CN103647461A - Control method and apparatus of AC-DC series resonance matrix converter - Google Patents
Control method and apparatus of AC-DC series resonance matrix converter Download PDFInfo
- Publication number
- CN103647461A CN103647461A CN201310655501.9A CN201310655501A CN103647461A CN 103647461 A CN103647461 A CN 103647461A CN 201310655501 A CN201310655501 A CN 201310655501A CN 103647461 A CN103647461 A CN 103647461A
- Authority
- CN
- China
- Prior art keywords
- voltage
- phase
- circuit
- resonant
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 239000011159 matrix material Substances 0.000 title claims abstract description 40
- 230000005284 excitation Effects 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims description 56
- 239000003990 capacitor Substances 0.000 claims description 29
- 238000004364 calculation method Methods 0.000 claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 230000014509 gene expression Effects 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000000819 phase cycle Methods 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000011217 control strategy Methods 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000002457 bidirectional effect Effects 0.000 description 8
- 238000004146 energy storage Methods 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Ac-Ac Conversion (AREA)
Abstract
本发明涉及矩阵变换器控制技术和高频交流链接技术,具体的说是涉及一种高压直流负载用AC-DC串联谐振矩阵变换器的控制方法及装置。本发明的方法,提出了在高频电流半个周期内,采用激励电压先从低线电压切换到高线电压,然后再切换到0电压的控制策略,实现了3电压的瞬时合成,在实现等效激励电压调节的同时也使得每相输入线电流的平均值正比于相电压,只需较小滤波电感值即可实现高的功率因数和低谐波的电流。本发明的有益效果为,可以实现高效率,高功率因数和低谐波、低峰值电流的特点的稳压输出的AC-DC串联谐振矩阵变换器的控制。本发明尤其适用于AC-DC串联谐振矩阵变换器。
The invention relates to matrix converter control technology and high-frequency AC link technology, in particular to a control method and device for an AC-DC series resonant matrix converter for high-voltage direct current loads. The method of the present invention proposes a control strategy in which the excitation voltage is first switched from low-line voltage to high-line voltage and then switched to zero voltage within half a cycle of high-frequency current, thereby realizing the instantaneous synthesis of three voltages. While the equivalent excitation voltage is adjusted, the average value of the input line current of each phase is proportional to the phase voltage, and only a small filter inductance value can achieve high power factor and low harmonic current. The beneficial effect of the invention is that it can realize the control of the AC-DC series resonant matrix converter with stable voltage output featuring high efficiency, high power factor, low harmonic wave and low peak current. The invention is especially applicable to AC-DC series resonant matrix converters.
Description
技术领域technical field
本发明涉及矩阵变换器控制技术和高频交流连接技术,具体的说是涉及一种高压直流负载用AC-DC串联谐振矩阵变换器的控制方法及装置。The invention relates to matrix converter control technology and high-frequency AC connection technology, in particular to a control method and device for an AC-DC series resonant matrix converter for high-voltage direct current loads.
背景技术Background technique
高压直流电源在连续波以及长脉冲调制器高功率微波系统中有着广泛应用。为了满足未来高技术战争的军事需求,高功率微波系统在朝着高功率、小型化、轻量化的方向发展,这就要求其电源有更高的功率密度,效率和功率因数。目前普遍使用的电源一般采用存在中间直流储能环节的DC-Link技术,中间储能环节的存在必然会增加电源系统的体积和重量,降低了电源的功率密度;另外,这种电源在其电网输入端的电能质量不高,功率因数较低、谐波含量较大,为了进行校正或抑制,必然需要引入额外的电力电子器件,这样又进一步降低了供电系统的功率密度和效率,为了解决上述问题,研究新拓扑结构与控制技术的电源,提高电源的效率,功率密度和功率因数就变得尤为重要。High voltage DC power supplies are widely used in continuous wave and long pulse modulator high power microwave systems. In order to meet the military needs of future high-tech warfare, high-power microwave systems are developing in the direction of high power, miniaturization, and light weight, which requires their power supplies to have higher power density, efficiency, and power factor. At present, the commonly used power supply generally adopts DC-Link technology with an intermediate DC energy storage link. The existence of the intermediate energy storage link will inevitably increase the volume and weight of the power supply system and reduce the power density of the power supply; in addition, this kind of power supply in its power grid The power quality at the input end is not high, the power factor is low, and the harmonic content is large. In order to correct or suppress, it is necessary to introduce additional power electronic devices, which further reduces the power density and efficiency of the power supply system. In order to solve the above problems , it becomes especially important to study the power supply with new topology and control technology, and to improve the efficiency, power density and power factor of the power supply.
矩阵变换器具有能量双向流通、正弦输入输出电流、输入功率因数可控、输出电压幅值和相位可控、无中间储能环节和结构紧凑等诸多优点,将矩阵变换器应用于高压直流电源将显著提高电源的功率密度。The matrix converter has many advantages such as bidirectional flow of energy, sinusoidal input and output current, controllable input power factor, controllable output voltage amplitude and phase, no intermediate energy storage link, and compact structure. Applying the matrix converter to a high-voltage DC power supply will Significantly increases the power density of the power supply.
目前矩阵变换器的调制算法主要分为AV调制算法,瞬时电压合成算法和空间矢量调制算法。这些调制算法相对复杂,计算量较大,更重要的是不能适用在高频(几十kHz)输出场合。当前矩阵变换器的换流策略主要分为电压型和电流型换流策略,为实现可靠的换流输入需串联较大电感防止输入短路,输出需采用箝位电路防止输出开路,而这些方法也不适用于当前高频工作的拓扑电路。At present, the modulation algorithms of matrix converters are mainly divided into AV modulation algorithms, instantaneous voltage synthesis algorithms and space vector modulation algorithms. These modulation algorithms are relatively complex, with a large amount of calculation, and more importantly, they cannot be applied to high-frequency (tens of kHz) output occasions. The current commutation strategies of matrix converters are mainly divided into voltage-type and current-type commutation strategies. In order to achieve reliable commutation input, a large inductance must be connected in series to prevent input short-circuit, and a clamp circuit must be used to prevent output from being open. These methods also Not suitable for current topological circuits operating at high frequencies.
应用在高频输出场合的矩阵变换器称为高频交流链,随着矩阵开关后接的主回路类型以及工作模式的不同,矩阵开关的控制策略、换流策略均不同,不能借鉴已有的方法;为了减小电源的输出纹波、提高输入侧功率因数、同时减小主回路电流峰值,需研究应用适用于当前拓扑电路和工作模式的新型控制策略和换流策略。The matrix converter used in high-frequency output occasions is called a high-frequency AC link. With the difference in the type of main circuit connected behind the matrix switch and the working mode, the control strategy and commutation strategy of the matrix switch are different, and the existing ones cannot be used for reference. Methods: In order to reduce the output ripple of the power supply, improve the power factor of the input side, and reduce the peak current of the main circuit at the same time, it is necessary to study and apply a new control strategy and commutation strategy suitable for the current topology circuit and working mode.
发明内容Contents of the invention
本发明所要解决的,就是针对上述常规矩阵变换器的不足,提出一种实现稳压输出的AC-DC串联谐振矩阵变换器的控制方法及装置。What the present invention aims to solve is to propose a control method and device for an AC-DC series resonant matrix converter that realizes voltage-stabilized output in view of the shortcomings of the above-mentioned conventional matrix converter.
本发明解决上述技术问题所采用的技术方案是:一种AC-DC串联谐振矩阵变换器的控制方法,其特征在于,包括以下步骤:The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a kind of control method of AC-DC series resonant matrix converter, it is characterized in that, comprises the following steps:
a.实时采集负载电压V0和三相电压源的三相输入相电压ua,ub,uc;a. Collect the load voltage V 0 and the three-phase input phase voltage u a , u b , u c of the three-phase voltage source in real time;
b.根据实时采集到的三相输入相电压ua,ub,uc的相对大小关系,将每个输入相电压周期划分为12个区间,每个区间内相电压的极性和大小确定,且保持单调变化,所述12个区间具体为:b. According to the relative size relationship of the three-phase input phase voltage u a , u b , u c collected in real time, each input phase voltage cycle is divided into 12 intervals, and the polarity and magnitude of the phase voltage in each interval are determined , and maintain a monotonous change, the 12 intervals are specifically:
区间Ⅰ:ua>uc>ub,UP=ua,UM=uc,UN=ub;Interval Ⅰ: u a > u c > u b , U P = u a , U M = u c , U N = u b ;
区间Ⅱ:ua>ub>uc,UP=ua,UM=ub,UN=uc;Interval II: u a > u b > u c , U P = u a , U M = u b , U N = u c ;
区间Ⅲ:ua>ub>uc,UP=uc,UM=ub,UN=ua;Interval III: u a > u b > u c , U P = u c , U M = u b , U N = u a ;
区间Ⅳ:ub>ua>uc,UP=uc,UM=ua,UN=ub;Interval IV: u b >u a >u c , U P =u c , U M =u a , U N =u b ;
区间Ⅴ:ub>ua>uc,UP=ub,UM=ua,UN=uc;Interval Ⅴ: u b > u a > u c , U P = u b , U M = u a , U N = u c ;
区间Ⅵ:ub>uc>ua,UP=ub,UM=uc,UN=ua;Interval VI: u b >u c >u a , U P =u b , U M =u c , U N =u a ;
区间Ⅶ:ub>uc>ua,UP=ua,UM=ub,UN=uc;Interval VII: u b > u c > u a , U P = u a , U M = u b , U N = u c ;
区间Ⅷ:uc>ub>ua,UP=ua,UM=ub,UN=uc;Interval Ⅷ: u c > u b > u a , U P = u a , U M = u b , U N = u c ;
区间Ⅸ:uc>ub>ua,UP=uc,UM=ub,UN=ua;Interval IX: u c > u b > u a , U P = u c , U M = u b , U N = u a ;
区间Ⅹ:uc>ua>ub,UP=uc,UM=ua,UN=ub;Interval X: u c > u a > u b , U P = u c , U M = u a , U N = u b ;
区间Ⅺ:uc>ua>ub,UP=ub,UM=ua,UN=uc;Interval Ⅺ: u c > u a > u b , U P = u b , U M = u a , U N = u c ;
区间Ⅻ:ua>uc>ub,UP=ub,UM=uc,UN=ua;Interval Ⅻ: u a > u c > u b , U P = u b , U M = u c , U N = u a ;
其中Up幅值最大,UM幅值最小;定义高线电压Uj=|UP-UN|,低线电压Uk=|UP-UM|;Among them, the amplitude of U p is the largest, and the amplitude of U M is the smallest; define the high line voltage U j =| UP -U N |, the low line voltage U k =| UP -U M |;
c.采用低线电压Uk、高线电压Uj以及0电压共同参与的组合方式完成激励,即采用6过程的工作模式,谐振电流正半周和负半周均进行2次换流且均包含3个工作过程,正负半周激励电压的极性相反,具体为:第1个工作过程采用低线电压Uk,第2个工作过程采用高线电压Uj,第3个工作过程采用0电压,第4个工作过程采用低线电压-Uk,第5个工作过程采用高线电压-Uj,第6个工作过程采用0电压;假设在1-2工作过程中,从UM相流出电荷量为Q1,从UN相流出电荷量为Q2,在4-5工作过程中,流出UM相的电荷量为Q3,流出UN相的电荷量为Q4,根据电荷量精确分配的调制策略,在一个谐振电流半周期内,使不同相流出或流入的电荷量之比等于各自的相电压绝对值之比,可得电荷分配比例: c. The combination of low-line voltage U k , high-line voltage U j and zero voltage is used to complete the excitation, that is, the working mode of 6 processes is adopted, and the positive half cycle and negative half cycle of the resonant current are commutated twice and include 3 In each working process, the polarities of positive and negative half-cycle excitation voltages are opposite, specifically: the first working process uses low-line voltage U k , the second working process uses high-line voltage U j , and the third working process uses 0 voltage, The 4th working process adopts the low-line voltage- Uk , the 5th working process adopts the high-line voltage- Uj , and the 6th working process adopts 0 voltage; assuming that in the 1-2 working process, the charge flows out from the U M phase The amount of charge flowing out from the U N phase is Q 1 , the amount of charge flowing out from the U N phase is Q 2 , during the 4-5 working process, the amount of charge flowing out of the U M phase is Q 3 , and the amount of charge flowing out of the U N phase is Q 4 The distribution modulation strategy makes the ratio of the outflow or inflow of charges in different phases equal to the ratio of the absolute value of the respective phase voltages in a half cycle of the resonant current, and the charge distribution ratio can be obtained:
d.根据谐振电容电压峰值ucmax和负载电压V0,获取顺序接入的低线电压Uk、高线电压Uj和0电压中每个电压需要接入的时间以及三个电压的切换时间点;d. According to the peak value uc max of the resonant capacitor voltage and the load voltage V 0 , obtain the time required for each of the sequentially connected low-line voltage U k , high-line voltage U j and 0 voltage and the switching time of the three voltages point;
e.根据工作时刻电网相电压所处的区间以及需要输出的电流方向,并根据步骤c所述的工作过程,分配对应的功率开关的开关状态组合;e. According to the interval of the phase voltage of the power grid at the working time and the current direction to be output, and according to the working process described in step c, assign the corresponding switching state combination of the power switch;
f.根据步骤d所得的三个电压的切换时间点生成通用的时序控制信号,控制各工作过程之间的切换;f. According to the switching time points of the three voltages obtained in step d, a general sequence control signal is generated to control the switching between each working process;
g.根据步骤f的控制完成三相相间的选择和切换,判断工作是否结束,若是,则退出,若否,则回到步骤a。g. Complete the selection and switching of the three phases according to the control of step f, judge whether the work is over, if yes, exit, if not, return to step a.
具体的,步骤d的具体方法为:Specifically, the specific method of step d is:
根据串联谐振变换器工作特性,以谐振电容电压为横轴、谐振电流i与特征阻抗Z的乘积值为纵轴构建平面直角坐标系,谐振电路特征阻抗其中Lr为谐振电感值,Cr为谐振电容值,假设谐振电流正半周的3个工作过程对应的轨迹为分别以O1、O2、O3为圆心并分别以R1、R2、R3为半径的相连接的圆弧,连接点为P1和P2,激励电压分别为高线电压Uj,低线电压Uk和0电压,定义O1=Uk-V0,O2=Uj-V0,O3=-V0,在电流正半周期内,假设第1和第2工作过程对应的谐振电容电压变化量分别为Δuc1和Δuc2,Δuc1和Δuc2的比值与和这两过程对应的电荷量Q1和Q2的比值相等,电容电压峰值为ucmax,稳态工作时,谐振电容电压正最大值与负最大值相等,因而在电流为0的开始时刻对应谐振电容起始电压可定为-ucmax,设连接点P1和P2分别对应的横坐标值为u1和u2,即u1为第1过程结束后谐振电容电压,u2为第2过程结束后谐振电容电压,通过公式:According to the working characteristics of the series resonant converter, a rectangular coordinate system is constructed with the resonant capacitor voltage as the horizontal axis and the product value of the resonant current i and the characteristic impedance Z as the vertical axis, and the characteristic impedance of the resonant circuit Among them, Lr is the resonant inductance value, Cr is the resonant capacitance value, assuming that the trajectories corresponding to the three working processes of the positive half cycle of the resonant current are respectively centered on O 1 , O 2 , O 3 and centered on R 1 , R 2 , R 3 is the radius of the connected circular arc, the connection points are P 1 and P 2 , the excitation voltages are the high-line voltage U j , the low-line voltage U k and the zero voltage respectively, define O 1 =U k -V 0 , O 2 = U j -V 0 , O 3 =-V 0 , in the positive half cycle of the current, it is assumed that the voltage variation of the resonant capacitor corresponding to the first and second working processes is the ratio of Δuc 1 to Δuc 2 , Δuc 1 to Δuc 2 It is equal to the ratio of the charges Q 1 and Q 2 corresponding to these two processes, and the peak value of the capacitor voltage is uc max . In steady state operation, the positive and negative maximum values of the resonant capacitor voltage are equal, so at the beginning moment when the current is 0 The initial voltage of the corresponding resonant capacitor can be set as -uc max , and the abscissa values corresponding to the connection points P 1 and P 2 are respectively u 1 and u 2 , that is, u 1 is the voltage of the resonant capacitor after the first process, and u 2 is After the end of the second process, the resonant capacitor voltage, through the formula:
前两项可得:The first two are available:
简化后得:After simplification:
根据电荷分配约束条件:According to the charge distribution constraints:
可得:Available:
根据ucmax、O1、O2、O3和K值可得到u1和u2的值;The values of u 1 and u 2 can be obtained according to uc max , O 1 , O 2 , O 3 and K;
设第一工作过程轨迹对应的弧度为θ1、第二工作过程轨迹对应的弧度为θ2、第三工作过程轨迹对应的弧度为θ3,其对应的表达式分别为:Assuming that the radian corresponding to the first working process trajectory is θ 1 , the corresponding radian of the second working process trajectory is θ 2 , and the corresponding radian of the third working process trajectory is θ 3 , the corresponding expressions are respectively:
根据θ=ωt,可得:第一工作过程结束时间t1=θ1/ω,第二工作过程结束时间t2=(θ1+θ2)/ω,第三工作过程结束时间t3=(θ1+θ2+θ3)/ω;其中ω为谐振角频率,可分别得到切换点时间t1、t2和t3。According to θ=ωt, it can be obtained: the end time of the first working process t 1 = θ 1 /ω, the ending time of the second working process t 2 =(θ 1 +θ 2 )/ω, the ending time of the third working process t 3 = (θ 1 +θ 2 +θ 3 )/ω; where ω is the resonant angular frequency, Switching point times t 1 , t 2 and t 3 can be obtained respectively.
一种AC-DC串联谐振矩阵变换器的控制装置,包括三相电源2、滤波器3、EMI滤波器4、整流硅堆17和滤波电路18,其特征在于,还包括开关矩阵1、触发驱动电路16、故障保护电路、过零比较器电路5、相位检测单元6、电压采集模块15、负载电压采集电路11、闭环控制单元10、控制参数计算单元9、时序生成单元8和开关状态控制单元7,所述故障保护电路包括电网故障检测电路12、过流检测电路13和过温检测电路14;所述三相电源2的相电压通过滤波器3与开关矩阵1连接,三相电源2的零电压和相电压通过EMI滤波器4分别与电网故障检测电路12、过零比较器电路5和电压采集模块15连接;过零比较器电路5与相位检测单元6的输入端连接,相位检测单元6的一个输出端和电压采集模块15的输出端与控制参数计算单元9的输入端连接,控制参数计算单元9的输出端与时序生成单元8的输入端连接,时序生成单元8的输出端、相位检测单元6的另一个输出端以及过流检测电路13和过温检测电路14的输出端与开关状态控制单元7的输入端连接,开关状态控制单元7的输出端与触发驱动电路16的输入端连接,开关矩阵1连接触发驱动电路16的输出端、整流硅堆17的一端和过流检测电路13的输入端,过温检测电路14的输入端连接整流硅堆17,整流硅堆17的另一端连接滤波电路18和负载电压采集电路11,负载电压采集电路11的输出端连接闭环控制器10的输入端,闭环控制器10的输出端连接控制参数计算单元9的输入端;其中,A control device for an AC-DC series resonant matrix converter, including a three-
过零比较器电路5将三相电源2输入的各相电压通过与零线的过零比较转变为与各相电压极性一致的数字信号,该数字信号经数字滤波之后传输给相位检测单元6和开关状态控制单元7;The zero-crossing comparator circuit 5 converts each phase voltage input by the three-
负载电压采集电路11采集实际输出到负载部分的电压并传递到闭环控制单元10,闭环控制单元10根据定值与实际输出值比较和计算得到控制量并输入给控制参数计算单元9;The load
相位检测单元6对电网极性信号进行跟踪和同步,对极性信号宽度进行测量以识别电网是否有故障,根据极性信号的前后变化得到电网相序,同步计数器值与电网的相位对应,根据此值可以间接得到电网的相位,用于辅助处理同一电网极性下的不同区间,并得到不同时刻需要的电荷分析比例K,相位检测单元6得到的数据传输给控制参数计算单元9和开关状态控制单元7;The phase detection unit 6 tracks and synchronizes the polarity signal of the power grid, measures the width of the polarity signal to identify whether there is a fault in the power grid, and obtains the phase sequence of the power grid according to the change of the polarity signal before and after, and the value of the synchronization counter corresponds to the phase of the power grid. This value can indirectly obtain the phase of the power grid, which is used to assist in the processing of different intervals under the same grid polarity, and to obtain the charge analysis ratio K required at different times. The data obtained by the phase detection unit 6 is transmitted to the control
控制参数计算单元9根据接收到的相位检测单元6和电压采集模块15传输的数据,得出当前状态下的电流周期和需要切换相的时间,将得到的时间控制量传输到时序生成单元8;The control
时序生成单元8根据接收到的信号产生控制开关的时序信号,并将控制信号传输到开关状态控制单元7;The
开关状态控制单元7根据接收到的时序信号和相位检测单元6提供的数据,判断电网所处区间,以及正负交替的电流输出方向选择与时序生成单元8输出的12路信号相对应的开关编号,开关选择模块7输出的与实际开关位置相对应的控制信号经开关驱动电路16驱动开关矩阵1完成变换器主电路的控制。The switch state control unit 7 judges the interval of the power grid according to the received timing signal and the data provided by the phase detection unit 6, and selects the switch number corresponding to the 12-way signal output by the
本发明的有益效果为,将矩阵变换器用于大功率直流电源,提高了整体的功率密度。采用串联谐振过谐振的工作模式与同等功率下采用断续模式相比:满足同样的纹波需求时需要的滤波电容容量更小,调整速率更快;而且主回路电流峰值降低一半,降低了开关的电流应力;同时当前商品化封装好的双向开关的电流为400A等级,可以正好适用采用当前方案的100kW的装置;同时提出了在高频电流半个周期内,采用激励电压先从低线电压切换到高线电压,然后再切换到0电压的控制策略,实现了3电压的瞬时合成,在实现等效激励电压调节的同时也使得每相输入线电流的平均值正比于相电压,只需较小滤波电感值即可实现高的功率因数和低谐波的电流,意味着电感的尺寸、重量和损耗大为减小。The beneficial effect of the invention is that the matrix converter is used for a high-power direct-current power supply, and the overall power density is improved. Compared with the discontinuous mode at the same power, the working mode of series resonance and over-resonance requires smaller filter capacitor capacity and faster adjustment speed to meet the same ripple demand; and the peak value of the main circuit current is reduced by half, reducing switching At the same time, the current of the current commercially packaged bidirectional switch is 400A, which can be just suitable for the 100kW device using the current scheme; at the same time, it is proposed that the excitation voltage should start from the low-line voltage within half a cycle of the high-frequency current. The control strategy of switching to high line voltage and then switching to 0 voltage realizes the instantaneous synthesis of 3 voltages. While realizing the regulation of equivalent excitation voltage, it also makes the average value of the input line current of each phase proportional to the phase voltage. Small filter inductor values can achieve high power factor and low harmonic current, which means that the size, weight and loss of the inductor are greatly reduced.
附图说明Description of drawings
图1是AC-DC矩阵变换器的拓扑结构;Figure 1 is the topology of the AC-DC matrix converter;
图2是正半周工作状态图;Fig. 2 is a positive half-cycle working state diagram;
图3是包含6个工作过程的示意图;Fig. 3 is a schematic diagram comprising 6 working processes;
图4是一个周期内的开关控制和换流时序图;Figure 4 is a sequence diagram of switch control and commutation within one cycle;
图5是电网相电压工作区间划分图;Fig. 5 is a division diagram of the grid phase voltage working interval;
图6是本发明的控制方法FPGA实现框图;Fig. 6 is a control method FPGA realization block diagram of the present invention;
图7是本发明的控制装置结构示意图。Fig. 7 is a schematic structural diagram of the control device of the present invention.
具体实施方式Detailed ways
下面结合附图,详细描述本发明的技术方案:Below in conjunction with accompanying drawing, describe technical scheme of the present invention in detail:
对于串联谐振变换器而言,由输出滤波电容与负载并联组成的负载回路与谐振回路串联,谐振电流完全流经负载回路,通过对谐振电流的调节从而实现输出电压的调节与稳定。由于谐振电流完全流经谐振电容,且电容电压变化量与电流积分值成正比,假设稳态时电流周期时间基本恒定,那么每个周期电流平均值也与电容电压变化量成正比,本发明以谐振电容电压峰值(ucmax)作为控制量表征谐振回路的工作状态;闭环控制根据实时采集到的负载电压与设定电压进行闭环控制运算得到需要的控制量ucmax。For the series resonant converter, the load circuit composed of the output filter capacitor connected in parallel with the load is connected in series with the resonant circuit, the resonant current flows completely through the load circuit, and the output voltage is adjusted and stabilized by adjusting the resonant current. Since the resonant current flows completely through the resonant capacitor, and the capacitance voltage change is proportional to the current integral value, assuming that the current cycle time is basically constant in a steady state, then the average value of the current in each cycle is also proportional to the capacitance voltage change. The present invention uses The peak value of the resonant capacitor voltage (uc max ) is used as the control quantity to characterize the working state of the resonant circuit; the closed-loop control is based on the real-time collected load voltage and the set voltage to perform closed-loop control calculation to obtain the required control quantity uc max .
本发明的具体控制方法为:Concrete control method of the present invention is:
①因为串接在回路中的负载电压(等效为电压源)已经通过测量得到,而谐振参数一定,为了实现本发明所述期望的工作状态,就需要调节等效的激励电压;当前可用于激励的电压为电网相电压的组合,根据实时采集到的三相输入相电压ua,ub,uc的相对大小关系,将每个输入相电压周期划分为12个区间,每个区间内相电压的极性和大小确定,且保持单调变化,所述12个区间具体为:①Because the load voltage (equivalent to a voltage source) connected in series in the loop has been obtained by measurement, and the resonance parameter is fixed, in order to achieve the desired working state of the present invention, it is necessary to adjust the equivalent excitation voltage; currently available for The excitation voltage is a combination of grid phase voltages. According to the relative size relationship of the three-phase input phase voltage u a , u b , u c collected in real time, each input phase voltage cycle is divided into 12 intervals. The polarity and magnitude of the phase voltage are determined and kept changing monotonously. The 12 intervals are specifically:
区间Ⅰ:ua>uc>ub,UP=ua,UM=uc,UN=ub;Interval Ⅰ: u a > u c > u b , U P = u a , U M = u c , U N = u b ;
区间Ⅱ:ua>ub>uc,UP=ua,UM=ub,UN=uc;Interval II: u a > u b > u c , U P = u a , U M = u b , U N = u c ;
区间Ⅲ:ua>ub>uc,UP=uc,UM=ub,UN=ua;Interval III: u a > u b > u c , U P = u c , U M = u b , U N = u a ;
区间Ⅳ:ub>ua>uc,UP=uc,UM=ua,UN=ub;Interval IV: u b >u a >u c , U P =u c , U M =u a , U N =u b ;
区间Ⅴ:ub>ua>uc,UP=ub,UM=ua,UN=uc;Interval Ⅴ: u b > u a > u c , U P = u b , U M = u a , U N = u c ;
区间Ⅵ:ub>uc>ua,UP=ub,UM=uc,UN=ua;Interval VI: u b >u c >u a , U P =u b , U M =u c , U N =u a ;
区间Ⅶ:ub>uc>ua,UP=ua,UM=ub,UN=uc;Interval VII: u b > u c > u a , U P = u a , U M = u b , U N = u c ;
区间Ⅷ:uc>ub>ua,UP=ua,UM=ub,UN=uc;Interval Ⅷ: u c > u b > u a , U P = u a , U M = u b , U N = u c ;
区间Ⅸ:uc>ub>ua,UP=uc,UM=ub,UN=ua;Interval IX: u c > u b > u a , U P = u c , U M = u b , U N = u a ;
区间Ⅹ:uc>ua>ub,UP=uc,UM=ua,UN=ub;Interval X: u c > u a > u b , U P = u c , U M = u a , U N = u b ;
区间Ⅺ:uc>ua>ub,UP=ub,UM=ua,UN=uc;Interval Ⅺ: u c > u a > u b , U P = u b , U M = u a , U N = u c ;
区间Ⅻ:ua>uc>ub,UP=ub,UM=uc,UN=ua;Interval Ⅻ: u a > u c > u b , U P = u b , U M = u c , U N = u a ;
其中Up幅值最大,UM幅值最小;定义Uj=|UP-UN|和Uk=|UP-UM|,Uj为高线电压,Uk为低线电压。Among them, the amplitude of U p is the largest, and the amplitude of U M is the smallest; define U j =| UP -U N | and U k =| UP -U M |, U j is the high-line voltage, and U k is the low-line voltage.
②采用低线电压(Uk)、高线电压(Uj)以及0电压共同参与的组合方式完成激励,即采用6过程的工作模式,谐振电流正半周和负半周均进行2次换流且均包含3个工作过程,正负半周激励电压的极性相反,具体为:第1个工作过程采用低线电压Uk,第2个工作过程采用高线电压Uj,第3个工作过程采用0电压,第4个工作过程采用低线电压-Uk,第5个工作过程采用高线电压-Uj,第6个工作过程采用0电压;假设在1-2工作过程中,从UM相流出电荷量为Q1,从UN相流出电荷量为Q2,在4-5工作过程中,流出UM相的电荷量为Q3,流出UN相的电荷量为Q4,根据电荷量精确分配的调制策略,在一个谐振电流半周期内,使不同相流出或流入的电荷量之比等于各自的相电压绝对值之比,比例K值由查表得到,电荷分配比例为:②The combination of low-line voltage (U k ), high-line voltage (U j ) and zero voltage is used to complete the excitation, that is, the working mode of 6 processes is adopted, and the positive half cycle and negative half cycle of the resonant current are commutated twice and Both include 3 working processes, and the polarities of positive and negative half-cycle excitation voltages are opposite, specifically: the first working process uses low-line voltage U k , the second working process uses high-line voltage U j , and the third working process uses 0 voltage, the 4th working process adopts low line voltage -U k , the 5th working process adopts high line voltage -U j , and the 6th working process adopts 0 voltage; suppose in 1-2 working process, from U M The amount of charge flowing out of phase U is Q 1 , and the amount of charge flowing out from phase U N is Q 2 . During the 4-5 working process, the amount of charge flowing out of phase U M is Q 3 , and the amount of charge flowing out of phase U N is Q 4 The modulation strategy for the precise distribution of charge, within a half cycle of the resonant current, makes the ratio of the outflow or inflow of different phases equal to the ratio of the absolute value of the respective phase voltages. The ratio K value is obtained from the look-up table, and the charge distribution ratio is:
③采用状态图作为分析串联谐振3电压瞬时合成作为激励源的方法,并用此方法得到控制参数。③Use the state diagram as a method to analyze the instantaneous synthesis of the series resonance 3 voltage as the excitation source, and use this method to obtain the control parameters.
变量说明:激励电压可选择的有三个:高线电压Uj,低线电压Uk和0电压;负载电压等效到变压器初级为V0,谐振电容电压为uc,u1为第1过程结束后谐振电容电压,u2为第2过程结束后谐振电容电压,谐振电容电压峰值为ucmax,谐振电流为i,谐振电路特征阻抗为Z,谐振角频率为ω,相位角为θ,工作持续时间为t,Lr为谐振电感值,Cr为谐振电容值。Variable description: There are three options for the excitation voltage: high line voltage U j , low line voltage U k and 0 voltage; the load voltage is equivalent to the primary of the transformer as V 0 , the resonant capacitor voltage is uc, and u 1 is the end of the first process After the resonant capacitor voltage, u 2 is the resonant capacitor voltage after the second process, the peak value of the resonant capacitor voltage is uc max , the resonant current is i, the characteristic impedance of the resonant circuit is Z, the resonant angular frequency is ω, the phase angle is θ, and the work continues The time is t, Lr is the resonant inductance value, and Cr is the resonant capacitance value.
其中
定义O1=Uk-V0,O2=Uj-V0,O3=-V0; (1)Define O 1 =U k -V 0 , O 2 =U j -V 0 , O 3 =-V 0 ; (1)
电流正半周工作过程对应的状态图如图2所示,横轴为谐振电容电压,纵轴为谐振电流i与特征阻抗Z的乘积值;l1,l2,l3为电流正半周的三个工作过程对应的轨迹,分别以O1,O2,O3为圆心,分别以R1,R2,R3为半径的相连接的圆弧;在电流正半周期内,Δuc1和Δuc2分别为第1和第2工作过程对应的谐振电容电压变化量,比值与和这两过程对应的电荷量Q1和Q2的比值相等。The state diagram corresponding to the working process of the positive half cycle of the current is shown in Figure 2. The horizontal axis is the resonant capacitor voltage, and the vertical axis is the product value of the resonant current i and the characteristic impedance Z; The trajectories corresponding to each working process are connected circular arcs with O 1 , O 2 , and O 3 as centers and R 1 , R 2 , and R 3 as radii; in the positive half cycle of the current, Δuc 1 and Δuc 2 are the voltage variations of the resonant capacitor corresponding to the first and second working processes, and the ratio is equal to the ratio of the charges Q 1 and Q 2 corresponding to the two processes.
状态图(图2)上圆心(O1,O2,O3)参数根据b所述方法和表达式(1)得到且是基本稳定的已知量,电容电压峰值ucmax是闭环控制得到控制量也是的已知量;稳态工作时,谐振电容电压正最大值与负最大值相等,因而在电流为0的开始时刻对应谐振电容起始电压可定为-ucmax。那么图2中半径R1和R3可知,如果半径R2也确定,那么圆弧交点P1和P2就确定,从而状态图参数全部确定;The parameters of the circle center (O 1 , O 2 , O 3 ) on the state diagram (Figure 2) are obtained according to the method described in b and expression (1) and are basically stable known quantities. The peak value of the capacitor voltage uc max is controlled by closed-loop control The quantity is also a known quantity; in steady state operation, the positive and negative maximum values of the resonant capacitor voltage are equal, so the corresponding initial voltage of the resonant capacitor at the beginning of the current is 0 can be set as -uc max . Then the radii R 1 and R 3 in Fig. 2 show that if the radius R 2 is also determined, then the arc intersection points P 1 and P 2 are determined, so that the parameters of the state diagram are all determined;
R2值的关系着P1和P2的位置(u1和u2),而这两点的位置关系受到电荷分配条件(Δuc1和Δuc2存在一定比例关系)的限制,采用R2表示u1和u2,再代入到比例限制条件中便可计算得到R2,状态图确定后,根据状态图上的几何关系可以计算得到每段圆弧(过程)对应的相位角度θ,根据θ=ωt从而获得时间控制参数3个时间节点t1~t3。The value of R 2 is related to the positions of P 1 and P 2 (u 1 and u 2 ), and the positional relationship between these two points is limited by the charge distribution conditions (there is a certain proportional relationship between Δuc 1 and Δuc 2 ), which is represented by R 2 u 1 and u 2 can be calculated by substituting
状态图稳定的几何约束关系:The geometric constraints of state diagram stability:
式(2)前两项整理后可得:After rearranging the first two terms of formula (2), we can get:
对式(3)简化后可得表达式:The expression (3) can be obtained after simplification:
电荷分配约束条件:Charge distribution constraints:
把式(4)和式(5)带入到式(6)中,经整理后可得R2表达式(7)如下:Bringing formula (4) and formula (5) into formula (6), after arrangement, the expression (7) of R2 can be obtained as follows:
其中ucmax已知;O1,O2,O3由式(1)得到;R1=ucmax+O1,R3=ucmax-O3;K由查表得到,因而根据式(6)可计算得到关键中间量R2。Among them, uc max is known; O 1 , O 2 , O 3 are obtained by formula (1); R 1 = uc max + O 1 , R 3 = uc max -O 3 ; K is obtained by looking up the table, so according to formula (6 ) can be calculated to obtain the key intermediate quantity R 2 .
将式(7)得到的R2值代入式(5)可得u2值;Substituting the R2 value obtained by formula (7) into formula (5) can obtain the u2 value;
将式(6)整理后可得:After rearranging formula (6), we can get:
将式(5)得到的u2值代入式(8)可得u1;Substituting the u 2 value obtained in formula (5) into formula (8) can get u 1 ;
状态图上各圆弧(l1~l3)对应角度的表达式如下:The expression of the angle corresponding to each arc (l 1 ~ l 3 ) on the state diagram is as follows:
根据θ=ωt可得:According to θ=ωt:
t1=θ1/ω (12)t 1 =θ 1 /ω (12)
t2=(θ1+θ2)/ω (13)t 2 =(θ 1 +θ 2 )/ω (13)
t3=(θ1+θ2+θ3)/ω (14)t 3 =(θ 1 +θ 2 +θ 3 )/ω (14)
根据式(12)~(14)求得控制所需的切换点时间。According to the formula (12) ~ (14) to obtain the switching point time required for control.
④根据工作时刻电网相电压所处的区间,按②所述的工作过程,按照③求解得到切换点时间完成一个电流周期的控制;④According to the interval of the phase voltage of the power grid at the working time, according to the working process described in ②, according to ③ to obtain the switching point time to complete the control of a current cycle;
除同极性之间切换的短时间外,矩阵开关在其他时刻对谐振回路均保持双向连通;设“1”表示开通,“0”表示关断,在不同条件下,有如下表1-表4的开关信号。Except for the short time of switching between the same polarity, the matrix switch maintains two-way connection to the resonant circuit at other times; set "1" to indicate opening, and "0" to indicate off. Under different conditions, there are the following table 1-table 4 switching signals.
表1第1到3区间双向功率开关状态组合次序表(开关位置见附图1)Table 1 Combination sequence of bidirectional power switch states in
表2第4到6区间双向功率开关状态组合次序表Table 2 Combination sequence table of bidirectional power switch states in the 4th to 6th intervals
表3第7到9区间双向功率开关状态组合次序表Table 3 Combination sequence table of bidirectional power switch states in the 7th to 9th intervals
表4第10到12区间双向功率开关状态组合次序表Table 4 Combination sequence table of bidirectional power switch states in the 10th to 12th intervals
⑤采用电压型“两步换流”和“四步换流”策略针对不同工作过程进行切换,谐振回路的激励电压是由上臂电压(H1点)和下臂电压(H2)差实现的(见图1和图3),对谐振回路不同的激励电压对应着不同的上臂和下臂电压的组合;换流可以以臂为单位进行三相相间的选择和切换,上臂由S1~S6组成,下臂由S7~S12组成,电网相电压工作区间划分如图5所示,以电网状态在第1区间,完整电流周期为例,上臂和下臂包含换流的开关状态如下:⑤Using voltage-type "two-step commutation" and "four-step commutation" strategies to switch between different working processes, the excitation voltage of the resonant circuit is realized by the difference between the upper arm voltage (H 1 point) and the lower arm voltage (H 2 ) (See Figure 1 and Figure 3), different excitation voltages for the resonant circuit correspond to different combinations of upper and lower arm voltages; the commutation can be selected and switched between three phases in units of arms, and the upper arm consists of S 1 to S 6 components, the lower arm is composed of S 7 ~ S 12 , the phase voltage working interval of the grid is shown in Figure 5, taking the grid state in the first interval and the complete current cycle as an example, the switch states of the upper arm and the lower arm including commutation are as follows :
上臂:upper arm:
过程1~过程3:(S1+S2+S4+S6);不需要换流;
过程3(S1+S2+S4+S6)→(S1+S6)→过程4(S1+S5+S6);需要2步完成换流;Process 3(S 1 +S 2 +S 4 +S 6 )→(S 1 +S 6 )→Process 4(S 1 +S 5 +S 6 ); two steps are required to complete the commutation;
过程4(S1+S5+S6)→(S1+S5)→(S1+S3+S5)→(S1+S3)→过程5(S1+S3+S4);需要4步完成换流;Process 4(S 1 +S 5 +S 6 )→(S 1 +S 5 )→(S 1 +S 3 +S 5 )→(S 1 +S 3 )→Process 5(S 1 +S 3 +S 4 ); 4 steps are required to complete the commutation;
过程5(S1+S3+S4)→(S1+S4)→过程6(S1+S2+S4+S6);需要2步完成换流;Process 5(S 1 +S 3 +S 4 )→(S 1 +S 4 )→Process 6(S 1 +S 2 +S 4 +S 6 ); two steps are required to complete the commutation;
下臂:lower arm:
过程1:(S8+S11+S12)→(S8+S12)→(S8+S10+S12)→(S8+S10)→过程2(S8+S9+S10);需要4步完成换流;Process 1: (S 8 +S 11 +S 12 )→(S 8 +S 12 )→(S 8 +S 10 +S 12 )→(S 8 +S 10 )→Process 2 (S 8 +S 9 + S 10 ); need 4 steps to complete the commutation;
过程2(S8+S9+S10)→(S8+S9)→过程3(S7+S8+S9+S11);需要2步完成换流;Process 2(S 8 +S 9 +S 10 )→(S 8 +S 9 )→Process 3(S 7 +S 8 +S 9 +S 11 ); two steps are required to complete the commutation;
过程3~过程6:(S7+S8+S9+S11);不需要换流;Process 3~Process 6: (S 7 +S 8 +S 9 +S 11 ); no commutation required;
为了便于开关状态的控制,把开关状态控制功能模块分为两个子模块:时序生成模块和开关选择模块;时序生成模块根据d所述计算得到的t1~t3生成与电网状态和电流方向无关的,但包含有换流操作的12路时序信号,如图4所示;开关选择模块根据当前电网所处区间,以及电流方向选择相应的开关与上述12路信号相连接,以第一区间为例,开关选择模块的选择结果如下:In order to facilitate the control of the switch state, the switch state control function module is divided into two sub-modules: the timing generation module and the switch selection module; the generation of t 1 ~ t 3 obtained by the timing generation module according to the calculation described in d has nothing to do with the grid state and current direction However, it includes 12 channels of timing signals for commutation operations, as shown in Figure 4; the switch selection module selects the corresponding switch to connect to the above 12 channels of signals according to the section of the current power grid and the direction of the current, taking the first section as For example, the selection result of the switch selection module is as follows:
上臂:S1=up_max2,S2=up_max1,S3=up_mid1,S4=up_mid2,S5=up_min1,S6=up_min2;Upper arm: S 1 =up_max 2 , S 2 =up_max 1 , S 3 =up_mid 1 , S 4 =up_mid 2 , S 5 =up_min 1 , S 6 =up_min 2 ;
下臂:S7=dn_max1,S8=dn_max2,S9=dn_mid2,S10=dn_mid1,S11=dn_min2,S12=dn_min1;Lower arm: S 7 =dn_max 1 , S 8 =dn_max 2 , S 9 =dn_mid 2 , S 10 =dn_mid 1 , S 11 =dn_min 2 , S 12 =dn_min 1 ;
⑥步骤⑤完成后返回步骤②,直至工作结束。⑥After step ⑤ is completed, return to
一种直流稳压输出的AC-DC串联谐振矩阵变换器控制装置,如图7所示,包括串联谐振回路、三相电源2、滤波器3、开关矩阵1、串联谐振回路、高频变压器与硅堆17、输出滤波电路18组成;控制系统由信号滤波器4、过零比较电路5、电网电压检测电路15、电网故障检测电路12、负载电压采集电路11、开关矩阵驱动电路16、过流检测电路13、过温检测电路14和以FPGA为控制核心的的控制器6~10;控制器内部由相位检测单元6、开关选择模块7、时序生成单元8、控制参数计算单元9和闭环控制单元10组成。An AC-DC series resonant matrix converter control device with DC stabilized voltage output, as shown in Figure 7, including a series resonant circuit, a three-
所述三相电源2通过滤波器3与开关矩阵1连接,开关矩阵1与串联谐振电路连接、串联谐振电路与变压器和整流硅堆17连接后经输出滤波电路18连接负载。三相电源2的中性线和三相电压通过EMI滤波器4分别与电网故障检测电路12、过零比较器电路5和电压采集模块15连接;过零比较器电路5与相位检测单元6的输入端连接,相位检测单元6的一个输出端和控制参数计算单元9连接,用于查表得到K所需的地址;负载电压采集电路11连接闭环控制单元10,闭环控制单元根据设定值与实际输出值比较和计算得到控制量并输入给控制参数计算单元9,控制参数计算单元9根据电网电压检测电路15得到的电网电压以及查表得到的K值计算出控制所需的时间控制量,并输送给时序生成单元8,时序生成单元8按照一定换流时序生成12路控制信号并输送给开关选择模块7,开关选择模块7根据相位检测单元6判断电网所处区间,以及正负交替的电流输出方向选择与时序生成单元8输出的12路信号相对应的开关编号,开关选择模块7输出的与实际开关位置相对应的控制信号经开关驱动电路16驱动开关矩阵1完成变换器主电路的控制。故障检测电路包括电网故障检测电路12检测到电网异常、过流检测电路13检测到电流异常以及过温检测电路14检测到温度过高后,将故障信号输送给开关选择模块7,开关选择模块7检测到有故障信号后立即锁存故障并关断所有开关完成保护动作的执行。The three-
过零比较器电路5的输入端与电网三相交流2相连,将输入各相电压通过与零线的过零比较转变为与各相电压极性一致的数字信号,此信号经数字滤波之后传输给相位检测单元6和开关状态控制单元7。The input terminal of the zero-crossing comparator circuit 5 is connected to the three-
相位检测单元6对电网极性信号进行跟踪和同步,对极性信号宽度进行测量以识别电网是否有故障,根据极性信号的前后变化得到电网相序,同步计数器值与电网的相位对应,根据此值可以间接得到电网的相位,用于辅助处理同一电网极性下的不同区间,并得到不同时刻需要的电荷分析比例K。The phase detection unit 6 tracks and synchronizes the polarity signal of the power grid, measures the width of the polarity signal to identify whether there is a fault in the power grid, and obtains the phase sequence of the power grid according to the change of the polarity signal before and after, and the value of the synchronization counter corresponds to the phase of the power grid. This value can indirectly obtain the phase of the grid, which is used to assist in the processing of different intervals under the same grid polarity, and to obtain the charge analysis ratio K required at different times.
电压采集15模块得到电网各相整流后的实时电压,结合电网极性和需要的激励选择相得到实际的激励电压,并传给计算单元9,计算单元9根据实际的激励电压、等效到变压器初级的负载电压、电荷分配的比例k、谐振周期以及闭环控制给出的控制量计算得到当前状态下的控制所需的时间节点t1~t6,最终实现输出稳压电压的同时,电网侧具有高功率因数,低谐波的特点。The voltage acquisition module 15 obtains the real-time voltage after rectification of each phase of the power grid, combines the polarity of the power grid and the required excitation selection phase to obtain the actual excitation voltage, and transmits it to the
时序生成单元8根据换流的时隙需求以及计算单元给出的各过程关键时间节点(t1、t2、t3、t4、t5、t6)并产生与6种类型开关相对应的时序信号(见附图4),其中min1,mid1,max1分别为最小相、中间相和最大相且为流通电流的开关信号,min2,mid2,max2分别为最小相、中间相和最大相的辅助开关信号,实际基本不流过电流。The
开关状态控制单元7根据电网极性、相位检测单元6提供的供辅助信号和电流输出方向,选择与不同类型开关相对应的具体开关编号,选定的开关信号受时序生成单元8输出时序的控制,并传给触发驱动电路10加以执行,以电网处于第I区间的开关控制为例,开关信号逻辑选择表达式如下:The switch state control unit 7 selects specific switch numbers corresponding to different types of switches according to the grid polarity, the auxiliary signal provided by the phase detection unit 6 and the current output direction, and the selected switch signal is controlled by the output timing of the
上臂:S1=up_max2,S2=up_max1,S3=up_mid1,S4=up_mid2,S5=up_min1,S6=up_min2;Upper arm: S 1 =up_max 2 , S 2 =up_max 1 , S 3 =up_mid 1 , S 4 =up_mid 2 , S 5 =up_min 1 , S 6 =up_min 2 ;
下臂:S7=dn_max1,S8=dn_max2,S9=dn_mid2,S10=dn_mid1,S11=dn_min2,S12=dn_min1;Lower arm: S 7 =dn_max 1 , S 8 =dn_max 2 , S 9 =dn_mid 2 , S 10 =dn_mid 1 , S 11 =dn_min 2 , S 12 =dn_min 1 ;
触发驱动电路16将触发驱动电路10传送的信号功率放大后,提供门极触发信号给矩阵变换器的各双向功率开关1。The trigger driving circuit 16 amplifies the power of the signal transmitted by the
故障保护电路包括三相输入检测电路12,过流保护电路13,过温保护电路14,输出接开关状态控制单元7,有故障时关闭所有开关实现故障保护。三相输入检测电路连接矩阵变换器的输入端,测量三相输入过压,欠压,缺相和不平衡故障。过流保护电路连接串联谐振单元,测量谐振电流,实现过流保护。过温保护电路连接双向功率开关底板和安装变压器与硅堆的油箱,实现过温检测和保护。The fault protection circuit includes a three-phase
本发明控制装置中,过零比较器5电路安装在三相输入电源2与输入滤波器3之间,在三相信号进入过零比较器电路之前再经过一个EMI滤波器4,输入相电压波形好,干扰少,过零比较器电路5采用简单易行的常规电路,考虑到EMI滤波器等环节引起的电压相位滞后,相位检测单元6中通过同步修正实现相位的补偿。相位检测单元6,控制参数计算单元9,时序生成单元8和开关状态控制单元7等用现场可编程逻辑门阵列(FPGA)实现,如图6所示。In the control device of the present invention, the zero-crossing comparator 5 circuit is installed between the three-phase
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310655501.9A CN103647461B (en) | 2013-12-06 | 2013-12-06 | A kind of control method of AC-DC series resonance matrix converter and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310655501.9A CN103647461B (en) | 2013-12-06 | 2013-12-06 | A kind of control method of AC-DC series resonance matrix converter and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103647461A true CN103647461A (en) | 2014-03-19 |
CN103647461B CN103647461B (en) | 2016-04-13 |
Family
ID=50252638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310655501.9A Active CN103647461B (en) | 2013-12-06 | 2013-12-06 | A kind of control method of AC-DC series resonance matrix converter and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103647461B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103929072A (en) * | 2014-04-15 | 2014-07-16 | 西南交通大学 | A Control Method of AC-DC Series Resonant Matrix Converter |
CN106291328A (en) * | 2016-08-26 | 2017-01-04 | 北京空间飞行器总体设计部 | A kind of spacecraft switch matrix fault detect and positioner |
CN107454716A (en) * | 2017-08-09 | 2017-12-08 | 山东旭程照明科技有限公司 | A kind of light-operated driving control system of double induction LEDs |
CN108631622A (en) * | 2018-05-29 | 2018-10-09 | 西南交通大学 | A kind of control system and method applied to AC-DC matrix converters |
CN108631621A (en) * | 2018-05-28 | 2018-10-09 | 西南交通大学 | Control method, control device, output system and the storage medium of AC-DC converter |
CN109728569A (en) * | 2018-12-20 | 2019-05-07 | 上海广吉电气有限公司 | Rotator type intelligent high-pressure switch |
CN112186771A (en) * | 2020-10-09 | 2021-01-05 | 北京航空航天大学 | Electric energy router based on matrix converter and electric energy routing method |
WO2021043300A1 (en) * | 2019-09-06 | 2021-03-11 | 中兴通讯股份有限公司 | Operation frequency adjustment method for switched power supply, and device |
CN114244137A (en) * | 2021-12-21 | 2022-03-25 | 西南交通大学 | A control method of LLC resonant matrix converter based on AC link |
WO2022174429A1 (en) * | 2021-02-20 | 2022-08-25 | 华为技术有限公司 | Llc converter, control circuit, soft start method and apparatus, and chip |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270914A (en) * | 1992-01-10 | 1993-12-14 | Lauw Hian K | Series resonant converter control system and method |
JP2006340410A (en) * | 2005-05-31 | 2006-12-14 | Fuji Electric Holdings Co Ltd | Ac direct converter unit |
WO2007094161A1 (en) * | 2006-02-15 | 2007-08-23 | Kabushiki Kaisha Yaskawa Denki | Matrix converter apparatus |
US20090146619A1 (en) * | 2004-12-14 | 2009-06-11 | Tallinn University Of Technology | Power factor correction method for ac/dc converters and corresponding converter |
JP4849309B2 (en) * | 2005-10-28 | 2012-01-11 | 富士電機株式会社 | AC / AC power converter controller |
CN103078525A (en) * | 2013-01-14 | 2013-05-01 | 西南交通大学 | Alternative-current direct-current (AC-DC) converter based on exchange link technology |
-
2013
- 2013-12-06 CN CN201310655501.9A patent/CN103647461B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270914A (en) * | 1992-01-10 | 1993-12-14 | Lauw Hian K | Series resonant converter control system and method |
US20090146619A1 (en) * | 2004-12-14 | 2009-06-11 | Tallinn University Of Technology | Power factor correction method for ac/dc converters and corresponding converter |
JP2006340410A (en) * | 2005-05-31 | 2006-12-14 | Fuji Electric Holdings Co Ltd | Ac direct converter unit |
JP4849309B2 (en) * | 2005-10-28 | 2012-01-11 | 富士電機株式会社 | AC / AC power converter controller |
WO2007094161A1 (en) * | 2006-02-15 | 2007-08-23 | Kabushiki Kaisha Yaskawa Denki | Matrix converter apparatus |
CN103078525A (en) * | 2013-01-14 | 2013-05-01 | 西南交通大学 | Alternative-current direct-current (AC-DC) converter based on exchange link technology |
Non-Patent Citations (2)
Title |
---|
ANDREAS ET AL.: "Bidirectional Switch Commutation for a Matrix Converter Supplying a Series Resonant Load", 《IEEE TRANSACTIONS ON POWER ELECTRONICS,2009》 * |
张政权 等: "谐振法消除高频变压器分布电容影响的研究", 《电力电子技术》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103929072B (en) * | 2014-04-15 | 2016-04-13 | 西南交通大学 | A kind of control method of AC-DC series resonance matrix converter |
CN103929072A (en) * | 2014-04-15 | 2014-07-16 | 西南交通大学 | A Control Method of AC-DC Series Resonant Matrix Converter |
CN106291328A (en) * | 2016-08-26 | 2017-01-04 | 北京空间飞行器总体设计部 | A kind of spacecraft switch matrix fault detect and positioner |
CN107454716A (en) * | 2017-08-09 | 2017-12-08 | 山东旭程照明科技有限公司 | A kind of light-operated driving control system of double induction LEDs |
CN107454716B (en) * | 2017-08-09 | 2023-07-21 | 山东旭程照明科技有限公司 | Double-induction LED light-operated driving control system |
CN108631621B (en) * | 2018-05-28 | 2019-11-08 | 西南交通大学 | Control method, control device, output system and storage medium of AC-DC converter |
CN108631621A (en) * | 2018-05-28 | 2018-10-09 | 西南交通大学 | Control method, control device, output system and the storage medium of AC-DC converter |
CN108631622A (en) * | 2018-05-29 | 2018-10-09 | 西南交通大学 | A kind of control system and method applied to AC-DC matrix converters |
CN108631622B (en) * | 2018-05-29 | 2019-08-06 | 西南交通大学 | A control system and method applied to AC-DC matrix converter |
CN109728569B (en) * | 2018-12-20 | 2019-12-17 | 上海广吉电气有限公司 | rotor type intelligent high-voltage switch |
CN109728569A (en) * | 2018-12-20 | 2019-05-07 | 上海广吉电气有限公司 | Rotator type intelligent high-pressure switch |
WO2021043300A1 (en) * | 2019-09-06 | 2021-03-11 | 中兴通讯股份有限公司 | Operation frequency adjustment method for switched power supply, and device |
CN112186771A (en) * | 2020-10-09 | 2021-01-05 | 北京航空航天大学 | Electric energy router based on matrix converter and electric energy routing method |
CN112186771B (en) * | 2020-10-09 | 2022-11-25 | 北京航空航天大学 | A matrix converter-based power router and power routing method |
WO2022174429A1 (en) * | 2021-02-20 | 2022-08-25 | 华为技术有限公司 | Llc converter, control circuit, soft start method and apparatus, and chip |
CN114244137A (en) * | 2021-12-21 | 2022-03-25 | 西南交通大学 | A control method of LLC resonant matrix converter based on AC link |
Also Published As
Publication number | Publication date |
---|---|
CN103647461B (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103647461B (en) | A kind of control method of AC-DC series resonance matrix converter and device | |
CN108521150B (en) | A multifunctional battery charging and discharging device and its control method | |
CN103023290B (en) | Medium voltage converter drive system and total harmonic distortion compensating control method | |
CN102377362B (en) | Control method of voltage source type high temperature superconducting energy storage converter with unit power factor | |
CN103078522B (en) | A kind of control method of capacitor charging AC-DC series resonance matrix converter control device | |
CN103701350A (en) | Modular multi-level converter capacitor voltage fluctuation inhibition method under low-frequency working condition | |
CN206272496U (en) | A kind of energy feedback type power network analog power | |
CN107086591A (en) | A Three-phase Unbalanced Regulator Based on Reactive Power Compensation and Intelligent Phase Commutation | |
CN110943469B (en) | Single-stage energy storage converter and control method thereof | |
CN104836424A (en) | Energy router with cascaded module voltage automatic balancing circuit | |
CN104539182A (en) | Five-level neutral-point clamping type inverter topology with self-balance auxiliary bridge arm | |
CN104821596A (en) | Internal model control-based hybrid DC transmission system topology and control method | |
CN107888096B (en) | Three-phase two-bridge arm three-level hybrid rectifier | |
CN103929072B (en) | A kind of control method of AC-DC series resonance matrix converter | |
CN205389177U (en) | Novel many level of modularization type solid -state transformer | |
CN102684518B (en) | High-frequency redundancy PWM (pulse-width modulation) rectifier device and method based on instantaneous current feedforward control | |
CN107153152A (en) | A kind of grid adaptability test device | |
CN102684204B (en) | A cascaded STATCOM DC side capacitor voltage balance control method | |
CN103973137A (en) | Improved space-vector-control three-phase PWM (pulse width modulation) rectifier system and control method thereof | |
CN204241587U (en) | The variator low energy-consumption load testing device of high voltage converter | |
Gangui et al. | Research on modular multilevel converter suitable for direct-drive wind power system | |
CN108631622B (en) | A control system and method applied to AC-DC matrix converter | |
CN112350590A (en) | Uncontrolled rectifier harmonic compensation circuit and control method | |
CN103612573B (en) | What have low harmony wave high-output power can present formula traction power set and control method | |
CN206945888U (en) | A kind of grid adaptability test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160613 Address after: 610000 City, Chengdu Province, north section of the ring road, Sichuan Patentee after: Southwest Jiaotong University Patentee after: Zhang Zhengquan Patentee after: Liu Qingxiang Patentee after: Li Wei Address before: 610031 Sichuan City, Chengdu Province, No. two North Ring Road, No. 111 Patentee before: Southwest Jiaotong University |