CN103633645B - 一种基于单辆电动汽车充电预测的电动汽车实时充电方法 - Google Patents

一种基于单辆电动汽车充电预测的电动汽车实时充电方法 Download PDF

Info

Publication number
CN103633645B
CN103633645B CN201310618439.6A CN201310618439A CN103633645B CN 103633645 B CN103633645 B CN 103633645B CN 201310618439 A CN201310618439 A CN 201310618439A CN 103633645 B CN103633645 B CN 103633645B
Authority
CN
China
Prior art keywords
electric automobile
charging
moment
electric
real time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310618439.6A
Other languages
English (en)
Other versions
CN103633645A (zh
Inventor
孙宏斌
郭庆来
张伯明
吴文传
李正烁
辛蜀骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310618439.6A priority Critical patent/CN103633645B/zh
Publication of CN103633645A publication Critical patent/CN103633645A/zh
Priority to US14/461,335 priority patent/US9573481B2/en
Application granted granted Critical
Publication of CN103633645B publication Critical patent/CN103633645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种基于单辆电动汽车充电预测的电动汽车实时充电方法,属于电力系统运行和控制技术领域。本方法利用单辆电动汽车未来充电行为的预测信息,在每个控制时刻考虑未来一段时间内的电力系统和电动汽车的运行状态,利用将入网单辆电动汽车充电行为的预测数据,建立相应的充电预测模型,并将预测模型纳入已入网充电汽车的实时滚动优化模型中,求解已入网汽车当前时刻的优化充电功率,在最终的控制方案中只对入网充电的电动汽车下发当前时刻的最优解。本方法有效提高了现有实时充电优化方法的效果,更好地削峰填谷,增加电力系统效益。本方法对电动汽车的预测误差具有良好的鲁棒性。

Description

一种基于单辆电动汽车充电预测的电动汽车实时充电方法
技术领域
本发明涉及一种基于单辆电动汽车充电预测的电动汽车实时充电方法,属于电力系统运行和控制技术领域。
背景技术
作为清洁能源汽车的代表,电动汽车近年得到了快速发展。电动汽车数量达到一定规模后,如果任由其无序充电将对电力系统产生负面影响,引发电能质量下降、网损增加、甚至危及电力系统稳定性。因此,有必要实现电动汽车充电的实时优化,避免上述影响,并实现电力系统的削峰填谷。
目前实时优化方法中,只考虑入网充电汽车对削峰填谷的影响,没有考虑未来将入网充电汽车的影响,虽然方法可行,但由于优化已知信息局限于入网汽车,当电动汽车入网时间分散时,优化效果并不够好。
伴随ICT技术的应用和车网通信技术的推进,对于电动汽车未来充电行为,如充电时间,充电地点,充电需求等,已有不少研究,结果表明,单辆电动汽车的充电行为预测可行,并且具有较好的预测精度。
发明内容
本发明的目的是提出一种基于单辆电动汽车充电预测的实时充电优化方法,利用将入网单辆电动汽车充电行为的预测数据,建立相应的充电预测模型,并将预测模型纳入已入网充电汽车的实时滚动优化模型中,求解已入网汽车当前时刻的优化充电功率。
本发明提出的于单辆电动汽车充电预测的电动汽车实时充电方法,包括以下步骤:
(1)在电力系统的调度时刻t,从电力系统控制中心获取已入网的N辆电动汽车中第n辆电动汽车的入网时刻和离开时刻记第n辆电动汽车的额定充电功率为调度时刻t第n辆电动汽车的净充电需求为
(2)根据上述获取的数据,确定电力系统中调度时刻t的参与实时充电的电动汽车集合为其中集合Mt中的电动汽车满足如下条件:在调度时刻t之前接入电网,在调度时刻t之后离开电网,且在调度时刻t的净充电需求大于0;
(3)根据上述电动汽车集合Mt中电动汽车的最迟离开时刻,确定实时充电的时间段为 Ω t = { k | t ≤ k ≤ max n ∈ M t t n out } ,
其中集合Ωt中的时刻k要大于或等于电力系统调度时刻t,小于集合Mt中最迟离网电动汽车的离网时刻;
(4)设定一个预测时间段Tt p,使Tt p小于或等于实时充电时间段Ωt,从电力系统控制中心获取将入网的各辆电动汽车预计接入电力系统时间段确定将入网电动汽车集合集合Lt中的电动汽车满足如下条件:在调度时刻t和时刻t+Tp之内接入电网,从电力系统控制中心获取预测集合Lt内各电动汽车的充电需求和在时刻t和时刻t+Tp之内各时刻的最大充电功率
(5)根据上述参与实时充电的电动汽车集合Mt和将入网电动汽车集合Lt,对上述实时充电的时间段Ωt进行更新,使Ωt大于或等于所有入网电动汽车和将入网电动汽车中最迟离网电动汽车的离网时刻;
(6)根据上述获取的预测数据,建立一个电动汽车实时充电模型::
min r n ( k ) , n ∈ M t ∪ L t Σ k ∈ Ω t ( Σ n ∈ M t r n ( k ) + Σ n ∈ L t r n ( k ) + D 0 ( k ) ) 2
s . t . ( I ) 0 ≤ r n ( k ) ≤ r n max , k ∈ Ω t , n ∈ M t Σ k ∈ Ω t r n ( k ) Δt = R n t , n ∈ M t
( II ) 0 ≤ r n ( k ) ≤ r n ‾ ^ ( k ) , k ∈ Ω t , n ∈ L t Σ k ∈ Ω t / { t } r n ( k ) Δt = R ^ n , n ∈ L t
其中,D0(k)为电力系统中的配电网在上述实时充电时间段Ωt内的第k时刻的常规负荷功率,Δt为充电控制时间步长,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车的额定充电功率,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车在调度时刻t的净充电需求,为上述将入网电动汽车集合Lt中第n辆电动汽车在第k时刻的最大充电功率,为上述将入网电动汽车集合Lt中第n辆电动汽车的充电需求,rn(k)为变量,表示上述集合Mt和Lt中所有电动汽车中第n辆电动汽车在第k时刻的充电功率;
对上述电动汽车实时充电模型求解,得到实时充电时间段Ωt内各时刻的充电功率 r n * ( k ) ;
(7)将上述各时刻的充电功率中当前时刻的充电功率下发给各入网充电汽车,根据充电功率对电动汽车实时充电。
本发明提出的于单辆电动汽车充电预测的电动汽车实时充电方法,其优点是,本发明方法充分利用了单辆电动汽车未来充电行为的预测信息,在每个控制时刻都考虑了未来一段时间内的电力系统和电动汽车的运行状态,利用将入网单辆电动汽车充电行为的预测数据,建立相应的充电预测模型,并将预测模型纳入已入网充电汽车的实时滚动优化模型中,求解已入网汽车当前时刻的优化充电功率,在最终的控制方案中只对入网充电的电动汽车下发当前时刻的最优解。本发明方法可以有效提高现有实时充电优化方法的效果,更好地削峰填谷,增加电力系统效益。而且本发明方法对电动汽车的预测误差具有良好的鲁棒性。在单辆电动汽车入网充电时间预测误差为30分钟的情况下,和现有方法相比仍然有显著的改善。
附图说明
图1是本发明方法的流程框图。
具体实施方式
本发明提出的基于单辆电动汽车充电预测的电动汽车实时充电方法,其流程框图如图1所示,包括以下步骤:
(1)在电力系统的调度时刻t,从电力系统控制中心获取已入网的N辆电动汽车中第n辆电动汽车的入网时刻和离开时刻记第n辆电动汽车的额定充电功率为调度时刻t第n辆电动汽车的净充电需求为
(2)根据上述获取的数据,确定电力系统中调度时刻t的参与实时充电的电动汽车集合为其中集合Mt中的电动汽车满足如下条件:在调度时刻t之前接入电网,在调度时刻t之后离开电网,且在调度时刻t的净充电需求大于0;
(3)根据上述电动汽车集合Mt中电动汽车的最迟离开时刻,确定实时充电的时间段为 Ω t = { k | t ≤ k ≤ max n ∈ M t t n out } ,
其中集合Ωt中的时刻k要大于或等于电力系统调度时刻t,小于集合Mt中最迟离网电动汽车的离网时刻;
(4)设定一个预测时间段Tt p,使Tt p小于或等于实时充电时间段Ωt,从电力系统控制中心获取将入网的各辆电动汽车预计接入电力系统时间段确定将入网电动汽车集合集合Lt中的电动汽车满足如下条件:在调度时刻t和时刻t+Tp之内接入电网,从电力系统控制中心获取预测集合Lt内各电动汽车的充电需求和在时刻t和时刻t+Tp之内各时刻的最大充电功率
(5)根据上述参与实时充电的电动汽车集合Mt和将入网电动汽车集合Lt,对上述实时充电的时间段Ωt进行更新,使Ωt大于或等于所有入网电动汽车和将入网电动汽车中最迟离网电动汽车的离网时刻;
(6)根据上述获取的预测数据,建立一个电动汽车实时充电模型::
min r n ( k ) , n ∈ M t ∪ L t Σ k ∈ Ω t ( Σ n ∈ M t r n ( k ) + Σ n ∈ L t r n ( k ) + D 0 ( k ) ) 2
s . t . ( I ) 0 ≤ r n ( k ) ≤ r n max , k ∈ Ω t , n ∈ M t Σ k ∈ Ω t r n ( k ) Δt = R n t , n ∈ M t ( II ) 0 ≤ r n ( k ) ≤ r n ‾ ^ ( k ) , k ∈ Ω t , n ∈ L t Σ k ∈ Ω t / { t } r n ( k ) Δt = R ^ n , n ∈ L t
其中,D0(k)为电力系统中的配电网在上述实时充电时间段Ωt内的第k时刻的常规负荷功率,Δt为充电控制时间步长,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车的额定充电功率,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车在调度时刻t的净充电需求,为上述将入网电动汽车集合Lt中第n辆电动汽车在第k时刻的最大充电功率,为上述将入网电动汽车集合Lt中第n辆电动汽车的充电需求,rn(k)为变量,表示上述集合Mt和Lt中所有电动汽车中第n辆电动汽车在第k时刻的充电功率;
对上述电动汽车实时充电模型求解,得到实时充电时间段Ωt内各时刻的充电功率 r n * ( k ) ;
(7)将上述各时刻的充电功率中当前时刻的充电功率下发给各入网充电汽车,根据充电功率对电动汽车实时充电。

Claims (1)

1.一种基于单辆电动汽车充电预测的电动汽车实时充电方法,其特征在于该方法包括以下步骤:
(1)在电力系统的调度时刻t,从电力系统控制中心获取已入网的N辆电动汽车中第n辆电动汽车的入网时刻和离开时刻记第n辆电动汽车的额定充电功率为调度时刻t第n辆电动汽车的净充电需求为
(2)根据上述获取的数据,确定电力系统中调度时刻t的参与实时充电的电动汽车集合为其中集合Mt中的电动汽车满足如下条件:在调度时刻t之前接入电网,在调度时刻t之后离开电网,且在调度时刻t的净充电需求大于0;
(3)根据上述电动汽车集合Mt中电动汽车的最迟离开时刻,确定实时充电的时间段为 Ω t = { k | t ≤ k ≤ max n ∈ M t t n out } ,
其中集合Ωt中的时刻k要大于或等于电力系统调度时刻t,小于集合Mt中最迟离网电动汽车的离网时刻;
(4)设定一个预测时间段Tt p,使Tt p小于或等于实时充电时间段Ωt,从电力系统控制中心获取将入网的各辆电动汽车预计接入电力系统时间段确定将入网电动汽车集合集合Lt中的电动汽车满足如下条件:在调度时刻t和时刻t+Tp之内接入电网,从电力系统控制中心获取预测集合Lt内各电动汽车的充电需求和在时刻t和时刻t+Tp之内各时刻的最大充电功率
(5)根据上述参与实时充电的电动汽车集合Mt和将入网电动汽车集合Lt,对上述实时充电的时间段Ωt进行更新,使Ωt大于或等于所有入网电动汽车和将入网电动汽车中最迟离网电动汽车的离网时刻;
(6)根据上述获取的预测数据,建立一个电动汽车实时充电模型::
min r n ( k ) , n ∈ M t ∪ L t Σ k ∈ Ω t ( Σ n ∈ M t r n ( k ) + Σ n ∈ L t r n ( k ) + D 0 ( k ) ) 2
s . t . ( I ) 0 ≤ r n ( k ) ≤ r n max , k ∈ Ω t , n ∈ M t Σ k ∈ Ω t r n ( k ) Δt = R n t , n ∈ M t
( II ) 0 ≤ r n ( k ) ≤ r n ‾ ^ ( k ) , k ∈ Ω t , n ∈ L t Σ k ∈ Ω t / { t } r n ( k ) Δt = R ^ n , n ∈ L t
其中,D0(k)为电力系统中的配电网在上述实时充电时间段Ωt内的第k时刻的常规负荷功率,Δt为充电控制时间步长,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车的额定充电功率,为上述参与实时充电的电动汽车集合Mt中第n辆入网电动汽车在调度时刻t的净充电需求,为上述将入网电动汽车集合Lt中第n辆电动汽车在第k时刻的最大充电功率,为上述将入网电动汽车集合Lt中第n辆电动汽车的充电需求,rn(k)为变量,表示上述集合Mt和Lt中所有电动汽车中第n辆电动汽车在第k时刻的充电功率;
对上述电动汽车实时充电模型求解,得到实时充电时间段Ωt内各时刻的充电功率 r n * ( k ) ;
(7)将上述各时刻的充电功率中当前时刻的充电功率下发给各入网充电汽车,根据充电功率对电动汽车实时充电。
CN201310618439.6A 2013-11-28 2013-11-28 一种基于单辆电动汽车充电预测的电动汽车实时充电方法 Active CN103633645B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310618439.6A CN103633645B (zh) 2013-11-28 2013-11-28 一种基于单辆电动汽车充电预测的电动汽车实时充电方法
US14/461,335 US9573481B2 (en) 2013-11-28 2014-08-15 Method and device for charging electric vehicle in power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310618439.6A CN103633645B (zh) 2013-11-28 2013-11-28 一种基于单辆电动汽车充电预测的电动汽车实时充电方法

Publications (2)

Publication Number Publication Date
CN103633645A CN103633645A (zh) 2014-03-12
CN103633645B true CN103633645B (zh) 2015-05-20

Family

ID=50214391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310618439.6A Active CN103633645B (zh) 2013-11-28 2013-11-28 一种基于单辆电动汽车充电预测的电动汽车实时充电方法

Country Status (2)

Country Link
US (1) US9573481B2 (zh)
CN (1) CN103633645B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106945555B (zh) * 2017-03-30 2019-05-21 济南大学 基于预约方式的电动汽车充电装置及充电站功率协调方法
CN109583632B (zh) * 2018-11-16 2021-02-26 北京航空航天大学 基于网联数据的电动汽车充电行为预测方法
CN109606183B (zh) * 2018-12-19 2021-05-07 国网北京市电力公司 电动汽车的充电方法和装置
CN110581552B (zh) * 2019-09-16 2022-04-22 恒大恒驰新能源汽车研究院(上海)有限公司 充电调控方法、计算机设备及存储介质
CN112101735B (zh) * 2020-08-19 2022-12-06 清华大学 电动汽车充电调度系统及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761153A (zh) * 2011-04-28 2012-10-31 株式会社日立制作所 电力监视控制装置及电力监视控制系统
CN202650066U (zh) * 2012-06-29 2013-01-02 山东电力集团公司电力科学研究院 基于Multi-Agent系统的电动汽车服务网络协调控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860362B2 (en) * 2009-07-31 2014-10-14 Deka Products Limited Partnership System for vehicle battery charging
US9054532B2 (en) * 2012-03-02 2015-06-09 Alstom Technology Ltd. Dispatching vehicle-to-grid ancillary services with discrete switching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761153A (zh) * 2011-04-28 2012-10-31 株式会社日立制作所 电力监视控制装置及电力监视控制系统
CN202650066U (zh) * 2012-06-29 2013-01-02 山东电力集团公司电力科学研究院 基于Multi-Agent系统的电动汽车服务网络协调控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电动汽车充电负荷对丹麦配电系统的影响;徐立中等;《电力系统自动化》;20110725;第35卷(第14期);全文 *

Also Published As

Publication number Publication date
CN103633645A (zh) 2014-03-12
US20150145477A1 (en) 2015-05-28
US9573481B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
CN104064829B (zh) 一种基于电动汽车集群充电预测的电动汽车实时充电方法
Jian et al. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
CN103633645B (zh) 一种基于单辆电动汽车充电预测的电动汽车实时充电方法
Kumar et al. V2G capacity estimation using dynamic EV scheduling
Ramadan et al. Smart charging and discharging of plug-in electric vehicles for peak shaving and valley filling of the grid power
CN111626527B (zh) 计及可调度电动汽车快/慢充放电形式的智能电网深度学习调度方法
CN103499792B (zh) 电动汽车动力电池集群可用容量的预测方法
CN109670674B (zh) 一种考虑交通网-配电网耦合的电动汽车时空分布充电调度方法
Vayá et al. Decentralized control of plug-in electric vehicles under driving uncertainty
CN105576762B (zh) 电动汽车充电控制方法及装置
CN103605079B (zh) 公交电动汽车及其梯次利用电池集群的v2g可用容量评估方法
CN104078978B (zh) 一种面向智能电网的电动汽车入网一次调频控制方法
CN104779611A (zh) 基于集中式和分布式双层优化策略的微电网经济调度方法
CN106353691A (zh) 一种计及自愈影响的锂电池退化建模及寿命预测方法
CN107220730B (zh) 一种能够延长动力电池使用寿命的纯电动公交车动态线路规划方法
CN102968098B (zh) 一种对集群内电动汽车充电功率的分布式优化方法
CN103457326B (zh) 一种大规模电动汽车充电负荷的分布式联合协调控制方法
CN103903090A (zh) 基于用户意愿和出行规律的电动汽车充电负荷分配方法
CN102509176A (zh) 一种风光储协同调度的滚动优化决策方法
CN105904985A (zh) 一种电动汽车充电控制装置
Yan et al. Statistical analysis and modeling of plug-in electric vehicle charging demand in distribution systems
CN110232219A (zh) 一种基于数据挖掘的电动汽车可调度容量核定方法
Brenna et al. Synergy between renewable sources and electric vehicles for energy integration in distribution systems
CN109383323A (zh) 一种电动汽车群的充放电优化控制方法
CN103414201A (zh) 电动公交车动力电池集群参与海岛微网运行的调控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant