成的天线波束的方位角波束宽度可以较少地随频率变化,并且因此基站天线可以跨整个1427-2690MHz(或其它)频带形成具有合适形状的天线波束。
在本发明的一些实施例中,提供了基站天线,该基站天线包括:通过第一馈送网络耦合到第一RF端口的第一辐射元件阵列,通过第二馈送网络耦合到第二RF端口的第二辐射元件阵列,以及第一电路元件和第二电路元件。第一电路元件具有耦合到第一馈送网络的第一端口、耦合到第二电路元件的第一端口的第二端口,以及耦合到第一辐射元件阵列中的第一辐射元件的第三端口。第二电路元件具有耦合到第二辐射元件阵列中的第一辐射元件的第二端口和耦合到第二馈送网络的第三端口。第一电路元件可以包括例如双工器。第二电路元件可以包括例如双工器或者低通或带通滤波器。
在其它实施例中,提供了基站天线,该基站天线包括:通过第一馈送网络耦合到第一RF端口的第一多个辐射元件,其中第一多个辐射元件布置在第一列中并形成第一辐射元件阵列,以及通过第二馈送网络耦合到第二RF端口的第二多个辐射元件,其中第二多个辐射元件布置在第二列中。第一列中的辐射元件中的第一辐射元件还通过第二馈送网络耦合到第二RF端口,并且第二列中的辐射元件以及第一列中的辐射元件中的第一辐射元件包括第二辐射元件阵列。上述基站天线中的每一个可以包括第二辐射元件阵列,该第二辐射元件阵列包括第一列辐射元件以及一个或多个水平偏移的“共享”辐射元件,这些“共享”辐射元件是第二辐射元件阵列的一部分并且是第一辐射元件阵列的一部分。
先前已经建议了包括天线阵列的基站天线,这些天线阵列包括辐射元件的线性阵列加上从该线性阵列水平偏移的一个或多个附加辐射元件。这种阵列已经典型地用于缩窄天线的宽度,因为水平偏移的辐射元件用于缩窄阵列的方位角波束宽度,从而允许使用更小的辐射元件,同时仍然实现例如65°方位角HPBW。图2A-2C是三个基站天线的示意图,每个基站天线包括两个辐射元件阵列,其中每个阵列包括辐射元件的线性阵列加上水平偏移的辐射元件。
首先参考图2A,描绘了常规的基站天线30,基站天线30包括辐射元件36的第一和第二列32-1、32-2。除了(1)基站天线30包括更少的辐射元件36(因此具有更宽的仰角HPBW)和(2)辐射元件36被不同地分组以形成两个阵列34-1、34-2之外,基站天线30可以与图1的基站天线10完全相同。为了帮助突出显示哪些辐射元件36形成每个阵列34-1、34-2,已经在每个阵列34周围绘制了多边形。第一阵列34-1包括左侧列32-1中的底部五个辐射元件36以及右侧列32-2中的底部辐射元件36,而第二阵列34-2包括右侧列32-2中的顶部五个辐射元件36以及左侧列32-1中的顶部辐射元件36。因此,第一阵列34-1具有L形,而第二阵列34-2具有上下倒置的L形。由于每个阵列34-1、34-2分别包括位于相对的列32-2、32-1中的辐射元件36,因此每个阵列34-1、34-2的水平孔径增加,方位角波束宽度相应减小。但是,这种设计的一个缺点是它需要将额外的辐射元件36添加到每一列32-1、32-2(以允许每个阵列的一行包括两个辐射元件36),这增加了天线30的长度和成本。而没有提供仰角波束宽度的任何减小和/或天线30的增益的任何明显增加。
图2B是常规基站天线40的示意性前视图,常规基站天线40增加了水平孔径而无需在每列中添加额外的辐射元件。基站天线40包括辐射元件46的两个列42-1、42-2,它们形成第一和第二所谓的“Y形”阵列44-1、44-2(注意,每个阵列44离真正的“Y形”少一个辐射元件)。除了基站天线40又包括更少的辐射元件46并且每一列42-1、42-2中的底部辐射元件46被切换成为由相对的列42-1、42-2中的其余辐射元件46形成的阵列44的一部分之外,基站天线40类似于图1的基站天线10。由于每个阵列44-1、44-2包括位于相对的列42-1、42-2中的辐射元件46,因此每个阵列44-1、44-2的水平孔径增加,方位角波束宽度相应减小。而且,基站天线40不包括任何行中的两个辐射元件46,因此不会遭受与基站天线30相关联的成本和尺寸缺点的影响。但是,基站天线40的设计的缺点是每个阵列44-1、44-2中的底部两个辐射元件46之间的物理距离增加(因为物理距离是沿着对角线取的,而不是简单地是两个辐射元件46之间的垂直距离),并且这导致由第一和第二阵列44-1、44-2形成的结果辐射图案中的轴外栅瓣。这些栅瓣降低了天线40的增益,并且还可能导致与相邻基站的干扰。
图2C是另一个常规基站天线50的示意性前视图,常规基站天线50具有带增加的水平孔径的阵列。在授予
Figure BDA0002022127320000071
的美国专利No.8,416,142中公开了基站天线50。如图2C中所示,基站天线50包括双极化交叉偶极子辐射元件56的第一和第二列52-1、52-2。左侧列52-1中的辐射元件56是第一阵列54的一部分,并且右侧列52-2中的辐射元件56是第二阵列54-2的一部分。天线50还包括第一和第二中心定位的辐射元件58-1、58-2,它们的设计可以与辐射元件56完全相同。每个中心定位的辐射元件58-1、58-2的一个偶极子辐射器是第一阵列54-1的一部分,并且每个中心定位的辐射元件58-1、58-2的另一个偶极子辐射器是第二阵列54-2的一部分。因此,第一阵列54-1包括用于每个极化的六个偶极子辐射器(即,包括在第一列52-1中的辐射元件中的每个极化处的五个偶极子辐射器,中心定位的辐射元件58-1的+45°偶极子辐射器,以及中心定位的辐射元件58-2的-45°偶极子辐射器)。同样,第二阵列54-2包括用于每个极化的六个偶极辐射器(即,包括在第二列52-2中的辐射元件中的每个极化处的五个偶极子辐射器、中心定位的辐射元件58-1的-45°偶极子辐射器,以及中心定位的辐射元件58-2的+45°偶极子辐射器)。中心定位的辐射元件58-1、58-2用于通过增加每个阵列54-1、54-2的水平孔径使方位角波束宽度缩窄,从而允许减小各个辐射元件56、58的尺寸。
现在将参考其余的图更详细地讨论本发明的实施例。
图3A是根据本发明实施例的基站天线100的示意性前视图。图3B是图示用于图3A的基站天线100的馈送网络的示意性框图。
如图3A中所示,基站天线100包括多个辐射元件114、116,辐射元件114、116安装成从反射器110向前延伸。基站天线100还包括第一至第四RF端口120-1至120-4。辐射元件114、116被安装以形成辐射元件120的第一和第二垂直延伸的列130-1、130-2。辐射元件114-1至114-9以及辐射元件116-12和116-13形成辐射元件的第一阵列140-1(阵列140-1在图3B中的虚线框中示出)。辐射元件116-1至116-13形成辐射元件的第二阵列140-2(阵列140-2在图3B中的实线框中示出)。如图3A中所示,第一阵列140-1是垂直延伸的辐射元件线性阵列,而第二阵列140-2是辐射元件的大致“L形”阵列。如图3A中所示,辐射元件116-12和116-13是共享的辐射元件,它们是第一阵列140-1和第二阵列140-2二者的一部分。
每个辐射元件114、116可以包括例如双极化倾斜-45°/+45°交叉偶极子辐射元件。但是,本发明的实施例不限于这种辐射元件,并且将认识到的是,其它辐射元件(诸如单极化偶极子辐射元件、单极化和/或双极化贴片辐射元件、盒偶极子辐射元件、环路辐射元件等)可以代替图3A中使用大X示意性示出的双极化倾斜-45°/45°交叉偶极子辐射元件114、116使用(辐射元件114使用虚线X示出,以更清楚地区分两种不同类型的辐射元件)。还将认识到的是,可以使用相同类型的辐射元件来实现辐射元件114和辐射元件116,或者可以使用第一种类型的辐射元件来实现辐射元件114,并且可以使用第二种不同类型的辐射元件来实现辐射元件116。在一些实施例中,辐射元件116可以被设计为在第一频率范围(例如,1427-2690MHz频带)中操作,而辐射元件114可以被设计为仅在第一频率范围的一部分中操作,该部分位于第一频率范围的较高端处(例如,1695-2690MHz频带)。在此类实施例中,(与辐射元件116相比)有可能使用更小、更便宜的辐射元件来实现辐射元件114。
虽然总共九个辐射元件114和总共十三个辐射元件116在图3A中示出,但是将认识到的是,任何适当数量的辐射元件114、116可以包括在基站天线100中。而且,第一和第二列130-1、130-2不需要包括相同数量的辐射元件,但是在许多情况下,两列130包括相同数量的辐射元件会是有利的。可以选择包括在每列130中的辐射元件114、116的数量,例如,以满足指定的增益和/或仰角波束宽度要求。而且,虽然基站天线100被示为具有辐射元件的总共两个阵列140,但是将认识到的是,可以在天线100上包括附加的辐射元件阵列(未示出)。例如,在一些实施例中,可以包括低频带辐射元件的一个或多个阵列、高频带辐射元件的一个或多个阵列,和/或中频带辐射元件的一个或多个附加阵列。
在图3A中,基站天线100被示为包括两个共享的辐射元件116-12、116-13,它们位于辐射元件的第一列130-1的底部。但是将认识到的是,本发明的实施例不限于此。在其它实施例中,单个共享的辐射元件或多于两个共享的辐射元件可以包括在天线100中。例如,可能仅第一列130-1中的底部辐射元件116-12是共享的辐射元件。同样,不是共享位于列130底部的一个或多个辐射元件,而是可以在第一和第二阵列140-1、140-2之间共享位于列130顶部和/或列130的中间部分的一个或多个辐射元件116。当设置多个共享的辐射元件时,这些共享的辐射元件可以在列130中彼此相邻或可以不相邻。
图3B是图3A的基站天线100的示意性框图,示意性框图图示了基站天线100的馈送网络150中的两个。如图3B中所示,馈送网络150-1被用于在第一RF端口120-1与包括在第一阵列140-1中的辐射元件114-1至114-9和116-12和116-13之间传递RF信号,而馈送网络150-2被用于在第二RF端口120-2与包括在第二阵列140-2中的辐射元件116-1至116-13之间传递RF信号。在每种情况下,RF信号被传递到辐射元件114、116的-45°辐射器。在图3B中,仅示出了用于-45°RF端口120-1、120-2的馈送网络150-1、150-2,并且用于+45°RF端口120-3、120-4的馈送网络150被省略,以简化绘图。将认识到的是,除了用于+45°RF端口120-3、120-4的馈送网络150连接到阵列140-1、140-2中的辐射元件114、116的+45°偶极子辐射器、而馈送网络150-1、150-2连接到辐射元件114、116的-45°偶极子辐射器之外,用于+45°RF端口120-3、120-4的馈送网络150可以分别与馈送网络150-1、150-2完全相同。
在下面的描述中,移相器152和其它电路元件的各种端口可以被称为“输入端口”或“输出端口”。“输入”和“输出”标签是在假设要由基站天线100发送的RF信号(“发送RF信号”)正在传递通过馈送网络150之一的情况下做出的。将认识到的是,由于传递通过基站天线100的RF信号的双向性质,对于由基站天线100接收的RF信号,每个“输出端口”将作为输入端口操作,并且每个“输入端口”将作为输出端口操作。
第一馈送网络150-1包括第一移相器组件152-1,第一移相器组件152-1具有耦合到第一RF端口120-1的输入端以及五个输出端154。每个移相器组件152可以包括功率分路器/组合器和移相器(未分开示出)。功率分路器/组合器可以是将RF发送信号划分为多个子分量以及将接收到的RF信号的多个子分量组合成单个组合的RF信号的部件。移相器可以是将相位锥度赋予发送RF信号和接收RF信号的各个分量的部件。移相器可以是可调节的移相器,其可以被远程控制以改变施加到发送和接收RF信号的相位锥度的量,以便向天线波束赋予期望量的电下倾角(downtilt)。合适的移相器组件在例如美国专利公开No.2017/0365923中公开,其全部内容通过引用并入本文。
在RF端口120-1处输入的RF信号在移相器组件152-1的输入端口处进入移相器组件152-1,并且被集成到移相器组件152-1中的功率分路器/组合器划分为五个子分量。移相器组件152-1可以被调节以将相位锥度应用于RF信号的五个子分量,以便将期望量的电下倾角应用于由第一阵列140-1形成的天线波束的仰角。移相器组件152-1的每个输出端154耦合到辐射元件114、116的子阵列112。具体而言,第一输出端154耦合到包括辐射元件114-1至114-3的第一子阵列112-1,第二输出端154耦合到包括辐射元件114-4和114-5的第二子阵列112-2,第三输出端154耦合到包括辐射元件114-6和114-7的第三子阵列112-3,第四输出端154耦合到包括辐射元件114-8和114-9的第四子阵列112-4,并且第五输出端154耦合到包括辐射元件116-12和116-13的第五子阵列112-5。如图3B中进一步所示,移相器组件150-1的第五输出端154通过第一电路元件160耦合到第五子阵列112-5。第一电路元件160可以是频率选择性设备,诸如例如双工器或其它多路复用器。
第二馈送网络150-2包括第二移相器组件152-2,第二移相器组件152-2具有耦合到第二RF端口120-2的输入端和五个输出端154。在RF端口120-2处输入的RF信号在第二移相器组件152-2的输入端口处进入移相器组件152-2,并且通过集成到移相器组件152-2中的功率分路器/组合器划分为五个子分量。移相器组件152-2可以被调节以便将相位锥度应用于RF信号的五个子分量,以便电子地下倾由第二阵列140-2形成的天线波束的仰角。移相器组件152-2的每个输出端154耦合到辐射元件116的相应子阵列112。具体而言,第一输出端154耦合到包括辐射元件116-1至116-3的第六子阵列112-6,第二输出端154耦合到包括辐射元件116-4和116-5的第七子阵列112-7,第三输出端154耦合到包括辐射元件116-6和116-7的第八子阵列112-8,第四输出端154耦合到包括辐射元件116-8和116-9的第九子阵列112-9,并且第十输出端154耦合到包括辐射元件116-10和116-11的第十子阵列112-10并且还耦合到包括辐射元件116-12和116-13的第五子阵列112-5。如图3B中所示,移相器组件152-2的第五输出端154通过第二电路元件170耦合到第五和第十子阵列112-5、112-10。第二电路元件170也可以是频率选择性设备,诸如例如双工器或其它多路复用器或功率分割器,其在其输出支路之一上具有诸如低通或带通滤波器之类的滤波器。
第一电路元件160和第二电路元件170可以被配置为允许辐射元件116-12和116-13以频率选择性方式由第一和第二阵列140-1、140-2共享。在一个示例实施例中,第一电路元件160可以是具有第一和第二频率选择性端口162-1、162-2以及“公共”端口162-3的双工器。如上面所讨论的,基站天线100的第一阵列140-1被设计为在1695-2690MHz频带中发送和接收RF信号,而第二阵列140-2被设计为在1427-1518MHz和1695-2690MHz频带内发送和接收RF信号。因此,双工器160的第一频率选择性端口162-1被配置为传递1695-2690MHz频带中的RF信号,但是阻挡1427-1518MHz频带中的RF信号。双工器160的第二频率选择性端口162-2被配置为传递1427-1518MHz频带中的RF信号,但是阻挡1695-2690MHz频带中的RF信号。“公共”端口162-3被配置为传递1427-1518MHz和1695-2690MHz频带二者中的RF信号。
在一些实施例中,第二电路元件170同样可以被实现为具有第一和第二频率选择性端口172-1、172-2以及“公共”端口172-3的双工器。双工器170的第一频率选择性端口172-1被配置为传递1427-1518MHz频带中的RF信号,但是阻挡1695-2690MHz频带中的RF信号。双工器170的第二频率选择性端口172-2被配置为传递1695-2690MHz频带中的RF信号,但是阻挡1427-1518MHz频带的RF信号。双工器170的“公共”端口172-3被配置为传递1427-1518MHz和1695-2690MHz频带二者中的RF信号。
基站天线100可以如下操作。在1695-2690MHz频带内的第一RF信号可以在RF端口120-1处被输入。第一RF信号由移相器组件152-1划分为五个子分量并移相。RF信号的第一至第四子分量被传递到相应的子阵列112-1至112-4,其中子分量被辐射元件114-1至114-9辐射。第五子分量被传递到双工器160的端口162-1。由于子分量在端口162-1的1695-2690MHz“通带”内,因此第五子分量将传递到双工器160的公共端口162-3并从那里传递到第五子阵列112-5,在那里RF信号的第五子分量由辐射元件116-12和116-13辐射。由于第五子分量不在端口162-2的1427-1518MHz“通带”内,因此第五子分量将不会传递到第二电路元件170或传递到辐射元件的第二列130-2中的任何辐射元件。因此,在RF端口120-1处输入的第一RF信号被传递到辐射元件的第一阵列140-1,该第一阵列140-1包括辐射元件114-1至114-9以及辐射元件116-12和116-13。第一阵列140-1是辐射元件的线性阵列,并且除了引起小的插入损耗之外,双工器160对在第一RF端口120-1处进入的RF信号没有影响。
第二RF信号可以在RF端口120-2处被输入。如上面所讨论的,第二RF信号可以或者在1427-1518MHz频带内或者在1695-2669MHz频带内。第二RF信号被移相器组件152-2划分为五个子分量并移相。第二RF信号的第一至第四子分量被传递到相应的子阵列112-6至112-9,在那里子分量由辐射元件116-1至116-9辐射。第五子分量被传递到双工器170的公共端口172-3。双工器170的操作将取决于第二RF信号的频率而变化。
具体而言,如果在RF端口120-2处输入的第二RF信号位于1695-2690MHz频带中,那么这个信号的第五子分量将传递到双工器170的频率选择性端口172-2,其具有1695-2690MHz的通带。因此,第二RF信号的第五子分量将传递通过双工器170到达辐射元件的第十子阵列112-10(辐射元件116-10和116-11)。由于子分量不在频率选择性端口172-1的1427-1518MHz通带内,因此第五子分量将不会传递到第一双工器160。因此,在RF端口120-2处输入的在1695-2690MHz频带内的信号仅由第二阵列140-2的辐射元件116-1至116-11辐射,并且因此第二阵列140-2将作为辐射元件的第二线性阵列操作。
如果在RF端口120-2处输入的第二RF信号位于1427-1518MHz频带中,那么这个信号的第五子分量也将传递通过双工器170的公共端口172-3。由于第五子分量不在频率选择性端口172-2的1695-2690MHz通带内,因此该子分量将不会传递到辐射元件的第十子阵列112-10(辐射元件116-10和116-11)。由于第五子分量在频率选择性端口172-1的1427-1518MHz通带内,因此第五子分量将传递到第一双工器160的频率选择性端口162-2,然后将传递通过第一双工器160到达辐射元件的第五子阵列112-5。因此,在RF端口120-2处输入的在1427-1518MHz频带内的信号将由第二阵列140-2的辐射元件116-1至116-9和116-12和116-13(并且不由辐射元件116-10和116-11)辐射。因此,当第一和第二电路元件160、170二者都实现为双工器时,取决于输入信号的频率,第二阵列140-2将作为线性阵列或者作为所谓的Y形阵列操作。
因此,在每种情况下,在RF端口120-2处输入的第二RF信号将由辐射元件116当中的十一个辐射。但是,不同之处在于,如果RF信号处于较高的1695-2690MHz频率,那么用于生成天线波束的辐射元件都在单个垂直部署的列130-2中,因此第二阵列140-2不用于收缩所生成的天线波束的方位角波束宽度。相反,如果RF信号处于较低的1427-1518MHz频率范围中,那么用于生成天线波束的辐射元件116中的两个(辐射元件116-12和116-13)相对于其余的九个辐射元件(116-1到116-9)水平偏移,并且该水平偏移被用于收缩所生成的天线波束的方位角波束宽度。方位角波束宽度收缩的量可以取决于(1)两列130-1、130-2之间的水平距离,和(2)第二RF信号的被递送到辐射元件116-1至116-9的子分量的功率与第二RF信号的被递送到辐射元件116-12和116-13的第五子分量的功率之比。
如上面的讨论所表明的那样,基站天线100可以被配置为减小在RF端口120-2处输入的处于较低的1427-1518MHz频带中的RF信号的方位角波束宽度,而不对在RF端口120-2处输入的处于较高的1695-2690MHz频带中的RF信号的方位角波束宽度执行任何这种减小。这种方法用于抵消随频率降低而发生的方位角波束宽度的固有变宽,以便提供在超宽1427-2690MHz频带上在方位角波束宽度上展现出较小变化的辐射元件140-2的阵列。
在其它实施例中,第二电路元件170可以可替代地实现为功率分割器,该功率分割器在功率分割器的“输出”端口之一(即,端口172-1)上具有低通滤波器(或带通滤波器)。低通(或带通)滤波器被配置为传递至少1427-1518MHz频带中的RF信号,同时阻挡1695-2690MHz频带中的RF信号。在这个实施例中,第二电路元件具有传递整个1427-2690MHz频率范围中的信号的两个公共端口(端口172-2和172-3)以及一个频率选择性端口(端口172-1)。频率选择性端口172-1可以被设计为仅传递1427-1518MHz频带中的信号,或者可以被设计为具有“软”滚降,使得随着频率增加高于大约1518Hz,频率选择性端口172-1允许更少的功率通过。
当第二电路元件170被实现为在一个端口上具有滤波器的功率分割器时,基站天线100可以如下操作。可以在RF端口120-1处输入在1695-2690MHz频带内的第一RF信号。这个第一RF信号以与上面关于第二电路元件170被实现为双工器的实施例完全相同的方式传递到包括辐射元件114-1到114-9的辐射元件的第一阵列140-1。因而,将省略其进一步的描述。
可以在RF端口120-2处输入位于1427-1518MHz频带或者1695-2690MHz频带内第二RF信号。第二RF信号被移相器组件152-2划分为五个子分量并移相。RF信号的第一至第四子分量被传递到相应的子阵列112-6到112-9,在那里这些子分量由辐射元件116-1至116-9辐射。第五子分量被传递到功率分割器/低通滤波器170的公共端口172-3。再次,第二电路元件170的操作将取决于第二RF信号的频率而变化。
具体而言,如果在RF端口120-2处输入的信号在1695-2690MHz频带内,那么这个信号的第五子分量将从功率分割器/滤波器170的公共端口172-3传递到公共端口172-2并且被提供给辐射元件的第十子阵列112-10(辐射元件116-10和116-11)。频率选择性端口172-1上的低频带(或通带)滤波器阻挡RF信号(因为它处于较高的1695-2690MHz频带中),因此,响应于1695-2690MHz频带中的RF信号,第二阵列140-2将作为包括辐射元件116-1至116-11的线性阵列操作。
如果在RF端口120-2处输入的RF信号在1427-1518MHz频带中,那么这个信号的第五子分量也将传递通过功率分割器/滤波器170的公共端口172-3。由于子分量在频率选择性端口172-1的1427-1518MHz通带内,因此该子分量将传递到双工器160的第二端口162-2,然后将传递通过双工器160到达第五子阵列112-5(即,到达辐射元件116-12和116-13)。而且,由于功率分割器/滤波器170的第二端口172-2是公共端口,因此信号也将传递到辐射元件的第十子阵列112-10(辐射元件116-10和116-11)。包括在功率分割器/滤波器170中的功率分割器可以被设置为取决于方位角波束宽度的期望缩窄量来均等地或不均等地拆分RF信号的第五子分量的功率。因此,当第二电路元件170被实现为功率分割器/滤波器170时,响应于1427-1518MHz频率范围中的RF信号,第二阵列140-2将作为包括辐射元件116-1至116-13的L形阵列来操作。
如上面的讨论所表明的,基于为第二电路元件170选择哪种实现方案,第二阵列140-2将不同地进行操作。实际上,第二电路元件170的双工器实现方案导致用于1427-1518MHz频带中的RF信号的Y形第二阵列140-2,而第二电路元件170的功率分割器/滤波器实现方案导致用于1427-1518MHz频带中的RF信号的L形第二阵列140-2。在这两种实现方案下,响应于1695-2690MHz频带中的信号,第二阵列140-2作为线性阵列操作。
图4A是基于印刷电路板的双工器200的前视图,该双工器200可以用于实现本发明的示例性实施例中的图3A-3B的基站天线100的第一电路元件160和/或第二电路元件170中的任一个或两者。
如图4A中所示,双工器200在微带印刷电路板210上实现。微带印刷电路板210可以包括具有覆盖基板背面的接地平面金属化层(未示出)的介电基板212和在基板212正面上的金属“迹线”图案214。迹线图案214的迹线形成微带传输线片段和谐振短截线(stub)。金属迹线图案214包括三个“端口”,这些端口表示可以从双工器200输入和/或输出RF信号的位置。这些端口包括第一公共端口220-1和一对频率选择性端口220-2、220-3。第一迹线定义将端口220-1连接到端口220-2的第一微带传输线段230-1,并且第二迹线限定将端口220-1连接到端口220-3的第二微带传输线片段230-2。谐振短截线216被设计为沿着每个微带传输线片段230-1、230-2形成滤波器,这些滤波器传递某些频带中的RF信号同时抑制其它频带中的RF信号。
图4B是示出图4A的双工器200的模拟响应的曲线图。图4B中的曲线240-1示出了响应于在端口220-1处输入的RF信号在端口220-2处输出的信号的作为频率的函数的幅度,而曲线240-2示出了响应于在端口220-1处输入的RF信号在端口220-3处输出的信号的作为频率的函数的幅度。如图4B中的曲线240-2所示,在端口220-1处输入到双工器200的1427-1518MHz频带中的信号几乎没有衰减地到达端口220-3,而1695-2690MHz频率范围中的信号在端口220-3处基本上或完全被阻挡。相反,如图4B中的曲线240-1所示,在端口220-1处输入到双工器200的1695-2690MHz频带中的信号几乎没有衰减地到达端口220-2,而1427-1518MHz频率范围中的信号在端口220-2处基本上或完全被阻挡。
图5A是基于印刷电路板的功率分割器250的前视图,该功率分割器250在其一个输出端处具有低通滤波器,该功率分割器250可以用于实现本发明的示例性实施例中的图3A-3B的基站天线100的第二电路元件170。图5B是示出图5A的功率分割器/低通滤波器电路250的模拟响应的曲线图。
如图5A中所示,功率分割器/低通滤波器电路250在微带印刷电路板260上实现。功率分割器/低通滤波器电路250包括功率分割器252和低通滤波器254。微带印刷电路板260可以包括具有覆盖基板的背面的接地面金属化层(未图示)的介电基板262和在基板262正面上的金属“迹线”图案264。迹线图案264的迹线形成微带传输线片段和谐振短截线266。金属迹线图案264包括三个“端口”,这些端口表示可以从功率分割器/低通滤波器电路250输入和/或输出RF信号的位置。这些端口包括分别形成功率分割器252的输入端口和第一输出端口的第一公共端口和第二公共端口270-1、270-2,以及功率分割器252的第二输出端口270-3,第二输出端口270-3包括使输出端口270-3成为频率选择性端口的低通滤波器254。第一迹线定义将端口270-1连接到端口270-2的第一微带传输线片段280-1,并且第二迹线定义将端口270-1连接到端口270-3的第二微带传输线段280-2。谐振短截线266形成低通滤波器254。
图5B是示出图5A的功率分割器/低通滤波器电路250的模拟响应的曲线图。图5B中的曲线290-1示出了响应于在端口270-1处输入的RF信号在端口270-2处输出的信号的作为频率的函数的幅度,而曲线290-2示出了响应于在端口270-1处输入的RF信号在端口270-3处输出的信号的作为频率的函数的幅度。如图5B中所示,输入到分路器/低通滤波器电路250的1427-1518MHz频带中的信号被拆分并且在端口270-2和270-3二者处输出,其中在端口270-2处输出的信号的幅度比在端口270-3处输出的信号的幅度高约1dB或1.5dB。相反,在端口270-1处输入到分路器/低通滤波器电路250的1695-2690MHz频带中的信号传递到端口270-2,在该频率范围的下部具有大约3dB衰减并且在该频率范围的高端几乎没有衰减,而在端口270-3处输出的信号具有随着频率的增加而增加的衰减。
图5B中的曲线290-2的形状可以通过增加或减少包括在低通滤波器254中的谐振短截线266的数量来改变。如果添加附加的谐振短截线266,那么端口270-3处的功率随着频率的增加而较快地减小,而如果包括更少的谐振短截线266,那么端口270-3处的功率随着频率的增加而较慢地减小。因此,滤波器254的设计可以用于进一步调整作为频率的函数的方位角HPBW。
图6A是,针对图3A-3B的基站天线100的辐射元件的第二阵列140-2,当使用图4A的双工器200作为第一电路元件160并使用图5A的功率分割器/低通滤波器电路250作为第二电路元件170时,作为频率的函数的模拟方位角HPBW的曲线图(曲线300)。出于比较的目的,图6A还包括针对辐射元件的可比较的单列线性阵列的方位角HPBW的曲线图(曲线310)。
如图6A中所示,用于常规的辐射元件的线性阵列的方位角HPBW(曲线310)在大约55.5°的低值和大约88°的高值之间变化,总变化大于32°。这种变化量通常是不可接受的,因为频带下部的大方位角HPBW导致由线性阵列服务的扇区内的低增益值和相邻扇区中的高干扰水平。如曲线300所示,根据本发明实施例的基站天线100的第二阵列140-2具有在大约50°的低值和大约75°的高值之间变化的方位角HPBW,总变化只有19°,这比针对常规线性阵列所看到的变化小13°以上。
图6B是,针对使用图4A的双工器200作为第一电路元件160并使用图5A的功率分割器/低通滤波器电路250作为第二电路元件170来实现的图3A-3B的基站天线100的辐射元件的第二阵列140-2的作为频率的函数的模拟增益的曲线图(曲线320)。出于比较的目的,图6B还包括针对辐射元件的可比较的单列线性阵列的增益的曲线图(曲线330)。如图6B中所示,基站天线100的第二阵列140-2的增益在整个频率范围内高于常规线性阵列的增益。与常规阵列相比,第一和第二电路元件160、170各自引入插入损耗,这降低了第二线性阵列140-2的增益。但是,方位角波束宽度的缩窄,特别是在频率范围的下端,导致比抵消插入损耗更多的增益增加。因此,根据本发明实施例的基站天线100还可以表现出改进的增益性能。
图7是,针对使用图4A的双工器200作为第一电路元件160和第二电路元件170二者来实现的图3A-3B的基站天线100的辐射元件的第二阵列140-2,作为频率的函数的模拟方位角HPBW的曲线图(曲线340)。出于比较的目的,图7还包括针对辐射元件的可比较的单列线性阵列的模拟方位角HPBW的曲线图(曲线350)。
如图7中所示,根据本发明实施例的基站天线100的第二阵列140-2具有在大约56°的低值和大约75°的高值之间变化的方位角HPBW,总变化只有19°,这比针对常规线性阵列所看到的变化小13°以上。
图8A是根据本发明进一步实施例的基站天线400的示意性前视图。图8B是图示用于图8A的基站天线400的馈送网络450中的两个馈送网络的框图。
如图8A-8B中所示,基站天线400类似于图3A-3B的基站天线100。但是,基站天线400与基站天线100的不同之处在于四个方面。第一,基站天线400包括可以与第一电路元件160完全相同的第三电路元件460。第二,基站天线400包括可以与第二电路元件170完全相同的第四电路元件470。第三,基站天线400中的所有辐射元件都被实现为在整个1427-2690MHz频带上操作的辐射元件,并且因此在图8A中被标记为辐射元件116-1至116-22。第四,基站天线400的第一阵列440-1还包括位于辐射元件的第二列130-2中的辐射元件116-10和116-11。
如可以从图8A-8B看到的,在基站天线400中,每个阵列440-1、440-2具有完全相同的配置,使用一对额外的电路来减小频带下部中的方位角波束宽度。除了第二电路元件170的输出端172-2通过第三电路元件460耦合到第十子阵列112-10之外,第二馈送网络450-2和第二阵列440-2在设计和操作上可以与基站天线100的第二馈送网络150-2和第二阵列140-2完全相同。此外,除了第四电路元件470的输出端472-2通过第一电路元件160耦合到第五子阵列112-5之外,第一馈送网络450-1和第一阵列440-1在设计和操作上也可以与基站天线100的第二馈送网络150-2和第二阵列140-2完全相同。由于基站天线400的第一和第二阵列440-1、440-2二者都将以与基站天线100的第二阵列140-2相同的方式操作,因此图8A-8B的进一步描述将被省略。
图9A是根据本发明又一些实施例的基站天线500的示意性前视图,基站天线500包括辐射元件的三个列530-1至530-3,这三个列形成辐射元件的三个阵列540-1至540-3。图9B是图示用于图9A的基站天线500的馈送网络550-1至550-3的示意性框图。除了基站天线500还包括辐射元件的第三列530-3并共享第一列530-1的顶部处的辐射元件以提供具有频率选择性特性的第三阵列540-3以外,基站天线500与上面讨论的基站天线100非常相似。
除了(1)馈送网络550-1还包括耦合在列530-1中的辐射元件的顶部子阵列和移相器组件152-1之间的附加第一电路元件160-2,以及(2)使用更宽频带辐射元件116实现列530-1中的辐射元件的顶部子阵列之外,馈送网络550-1和阵列540-1可以与基站天线100的馈送网络150-1和阵列140-1完全相同。馈送网络550-2和阵列540-2可以与基站天线100的馈送网络150-2和阵列140-2完全相同。除了共享辐射元件位于列530-1的顶部之外,第三馈送网络550-3可以与馈送网络550-2完全相同。
图10是根据本发明的更进一步的实施例的基站天线600的示意性框图,基站天线600被设计为针对三个不同子频带中的辐射元件阵列不同地缩窄方位角波束宽度。基站天线600图示了使用诸如电路元件160和170之类的附加电路元件来针对操作频带的第一子频带减小方位角HPBW的概念如何可以被扩展,以便可以针对多个子频带减小方位角HPBW,其中每个子频带的方位角HPBW减小不同的量。
如图10中所示,基站天线600类似于基站天线100,但是基站天线600包括附加的第一电路元件160-2和附加的第二电路元件170-2。在这个实施例中,第一电路元件160-1、160-2二者都被实现为双工器,并且第二电路元件170-1、170-2二者都被实现为具有低通滤波器的功率分割器,但是将认识到的是,本发明不限于此。
如图10中所示,除了(1)第一双工器160-1仅耦合到第一列130-1中的底部辐射元件116、(2)第一分割器/滤波器170-1仅耦合到第二列130-2中的底部辐射元件116、(3)设置耦合到第一列130-1中靠近最底部辐射元件116的下一个辐射元件的第二双工器160-2,以及(4)设置耦合到第二列130-2中靠近最底部辐射元件116的下一个辐射元件的第二分割器/滤波器170-2之外,基站天线600与基站天线100完全相同。第二双工器160-2和第二分割器/滤波器170-2被配置为允许在第一列130-1中的靠近最底部辐射元件的下一个辐射元件在两个阵列640-1、640-2之间共享,但是是针对与第一列130-1中的最底部辐射元件相比不同的频率范围。
在示例实施例中,第一双工器160-1可以被实现为具有1427-1518MHz频率选择性端口162-2、1695-2690MHz频率选择性端口162-1以及公共端口162-3。第二双工器160-2可以被实现为具有1695-2690MHz频率选择性端口164-1、1427-2200MHz频率选择性端口164-2以及公共端口164-3。第一双工器/滤波器170-1可以被实现为功率分割器,该功率分割器具有带有低通滤波器(该低通滤波器具有在1518MHz和1695MHz之间的标称截止频率)的端口以及第一和第二公共端口172-2、172-3。第二双工器/滤波器170-2可以被实现为功率分割器,该功率分割器具有带有低通滤波器(该低通滤波器具有在2200MHz和2300MHz之间的标称截止频率)的端口174-1以及第一和第二公共端口174-2、174-3。
像基站天线100的第一阵列140-1那样,对于在1427-2690MHz频率范围内任何频率处的RF信号,基站天线600的辐射元件的第一阵列640-1将操作为辐射元件的线性阵列。像基站天线100的第一阵列140-2那样,对于在2300-2690MHz频率范围内的RF信号,基站天线600的辐射元件的第二阵列640-2将操作为十一个辐射元件116-1至116-11的线性阵列。像基站天线100的辐射元件的第二阵列140-2那样,对于在1427-1518MHz频率范围内的RF信号,辐射元件的第二阵列640-2将作为两列阵列操作,该两列阵列包括列130-2中的所有十一个元件以及列130-1中的底部两个辐射元件。但是,辐射元件的第二阵列640-2与基站天线100的辐射元件的第二阵列140-2的不同之处在于,对于1695-2200MHz频率范围中的RF信号,辐射元件的第二阵列640-2将操作为包括列130-2中的所有十一个元件以及列130-1的靠近最底部辐射元件的下一个辐射元件的两列阵列,而对于这种信号,基站天线100的辐射元件的第二阵列140-1操作为线性阵列。基站天线600还可以跨1427-2690MHz频带减小方位角HPBW的变化。
因此,基站天线600包括第一和第二RF端口120-1、120-2以及辐射元件的第一和第二水平偏移的垂直列130-1、130-2。第一垂直列130-1中的一半以上的辐射元件是辐射元件的第一阵列640-1的一部分,辐射元件的第一阵列640-1通过第一馈送网络150-1耦合到第一RF端口120-1,并且第二垂直列130-2中的一半以上的辐射元件是辐射元件的第二阵列640-2的一部分,辐射元件的第二阵列640-2通过第二馈送网络150-2耦合到第二RF端口120-2。对于在第一频率范围(这里是2300-2690MHz频率范围)内的RF信号,辐射元件的第二阵列640-2包括第一列130-1中的第一数量(这里是0)的辐射元件,并且,对于在低于第一频率范围的第二频率范围(这里是1695-2200MHz频率范围)内的RF信号,辐射元件的第二阵列640-2包括第一列130-1中的第二数量(这里是1)的辐射元件,第二数量大于第一数量。对于在低于第二频率范围的第三频率范围(这里是1427-1518MHz频率范围)内的RF信号,辐射元件的第二阵列640-2包括第一列130-1中的第三数量(这里是2)的辐射元件,第三数量大于第二数量。
上面已经参考其中示出本发明实施例的附图描述了本发明的实施例。但是,本发明可以以许多不同的形式实施,并且不应当被解释为限于本文阐述的实施例。更确切地说,提供这些实施例是为了使本公开彻底和完整,并且向本领域技术人员充分传达本发明的范围。相同的标号始终表示相同的元件。
将理解的是,虽然本文可以使用术语第一、第二等来描述各种元件,但是这些元件不应当受这些术语的限制。这些术语仅用于区分一个元件与另一个元件。例如,在不脱离本发明的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。如本文所使用的,术语“和/或”包括一个或多个相关联列出的项的任何和所有组合。
将理解的是,当元素被称为在另一个元件“上”时,它可以“直接在”另一个元件上,或者存在中间元件。相反,当元件被称为“直接在”另一个元件上时,不存在中间元件。还将理解的是,当元件被称为“连接”或“耦合”到另一个元件时,它可以直接连接或耦合到该另一个元件,或者可以存在中间元件。相反,当元件被称为“直接连接”或“直接耦合”到另一个元件时,不存在中间元件。用于描述元件之间关系的其它词语应当以类似的方式解释(即,“在…之间”相对于“直接在…之间”,“相邻”相对于“直接相邻”,等等)
将理解的是,当在本文中使用时,术语“包括”和/或“包含”指定所述特征、操作、元件和/或部件的存在,但不排除存在或添加一个或多个其它特征、操作、元件、部件和/或其组。
以上公开的所有实施例的各方面和元件可以以任何方式和/或与其它实施例的各方面或元件的组合来组合,以提供多个附加的实施例。
在附图和说明书中,已经公开了本发明的典型优选实施例,并且虽然采用了具体术语,但它们仅在一般性和描述性的意义上使用,而不是用于限制的目的,本发明的范围是在以下权利要求中阐述。

Claims (32)

1.一种基站天线,包括:
第一射频RF端口;
第二RF端口;
第一辐射元件阵列,通过第一馈送网络耦合到第一RF端口;
第二辐射元件阵列,通过第二馈送网络耦合到第二RF端口;
第一电路元件;以及
第二电路元件;
其中,第一电路元件具有耦合到第一馈送网络的第一端口、耦合到第二电路元件的第一端口的第二端口、以及耦合到第一辐射元件阵列的第一辐射元件的第三端口,以及
其中,第二电路元件具有耦合到第二辐射元件阵列的第一辐射元件的第二端口以及耦合到第二馈送网络的第三端口。
2.如权利要求1所述的基站天线,其中,第一辐射元件阵列的第一辐射元件也是第二辐射元件阵列的一部分。
3.如权利要求2所述的基站天线,其中,第二电路元件是双工器。
4.如权利要求2所述的基站天线,其中,第二电路元件是功率分割器,所述功率分割器在该功率分割器的第一输出端口上具有滤波器。
5.如权利要求2所述的基站天线,其中,第一电路元件是双工器。
6.如权利要求3所述的基站天线,其中,第一电路元件是双工器。
7.如权利要求4所述的基站天线,其中,第一电路元件是双工器。
8.如权利要求3所述的基站天线,其中,第一辐射元件阵列由第一列辐射元件组成,并且其中,第二辐射元件阵列由第二列辐射元件以及第一辐射元件阵列中的一个或多个辐射元件组成,该一个或多个辐射元件包括第一辐射元件阵列的第一辐射元件。
9.如权利要求8所述的基站天线,其中,第一列辐射元件相对于第二列辐射元件水平地偏移。
10.如权利要求1所述的基站天线,其中,第一辐射元件阵列被配置为在第一频率范围中操作,并且第二辐射元件阵列被配置为在第二频率范围中操作,第二频率范围部分地但不完全地与第一频率范围重叠。
11.如权利要求10所述的基站天线,其中,第二电路元件被配置为将在第二RF端口处输入的、在第二频率范围的与第一频率范围重叠的一部分中的信号传递到第二辐射元件阵列的第一辐射元件,并将在第二RF端口处输入的、在第二频率范围的不与第一频率范围重叠的一部分中的信号传递到第一电路元件。
12.如权利要求11所述的基站天线,其中,第一电路元件被配置为将在第二RF端口处输入的、在第二频率范围的不与第一频率范围重叠的一部分中的信号传递到第一辐射元件阵列的第一辐射元件。
13.如权利要求1所述的基站天线,其中,第一辐射元件阵列被配置为在1695-2690MHz频带中的一些或全部频带中操作但不在1427-1518MHz频带中操作,而第二辐射元件阵列被配置为在1427-2690MHz频带的包括1427-1518MHz频带的至少一部分以及1695-2690MHz频带的至少一部分的一些或全部频带中操作。
14.如权利要求1所述的基站天线,还包括:
第三电路元件;以及
第四电路元件,
其中,第三电路元件具有经由第二电路元件耦合到第二馈送网络的第一端口、耦合到第二辐射元件阵列的第一辐射元件的第二端口、以及经由第四电路元件的第一端口耦合到第一馈送网络的第三端口,并且
其中,第四电路元件具有耦合到第一馈送网络的第二端口以及通过第一电路元件耦合到第二辐射元件阵列的第一辐射元件的第三端口。
15.如权利要求14所述的基站天线,其中,第二辐射元件阵列的第一辐射元件也是第一辐射元件阵列的一部分。
16.如权利要求14所述的基站天线,其中,第三电路元件是双工器。
17.如权利要求14所述的基站天线,其中,第四电路元件是低通滤波器。
18.如权利要求14所述的基站天线,其中,第四电路元件是双工器。
19.一种基站天线,包括:
第一射频RF端口;
第二RF端口;
第一多个辐射元件,通过第一馈送网络耦合到第一RF端口,其中,所述第一多个辐射元件布置在第一列中并形成第一辐射元件阵列;以及
第二多个辐射元件,通过第二馈送网络耦合到第二RF端口,其中,所述第二多个辐射元件布置在第二列中,
其中,所述第一列中的辐射元件中的第一辐射元件还通过第二馈送网络耦合到第二RF端口,以及
其中,所述第二列中的辐射元件和所述第一列中的辐射元件中的所述第一辐射元件包括第二辐射元件阵列。
20.如权利要求19所述的基站天线,其中,第一辐射元件阵列被配置为在1695-2690MHz频带中的一些或全部频带中操作但不在1427-1518MHz频带中操作,而第二辐射元件阵列被配置为在1427-2690MHz频带的包括1427-1518MHz频带的至少一部分和1695-2690MHz频带的至少一部分的一些或全部频带中操作。
21.如权利要求19所述的基站天线,还包括第一电路元件,第一电路元件具有耦合到第一馈送网络的第一端口、耦合到第二馈送网络的第二端口以及耦合到所述第一列中的辐射元件中的所述第一辐射元件的第三端口。
22.如权利要求21所述的基站天线,还包括第二电路元件,第二电路元件具有耦合到第一电路元件的第二端口的第一端口、耦合到所述第二列中的辐射元件中的第一辐射元件的第二端口、以及耦合到第二馈送网络的第三端口。
23.如权利要求22所述的基站天线,其中,第二电路元件是双工器。
24.如权利要求22所述的基站天线,其中,第二电路元件是低通滤波器。
25.如权利要求23所述的基站天线,其中,第一电路元件是双工器。
26.如权利要求24所述的基站天线,其中,第一电路元件是双工器。
27.如权利要求19所述的基站天线,其中,所述第一列相对于所述第二列水平地偏移。
28.如权利要求19所述的基站天线,其中,第一辐射元件阵列被配置为在第一频率范围中操作,并且第二辐射元件阵列被配置为在仅部分地与第一频率范围重叠的第二频率范围中操作。
29.如权利要求28所述的基站天线,其中,第一电路元件被配置为将在第二RF端口处输入的、在第二频率范围的不与第一频率范围重叠的一部分中的信号传递到第一辐射元件阵列中的辐射元件中的所述第一辐射元件。
30.一种基站天线,包括:
第一射频RF端口;
第二RF端口;
第一垂直列的辐射元件;以及
第二垂直列的辐射元件,相对于第一垂直列的辐射元件水平地偏移;
其中,第一垂直列的辐射元件中的一半以上的辐射元件是第一辐射元件阵列的一部分,第一辐射元件阵列通过第一馈送网络耦合到第一RF端口,
其中,第二垂直列的辐射元件中的一半以上的辐射元件是第二辐射元件阵列的一部分,第二辐射元件阵列通过第二馈送网络耦合到第二RF端口,并且
其中,对于在第一频率范围内的RF信号,第二辐射元件阵列包括所述第一列中的第一数量的辐射元件,并且,对于在低于第一频率范围的第二频率范围内的RF信号,第二辐射元件阵列包括所述第一列中的第二数量的辐射元件,第二数量大于第一数量。
31.如权利要求30所述的基站天线,其中,第一数量是零。
32.如权利要求30所述的基站天线,其中,对于在低于第二频率范围的第三频率范围内的RF信号,第二辐射元件阵列包括所述第一列中的第三数量的辐射元件,第三数量大于第二数量。
CN201910282492.0A 2019-04-10 2019-04-10 具有带有频率选择性共享辐射元件的阵列的基站天线 Pending CN111817026A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910282492.0A CN111817026A (zh) 2019-04-10 2019-04-10 具有带有频率选择性共享辐射元件的阵列的基站天线
US16/829,152 US11031678B2 (en) 2019-04-10 2020-03-25 Base station antennas having arrays with frequency selective shared radiating elements
EP20168939.5A EP3723194B1 (en) 2019-04-10 2020-04-09 Base station antennas having arrays with frequency selective shared radiating elements
US17/307,209 US11283160B2 (en) 2019-04-10 2021-05-04 Base station antennas having arrays with frequency selective shared radiating elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910282492.0A CN111817026A (zh) 2019-04-10 2019-04-10 具有带有频率选择性共享辐射元件的阵列的基站天线

Publications (1)

Publication Number Publication Date
CN111817026A true CN111817026A (zh) 2020-10-23

Family

ID=70285447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910282492.0A Pending CN111817026A (zh) 2019-04-10 2019-04-10 具有带有频率选择性共享辐射元件的阵列的基站天线

Country Status (3)

Country Link
US (2) US11031678B2 (zh)
EP (1) EP3723194B1 (zh)
CN (1) CN111817026A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027914A1 (en) * 2018-08-03 2020-02-06 Commscope Technologies Llc Multiplexed antennas that sector-split in a first band and operate as mimo antennas in a second band
CN110867663A (zh) * 2018-08-27 2020-03-06 康普技术有限责任公司 馈电网络及天线
CN114843742A (zh) * 2021-02-01 2022-08-02 康普技术有限责任公司 具有方位面中的全向覆盖的波束赋形天线

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356233B1 (en) * 2000-12-12 2002-03-12 Lockheed Martin Corporation Structure for an array antenna, and calibration method therefor
PL2359438T3 (pl) * 2008-11-20 2019-12-31 Commscope Technologies Llc Antena i szyk sektora dwuwiązkowego
US8416142B2 (en) 2009-12-18 2013-04-09 Kathrein-Werke Kg Dual-polarized group antenna
EP2956989B1 (en) * 2013-02-06 2017-10-04 Telefonaktiebolaget LM Ericsson (publ) Antenna arrangement for multiple frequency band operation
KR101494956B1 (ko) * 2013-02-08 2015-02-23 주식회사 에이스테크놀로지 기지국 통신 시스템에 최적화된 어레이 안테나
WO2014130877A1 (en) 2013-02-22 2014-08-28 Quintel Technology Limited Multi-array antenna
WO2015184871A1 (en) * 2014-06-05 2015-12-10 Commscope Technologies Llc Independent azimuth patterns for shared aperture array antenna
US20170062952A1 (en) * 2015-09-02 2017-03-02 Ace Antenna Company Inc. Dual band, multi column antenna array for wireless network
CN205319307U (zh) * 2015-12-16 2016-06-15 华为技术有限公司 平面阵列天线及通信设备
CN107275808B (zh) 2016-04-08 2021-05-25 康普技术有限责任公司 超宽频带辐射器和相关的天线阵列
CN109314308A (zh) 2016-06-15 2019-02-05 康普技术有限责任公司 用于控制远程电子下倾基站天线的多个移相器的致动器
US10541477B2 (en) 2016-07-25 2020-01-21 Nokia Shanghai Bell Co., Ltd. Combined omnidirectional and directional antennas
CN206461086U (zh) 2017-01-09 2017-09-01 罗森伯格技术(昆山)有限公司 一种基站天线系统
US10431877B2 (en) * 2017-05-12 2019-10-01 Commscope Technologies Llc Base station antennas having parasitic coupling units
EP3419104B1 (en) * 2017-06-22 2022-03-09 CommScope Technologies LLC Cellular communication systems having antenna arrays therein with enhanced half power beam width (hpbw) control
US10530440B2 (en) * 2017-07-18 2020-01-07 Commscope Technologies Llc Small cell antennas suitable for MIMO operation

Also Published As

Publication number Publication date
EP3723194A1 (en) 2020-10-14
US11283160B2 (en) 2022-03-22
US11031678B2 (en) 2021-06-08
EP3723194B1 (en) 2024-02-21
US20210257722A1 (en) 2021-08-19
US20200328503A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US10770803B2 (en) Multi-band base station antennas having crossed-dipole radiating elements with generally oval or rectangularly shaped dipole arms and/or common mode resonance reduction filters
US11018427B2 (en) Multiplexed antennas that sector-split in a first band and operate as MIMO antennas in a second band
US11652300B2 (en) Radiating elements having angled feed stalks and base station antennas including same
EP3723194B1 (en) Base station antennas having arrays with frequency selective shared radiating elements
US20120268324A1 (en) Dual beam sector antenna array with low loss beam forming network
US11990669B2 (en) Base station antennas having arrays of radiating elements with 4 ports without usage of diplexers
US11569567B2 (en) Multi-band base station antennas having crossed-dipole radiating elements with generally oval or rectangularly shaped dipole arms and/or common mode resonance reduction filters
CN111819731B (zh) 多频带基站天线
US20190326662A1 (en) Base station antennas that utilize amplitude-weighted and phase-weighted linear superposition to support high effective isotropic radiated power (eirp) with high boresight coverage
US20180331420A1 (en) Phased array antennas having switched elevation beamwidths and related methods
US11581638B2 (en) Dual-beam antenna array
US20220166129A1 (en) Base station antennas having partially-shared wideband beamforming arrays
US11417944B2 (en) Antenna assembly and base station antenna including the antenna assembly
US11322827B2 (en) Multi-band base station antennas having crossed-dipole radiating elements with generally oval or rectangularly shaped dipole arms and/or common mode resonance reduction filters
WO2023155055A1 (en) Base station antennas having radiating elements with active and/or cloaked directors for increased directivity
CN116190966B (zh) 一种定向耦合器及天线
US20230395974A1 (en) Mixed element beam forming antenna
WO2024118325A1 (en) Multibeam sector-splitting base station antennas having modified nolen matrix-based beamforming networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination