CN103678738A - 基于时域多步积分的互连线模型降阶方法 - Google Patents

基于时域多步积分的互连线模型降阶方法 Download PDF

Info

Publication number
CN103678738A
CN103678738A CN201210332712.4A CN201210332712A CN103678738A CN 103678738 A CN103678738 A CN 103678738A CN 201210332712 A CN201210332712 A CN 201210332712A CN 103678738 A CN103678738 A CN 103678738A
Authority
CN
China
Prior art keywords
time domain
integration
order
interconnection line
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210332712.4A
Other languages
English (en)
Other versions
CN103678738B (zh
Inventor
曾璇
郭倞
杨帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201210332712.4A priority Critical patent/CN103678738B/zh
Publication of CN103678738A publication Critical patent/CN103678738A/zh
Application granted granted Critical
Publication of CN103678738B publication Critical patent/CN103678738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本发明属于集成电路领域,涉及一种基于时域多步积分的互连线模型降阶方法;该方法包括步骤:首先读取互连线电路的特性数据并利用改进节点电压法建立对应的时域方程;然后对原始电路的时域方程进行多步积分得到关于状态变量的二阶递推关系;进而通过二次Arnoldi方法得到投影矩阵,再通过投影矩阵对原始时域方程进行投影得到降阶系统,最后用多步积分法对降阶系统进行离散求得时域输出。本方法可保证时域积分后降阶系统和原始系统的状态变量在离散时间点的匹配以及时域降阶精度,同时保证降阶过程的数值稳定性及降阶系统的无源性。本发明的方法复杂度低、精度高。

Description

基于时域多步积分的互连线模型降阶方法
技术领域
本发明属于集成电路领域,涉及一种可对互连线电路进行快速仿真的模型降阶方法,具体涉及一种基于时域多步积分的互连线模型降阶方法。
背景技术
随着集成电路设计和制造技术的不断进步,互连线已经成为影响集成电路的工作性能和可靠性的关键因素;尤其是日益增加的信号频率和电路规模对互连电路建模和分析带来了很大挑战。当前,模型降阶技术已经成为大规模互连电路分析的主流方法。
传统的模型降阶方法可分为频域模型降阶和时域模型降阶两种。在频域模型降阶方法中,最经典的模型降阶方法有AWE方法,Krylov子空间类方法,例如PVL方法、PRIMA方法。然而,频域模型降阶方法无法保证降阶后的电路在时域的精度;频域逼近的误差转换到时域会放大,频域很小的误差在时域可能会产生很大的误差。为了解决上述问题,近年来直接在时域进行降阶的时域模型降阶方法不断被提出。有研究提出采用基于Chebyshev多项式的时域降阶方法(文献4),以及提出采用基于小波配置的时域降阶方法(文献5),但时域模型降阶方法在求解正交多项式展开系统复杂度过高,难以用于大规模系统的模型降阶。
文献6提出了一种基于时域梯形法差分模型降阶算法,该算法结合了现有的频域模型降阶方法和时域模型降阶方法的优势,与现有的时域模型降阶方法相比,该算法计算复杂度极大降低,与现有的频域模型降阶方法相比,该算法在时域有更高的精度;但是,该算法只对单一的输入有效。
文献7提出了一种基于时域单步积分的模型降阶方法,该算法克服了基于时域梯形法差分模型降阶方法只对单一输入有效的缺点,对各种输入都有效,同时具有比现有的时域模型降阶方法计算复杂度低和比现有的频域模型降阶方法精度高的优点。
目前,需要一种基于时域单步积分的模型降阶方法,该方法仅采用单步法来对积分进行离散,其降阶精度和效率可进一步提高。
与本发明有关的参考文献有:
[1]L.T.Pillage and R.A.Rohrer,“Asymptotic Waveform Evaluation for Timing Analysis”,IEEETrans.Computer-Aided Design,vol.9,pp.352–366,Apr.1990.
[2]P.Feldmann and R.W.Freund,“Efficient Linear Circuit Analysis by Padévia Lanczos process”,IEEE Trans.Computer-Aided Design,vol.14,pp.639–649,May1995.
[3]Odabasioglu,M.Celik and L.Pileggi,“PRIMA:Passive Reduced-Order InterconnectMacromodeling Algorithm”,IEEE Trans.On CAD of Integrated Circuits and Systems,vol.17,no.8,pp.645–654,Aug.1998.
[4]Janet Meiling Wang,Chia-Chi Chu,Qingjian Yu and Ernest S.Kuh,”On Projection-basedAlgorithms for Model-order-reduction of Interconnects”,IEEE trans.Circuits and Systems,vol.49,no.11,pp.1563-1585,Nov.2002.
[5]Xuan Zeng,Lihong Feng,Yangfeng Su,Wei Cai,Dian Zhou and Charles Chiang,”Time DomainModel Order Reduction by Wavelet collocation method”,pp.1-6,March6,IEEE/ACM DesignAutomation and Test in Europe,2006.
[6]Hou Limin,Yang fan,Zeng Xuan.“An Efficient Time-domain Trapezoidal Difference BasedModel Order Reduction Method for Interconnect Circuits”,Journal of Computer-Aided Design& Computer Graphics,vol.24,pp.683-689,May 2012
[7]侯丽敏,”互连线高效时域模型降阶算法研究”,硕士论文,复旦大学,2012.。
发明内容
本发明的目的是克服现有技术的缺陷和不足,提供一种基于时域多步积分的互连线模型降阶方法。本方法可保证时域积分后降阶系统和原始系统的状态变量在离散时间点的匹配,保证时域降阶精度,同时也保证了降阶过程的数值稳定性及降阶系统的无源性。
具体而言,本发明的基于时域多步积分的互连线模型降阶方法,其特征在于,其步骤如下(如图1所示):
步骤一:读取互连线电路的特性数据及输入激励;
步骤二:利用改进节点分析方法(MNA)建立互连线电路的时域方程;
步骤三:用多步积分方法对互连线电路的时域方程进行离散,得到二次Arnoldi递推关系,该递推关系形成了一个二次Krylov子空间;
步骤四:利用二次Arnoldi算法构造步骤三产生的递推关系的正交投影矩阵Vq∈RN×n,n=N,其中n为降阶系统的阶数,N为原始系统的阶数;
步骤五:利用正交投影矩阵Vq∈RN×n,对互连线电路的时域方程进行合同变换获得n阶的降阶系统;
步骤六:利用多步积分法数值求解降阶系统的时域输出。
本发明中,采用基于多步积分的方法对时域方程进行离散(如图2所示),基于单步积分的方法仅利用当前时刻信息逼近积分(如图3所示),基于多步积分的方法利用多个数据点构造出一条曲线,用该条曲线张成的面积来逼近原函数的积分,相比于基于单步积分的方法更能精确地表示被积函数的积分值,其精度高于现有技术(如图2所示)中的矩形逼近。
本发明中,采用二次Arnoldi算法产生正交投影矩阵,再通过投影矩阵对原始时域矩阵进行投影得到降阶系统;能保证时域积分后降阶系统和原始系统的状态变量在离散时间点的匹配,及时域降阶精度。
本发明中,直接在时域上进行降阶,可消除时频转换引入的误差。
本发明中,采用二次Arnoldi算法构造二次Krylov子空间的正交基,二次Arnoldi方法其数值稳定性良好。
本发明中,基于合同变换获得降阶系统,可保证降阶系统的无源性。
本发明中,直接利用二次Arnoldi算法求解投影矩阵,算法复杂度极大降低。
本发明所述的方法与现有技术相比,具有如下优点:
(1)高的降阶精度
首先,本发明采用基于多步积分的方法对时域方程进行离散(如图2所示),基于单步积分的方法仅利用当前时刻信息逼近积分(如图3所示),基于多步积分的方法利用多个数据点构造出一条曲线,用该条曲线张成的面积来逼近原函数的积分,相比于基于单步积分的方法更能精确地表示被积函数的积分值,其精度高于图2中的矩形逼近,因此,相比于单步积分的方法,本发明采用的基于多步积分模型降阶方法要有更高的精度;
其次,本发明采用二次Arnoldi算法产生正交投影矩阵,再通过投影矩阵对原始时域矩阵进行投影得到降阶系统;该方法可保证时域积分后降阶系统和原始系统的状态变量在离散时间点的匹配,保证时域降阶精度,因此,本发明具有较高的降阶精度;
此外,本发明由于直接在时域上进行降阶,可消除时频转换引入的误差;相比于频域降阶方法,本发明在时域有更高的精度;
(2)良好的数值稳定性
本发明采用二次Arnoldi算法来构造二次Krylov子空间的正交基;二次Arnoldi方法是数值稳定的,因此,本基于时域多步积分的模型降阶方法具有良好的数值稳定性。
(3)保证无源性
本发明提出的基于时域多步积分的模型降阶方法,基于合同变换来获得降阶系统;经过合同变换得到降阶系统可保证降阶系统的无源性,因此,本发明的基于时域多步积分的模型降阶方法得到的降阶系统可以保持原系统的无源性;
(4)低的计算复杂度
现有时域模型降阶方法在求解正交多项式展开系数时复杂度过高,本发明直接利用二次Arnoldi算法求解投影矩阵,算法复杂度极大降低。
本发明方法能保证时域积分后降阶系统和原始系统的状态变量在离散时间点的匹配以及时域降阶精度,和降阶过程的数值稳定性及降阶系统的无源性。本发明比现有的时域模型降阶方法复杂度低和比现有的频域模型降阶方法精度高,尤其与时域单步积分的模型降阶方法相比,可在保证与之计算复杂度相当的基础上,达到更高的精度。
附图说明
图1是本发明基于时域多步积分的互连线模型降阶方法的流程图。
图2是基于单步积分方法的示意图。
图3是基于多步积分方法的示意图。
图4是阶数为3298,输入1GHz的脉冲信号的总线电路降阶到15阶时,本发明基于时域多步积分的模型降阶方法、基于小波配置的时域模型降阶方法、频域降阶方法PRIMA和基于时域单步积分的模型降阶方法的误差比较图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易理解,下面通过具体的实例进一步说明本发明。
实施例1
本发明的基于时域多步积分的互连线模型降阶方法的包括步骤(如图1所示):
步骤一:读取互连线电路的特性数据及输入激励;互连线电路的特性数据包括经过互连线寄生参数提取得到的电阻、电容和电感寄生网表;
步骤二:利用改进节点电压法建立互连线电路的时域方程(1):
C x · ( t ) + Gx ( t ) = Bu ( t ) (1)
y(t)=LTx(t)
其中,未知变量x以及系数矩阵C和G可分别表示为
x = v i , C = Q 0 0 H , G = S E - E T 0
其中,
Figure BDA00002116630000063
分别表示节点电压和电感与电压源的支路电流,v和i共同组成N维的未知向量x,即N1+N2=N。N为方程中的未知变量个数,同时表示原始系统的阶数;y表示输出电压或电流;G,C∈□N×N为电路的系数矩阵;
矩阵
Figure BDA00002116630000065
分别表示电阻、电容和电感的贡献,而E是电感的关联矩阵;B∈□N×p,L∈□N×m分别表示p个输入,m个输出的关联矩阵;
步骤三:假设原始系统的输入源u(t)为冲击函数δ(t),则其对应的状态方程将变成如下的形式:
Gx ( t ) + C x · ( t ) = Bδ ( t ) - - - ( 2 )
对式(2)两端从时刻ti到ti+1进行积分,整理可得:
G ∫ t i t i + 1 x ( τ ) dτ + C ( x i + 1 - x i ) = 0 - - - ( 3 )
假设x(τ)是二次曲线,积分
Figure BDA00002116630000069
的值通过xi+1,xi,xi-1的二次曲线值描述为
∫ t i t i + 1 x ( τ ) dτ = a 0 x i + 1 + a 1 x i + a 2 x i - 1 - - - ( 4 )
其中a0=5h/12,a1=2h/3,a2=-h/12,h为时间间隔;xi+1表示待求解的状态变量的值,xi,xi-1表示前两个状态变量的值;
将(4)代入(3)可知,通过多步积分后互连线时域方程状态变量{x0,x1,x2...xi...}存在如下递推关系:
x0=G-1B                      (5)
x1=(Gh+C)-1(B+Cx0)           (6)
xi+1=M-1Kxi+M-1Dxi-1(i≥1)   (7)
其中M=(a0G+C),K=(C-a1G),D=-a2G,
a0=5h/12,a1=2h/3,a2=-h/12,h为时间间隔;
步骤四:利用二次Arnoldi算法构造步骤三产生的递推关系的正交投影矩阵
Vq∈RN×n,n=N;其中,A=M-1K,B=M-1D,
M=(a0G+C),K=(C-a1G),D=-a2G,u=(Gh+C)-1B;
二次Arnoldi算法具体流程如下:
输入:降阶阶数n,矩阵A,矩阵B,u
输出:正交规范矩阵Qn
(1)计算q1=u/‖u‖2
(2)计算p1=0;
(3)对于j=1:n;
(4)计算r=Aqj+Bpj
(5)s=qj
(6)对于i=1:j;
(7)计算tij=qi Tr;
(8)r=r-qitij
(9)s=s-pitij
(10)结束i循环;
(11)计算tj+1j=‖r‖2
(12)若tj+1j=0,停止j循环;
(13)计算qj+1=r/tj+1j
(14)pj+1=s/tj+1j
(15)结束j循环
Qn=[q0,q1,q2,...qn-1];
步骤五:利用正交投影矩阵Vq∈RN×n,对互连线的时域方程进行合同变换获得n阶的降阶系统;
利用正交投影矩阵Vq得到的降阶系统如下:
G ~ x ~ ( t ) + C ~ x ~ · ( t ) = B ~ u ( t ) (8)
y ~ ( t ) = L ~ T x ~ ( t )
其中 G ~ = Q n T G Q n , C ~ = Q n T C Q n , B ~ = Q n T B , L ~ = Q n T L ;
步骤六:利用多步积分法离散方法数值求解降阶系统的时域输出;
多步积分法离散(8),得:
G ~ x 0 ~ = B ~ u ( t 0 )
( G ~ + C ~ h ) x ~ 1 + ( - C ~ h ) x ~ 0 = B ~ u ( t 1 ) - - - ( 9 ) .
( a 0 G ~ + C ~ ) x ~ n + 1 + ( a 1 G ~ - C ~ ) x ~ n + a 2 G ~ x ~ n - 1 = B ~ ( a 0 u ( t n + 1 ) + a 1 u ( t n ) + a 2 u ( t n - 1 ) )
实施例2
本实施例为总线电路,电路阶数为25410,输入为1GHz的脉冲信号;将该电路分别降阶到10,30,50阶,在时域观察输出信号,以此衡量不同降阶方法的精度;以HSPICE仿真结果为原始系统输出的精确结果;定义相对误差rel_err如下:
rel _ err = | | y - y ~ | | | | y | | - - - ( 10 )
其中y和
Figure BDA00002116630000092
分别表示原始系统和降阶系统的输出。
与现有技术比较,结果显示,本发明的基于时域多步积分的模型降阶方法降阶时间与频域模型降阶方法PRIMA相当,但误差明显小于现有技术的频域模型降阶方法PRIMA;本发明方法得到的低阶降阶模型,可达到与PRIMA高阶降阶模型相当的精度。
表1显示了现有频域模型降阶方法PRIMA和本基于时域多步积分的模型的降阶方法的降阶时间和精度。
表1:
Figure BDA00002116630000093
结果还显示,本基于时域多步积分的模型降阶方法降阶精度高于基于小波配置的时域模型降阶方法,降阶时间明显小于基于小波配置的时域模型降阶方法;本发明所述的方法得到的低阶降阶模型,可达到与基于小波配置的时域模型降阶方法高阶降阶模型相当的精度。
表2列出了基于小波配置的时域模型降阶方法与本发明的基于时域多步积分的模型降阶方法的降阶时间和精度。
表2:
Figure BDA00002116630000094
Figure BDA00002116630000101
表3为基于时域单步积分模型降阶方法与本发明提出的基于时域多步积分的模型降阶方法的降阶时间和精度。其中显示,本发明的基于时域多步积分的模型降阶方法降阶精度高于基于时域单步积分模型降阶方法,降阶时间与基于时域单步积分的模型降阶方法相当;本发明方法获得的低阶降阶模型达到与基于时域单步积分模型降阶方法高阶降阶模型相当的精度。
表3:
Figure BDA00002116630000102
上述实施例的结果表明,本发明的基于时域多步积分的模型降阶方法的误差明显小于现有的基于小波配置法的时域模型降阶方法和频域模型降阶方法PRIMA,与基于时域单步积分的模型降阶方法相比,误差进一步减小,同时其时域误差分布更均匀(如图4所示);本发明的基于时域多步积分的模型降阶方法不仅比现有的时域模型降阶方法复杂度低和比现有的频域模型降阶方法精度高,并且与时域单步积分的模型降阶方法相比,该方法可在保证与之计算复杂度相当的基础上,达到更高的精度。

Claims (6)

1.一种高效的基于时域多步积分的互连线模型降阶方法,其特征在于:步骤如下:
步骤一:读取互连线电路的特性数据及输入激励;
步骤二:利用改进节点分析方法建立互连线电路的时域方程;
步骤三:用多步积分方法对互连线电路的时域方程进行离散,得到二次Arnoldi递推关系,该递推关系形成了一个二次Krylov子空间;
步骤四:利用二次Arnoldi算法构造步骤三产生的递推关系的正交投影矩阵Vq∈RN×n,n=N,其中n为降阶系统的阶数,N为原始系统的阶数;
步骤五:利用正交投影矩阵Vq∈RN×n,对互连线电路的时域方程进行合同变换获得n阶的降阶系统;
步骤六:利用多步积分法数值求解降阶系统的时域输出。
2.如权利要求1所述的方法,其特征在于:所述步骤二中,时域方程为:
C x · ( t ) + Gx ( t ) = Bu ( t ) (1)
y(t)=LTx(t)
其中,未知变量x以及系数矩阵C和G分别表示为
x = v i , C = Q 0 0 H , G = S E - E T 0
其中,
Figure FDA00002116629900013
分别表示节点电压和电感与电压源的支路电流,v和i共同组成N维的未知向量x,即N1+N2=N;N为方程中的未知变量个数,同时表示原始系统的阶数;y表示输出电压或电流;G,C∈□N×N为电路的系数矩阵;矩阵分别表示电阻、电容和电感的贡献,E是电感的关联矩阵;B∈□N×p,L∈□N×m分别表示p个输入,m个输出的关联矩阵。
3.如权利要求1所述的方法,其特征在于:所述步骤三中,用多步积分方法对互连线的时域方程进行离散,得到非齐次递推关系如下:
x0=G-1B
x1=(Gh+C)-1(B+Cx0)
xi+1=M-1Kxi+M-1Dxi-1(i≥1)
其中,M=(a0G+C),K=(C-a1G),D=-a2G,a0=5h/12,a1=2h/3,a2=-h/12,h为时间间隔。
4.如权利要求1所述的方法,其特征在于:所述步骤三中,形成的递推关系形成二次Krylov子空间,利用二次Arnoldi算法求得二次Krylov子空间的正交基,然后通过正交基对原始系统进行投影得到降阶系统。
5.如权利要求1所述的方法,其特征在于:所述步骤五中利用正交投影矩阵Vq得到的降阶系统为:
G ~ x ~ ( t ) + C ~ x ~ · ( t ) = B ~ u ( t ) (8)
y ~ ( t ) = L ~ T x ~ ( t )
其中 G ~ = Q n T G Q n , C ~ = Q n T C Q n , B ~ = Q n T B , L ~ = Q n T L .
6.如权利要求1所述的方法,其特征在于:所述步骤六中,多步积分法离散(8),得:
G ~ x 0 ~ = B ~ u ( t 0 )
( G ~ + C ~ h ) x ~ 1 + ( - C ~ h ) x ~ 0 = B ~ u ( t 1 ) - - - ( 9 ) .
( a 0 G ~ + C ~ ) x ~ n + 1 + ( a 1 G ~ - C ~ ) x ~ n + a 2 G ~ x ~ n - 1 = B ~ ( a 0 u ( t n + 1 ) + a 1 u ( t n ) + a 2 u ( t n - 1 ) )
CN201210332712.4A 2012-09-09 2012-09-09 基于时域多步积分的互连线模型降阶方法 Active CN103678738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210332712.4A CN103678738B (zh) 2012-09-09 2012-09-09 基于时域多步积分的互连线模型降阶方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210332712.4A CN103678738B (zh) 2012-09-09 2012-09-09 基于时域多步积分的互连线模型降阶方法

Publications (2)

Publication Number Publication Date
CN103678738A true CN103678738A (zh) 2014-03-26
CN103678738B CN103678738B (zh) 2017-09-05

Family

ID=50316281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210332712.4A Active CN103678738B (zh) 2012-09-09 2012-09-09 基于时域多步积分的互连线模型降阶方法

Country Status (1)

Country Link
CN (1) CN103678738B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902769A (zh) * 2014-03-27 2014-07-02 浪潮电子信息产业股份有限公司 一种渐近波形估计算法的模型降阶方法
CN104614985A (zh) * 2014-11-27 2015-05-13 北京航空航天大学 一种基于非线性规划的高阶系统最优降阶方法
WO2024031887A1 (zh) * 2022-08-09 2024-02-15 浙江中控技术股份有限公司 工业控制系统的模型识别方法、装置、设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901279A (zh) * 2009-06-01 2010-12-01 复旦大学 集成电路电源地网络的分析方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901279A (zh) * 2009-06-01 2010-12-01 复旦大学 集成电路电源地网络的分析方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHAOJUN BAI .ETC: ""SOAR: A SECOND-ORDER ARNOLDI METHOD FOR THE SOLUTION OF THE QUADRATIC EIGENVALUE PROBLEM"", 《SIAM J MATRIX ANAL APPL》 *
侯丽敏 等: ""互连线高效时域梯形差分模型降阶算法"", 《计算机辅助设计与图形学学报》 *
张奠成 等: "《计算机网络辅助设计》", 31 December 1981, 国防工业出版社 *
李鸿儒 等: ""一种用于模拟高速VLSI中互连线瞬态响应的高效数值方法"", 《上海交通大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902769A (zh) * 2014-03-27 2014-07-02 浪潮电子信息产业股份有限公司 一种渐近波形估计算法的模型降阶方法
CN104614985A (zh) * 2014-11-27 2015-05-13 北京航空航天大学 一种基于非线性规划的高阶系统最优降阶方法
WO2024031887A1 (zh) * 2022-08-09 2024-02-15 浙江中控技术股份有限公司 工业控制系统的模型识别方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN103678738B (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
Vrudhula et al. Hermite polynomial based interconnect analysis in the presence of process variations
CN104298809B (zh) 一种基于矩阵指数电磁暂态仿真的非线性建模求解方法
CN102314522B (zh) 一种模拟集成电路设计优化方法
TW201005566A (en) Method and technique for analogue circuit synthesis
CN102542079B (zh) 一种电路仿真器间器件模型数据的转换方法及装置
CN109033021B (zh) 一种基于变参收敛神经网络的线性方程求解器设计方法
CN108054757A (zh) 一种内嵌无功和电压的n-1闭环安全校核方法
CN104732459A (zh) 大规模电力系统病态潮流分析系统
CN103678738A (zh) 基于时域多步积分的互连线模型降阶方法
Yan et al. Second-order balanced truncation for passive-order reduction of RLCK circuits
CN102915385B (zh) 一种基于时域梯形法差分的互连线模型降阶方法
Zhang et al. A block-diagonal structured model reduction scheme for power grid networks
CN114004191A (zh) 一种延迟电路宏模型提取方法、系统、设备以及介质
Ma et al. Fast interval-valued statistical modeling of interconnect and effective capacitance
CN110472338B (zh) 适用于现场可编程逻辑阵列的改进电磁暂态仿真方法
Yang et al. RLC equivalent circuit synthesis method for structure-preserved reduced-order model of interconnect in VLSI
Ye et al. A novel framework for passive macro-modeling
CN105608237B (zh) 一种电路版图后仿真阶段的快速波形预测方法
Qi et al. Wideband passive multiport model order reduction and realization of RLCM circuits
Ye et al. Scalable analysis of mesh-based clock distribution networks using application-specific reduced order modeling
Tseng et al. A novel design space reduction method for efficient simulation-based optimization
Zhu et al. Two-stage newton–raphson method for transistor-level simulation
Zhang et al. A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts
Yan et al. DeMOR: Decentralized model order reduction of linear networks with massive ports
Zhang et al. Truncation error calculation based on Richardson extrapolation for variable-step collaborative simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant