CN103630705A - Solid two-dimensional wind speed and direction measuring instrument and measuring method thereof - Google Patents
Solid two-dimensional wind speed and direction measuring instrument and measuring method thereof Download PDFInfo
- Publication number
- CN103630705A CN103630705A CN201310016160.0A CN201310016160A CN103630705A CN 103630705 A CN103630705 A CN 103630705A CN 201310016160 A CN201310016160 A CN 201310016160A CN 103630705 A CN103630705 A CN 103630705A
- Authority
- CN
- China
- Prior art keywords
- wind
- cylinder
- measuring instrument
- engaging
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000007787 solid Substances 0.000 title description 2
- 238000009826 distribution Methods 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 3
- 230000001066 destructive effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种二维固态风速风向仪及其测量方法。该二维固态风速风向仪包括:受风圆柱、导压管、传感器;所述受风圆柱的柱面上分布有偶数个小孔;所述导压管一端与所述受风圆柱柱面上的小孔连通,另一端与所述传感器连通;所述传感器用于测量所述受风圆柱柱面上水平距离等于所述受风圆柱直径的两个小孔之间的压强差。该二维风速风向仪的测量方法包括:固定测量仪,确定测量仪的方位;在有水平方向的风作用时,测量所述测量仪的受风圆柱柱面上各对水平距离为受风圆柱直径的点上的压强差;由获得的所述压强差,根据圆柱柱面风压分布与风速风向的关系,计算出风速和相对于受风圆柱的相对风向;根据所述确定的测量仪的方位,计算实际风向。本发明公开的二维固态风速风向仪相比常用风速风向仪,具有体积小、不易损坏、响应快的优点。
The invention discloses a two-dimensional solid-state anemometer and a measuring method thereof. The two-dimensional solid-state anemometer comprises: a wind receiving cylinder, a pressure guide tube, and a sensor; an even number of small holes are distributed on the cylinder surface of the wind receiving cylinder; one end of the pressure guide tube is connected to the wind receiving cylinder surface The other end communicates with the sensor; the sensor is used to measure the pressure difference between two small holes whose horizontal distance on the cylinder surface of the wind receiving cylinder is equal to the diameter of the wind receiving cylinder. The measuring method of the two-dimensional anemometer comprises: fixing the measuring instrument, determining the orientation of the measuring instrument; when there is a wind in the horizontal direction, measuring each pair of horizontal distances on the wind-affected cylinder surface of the measuring instrument as the wind-affected cylinder The pressure difference on the point of the diameter; by the said pressure difference obtained, according to the relationship between the wind pressure distribution on the cylindrical surface and the wind speed and wind direction, calculate the wind speed and the relative wind direction with respect to the wind receiving cylinder; according to the determined measuring instrument Azimuth, to calculate the actual wind direction. Compared with common anemometers, the two-dimensional solid-state anemometer disclosed by the invention has the advantages of small size, non-destructive properties and fast response.
Description
技术领域technical field
本发明涉及风速及风向测量技术领域,特别涉及一种固态二维风速风向测量仪及其测量方法。The invention relates to the technical field of wind speed and wind direction measurement, in particular to a solid-state two-dimensional wind speed and direction measuring instrument and a measuring method thereof.
背景技术Background technique
风速和风向是重要的气象参数,对于人们的日常生活、气象环境、国防航空、工农业生产、交通运输都有重要意义,风速和风向测量仪也因此在很多场合得到了广泛应用。Wind speed and wind direction are important meteorological parameters, which are of great significance to people's daily life, meteorological environment, national defense aviation, industrial and agricultural production, and transportation. Therefore, wind speed and wind direction measuring instruments have been widely used in many occasions.
风速和风向测量原理和相应的测量仪多种多样,其中作为气象观测规范的是机械式风速风向仪,由风杯风速计和风向标组成。风杯风速计中,有三或四个半球形或抛物形空杯,顺一面地均匀分布组成一个旋转结构,在风力作用下其转速和风速成正比,通过记录转速来测量风速。风向标是固定在旋转支架上的形状不对称的物体,受风作用时会顺风转动显示风向。There are many kinds of wind speed and wind direction measurement principles and corresponding measuring instruments. Among them, the mechanical wind speed and direction instrument is the standard for meteorological observation, which is composed of a wind cup anemometer and a wind vane. In the wind cup anemometer, there are three or four hemispherical or parabolic empty cups, which are evenly distributed along one side to form a rotating structure. Under the action of wind force, its rotational speed is proportional to the wind speed, and the wind speed is measured by recording the rotational speed. The wind vane is an asymmetrical object fixed on a rotating bracket, and when it is affected by the wind, it will rotate along the wind to show the wind direction.
机械式风速风向仪的技术成熟,应用广泛。但此类装置体积大,使用时占用空间大;组成部件中多种运动和旋转部件易磨损、使用寿命短,高风速下受风部件容易被破坏;受风部件的惯性较大,无法快速响应风速变化,Mechanical anemometer technology is mature and widely used. However, this kind of device is bulky and takes up a lot of space when used; various moving and rotating parts in the components are easy to wear and have a short service life, and the wind-affected parts are easily damaged under high wind speed; the wind-affected parts have large inertia and cannot respond quickly wind speed changes,
此外还有诸如热线式风速风向仪、压力式风速风向仪、超声波风速风向仪等,都存在体积较大的缺点。In addition, there are such as hot-wire anemometers, pressure anemometers, ultrasonic anemometers, etc., all of which have the disadvantage of large volume.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的是,解决现有常用风速风向仪体积较大的问题,特别是机械式风速风向仪体积大、易损坏、响应慢的问题。The purpose of the present invention is to solve the problem of large volume of conventional anemometers, especially the problems of large volume, easy damage and slow response of mechanical anemometers.
(二)技术方案(2) Technical solution
为解决上述技术问题,本发明提供了一种固态二维风速风向测量仪,其特征在于,包括受风圆柱、导压管、传感器;所述受风圆柱的柱面上分布有偶数个小孔;所述导压管一端与所述受风圆柱柱面上的小孔连通,另一端与所述传感器连通;所述传感器用于测量所述受风圆柱柱面上水平距离等于所述受风圆柱直径的两个小孔之间的压强差。In order to solve the above technical problems, the present invention provides a solid-state two-dimensional wind speed and direction measuring instrument, which is characterized in that it includes a wind-receiving cylinder, a pressure guiding tube, and a sensor; an even number of small holes are distributed on the cylinder surface of the wind-receiving cylinder ; One end of the pressure guide tube communicates with the small hole on the wind-receiving cylinder, and the other end communicates with the sensor; the sensor is used to measure the horizontal distance on the wind-receiving cylinder equal to the wind-receiving The pressure difference between two small holes of cylindrical diameter.
本发明还提供了一种固态二维风速风向测量仪的测量方法,包括如下步骤:The present invention also provides a measurement method of a solid-state two-dimensional wind speed and direction measuring instrument, comprising the following steps:
步骤1:固定测量仪,确定测量仪的方位;Step 1: Fix the measuring instrument and determine the orientation of the measuring instrument;
步骤2:在有水平方向的风作用时,测量所述测量仪的受风圆柱柱面上各对水平距离为受风圆柱直径的点上的压强差;Step 2: When there is a wind effect in the horizontal direction, measure the pressure difference on each pair of points on the wind-receiving cylinder surface of the measuring instrument whose horizontal distance is the diameter of the wind-receiving cylinder;
步骤3:由获得的所述压强差,根据圆柱柱面风压分布与风速风向的关系,计算出风速和相对于受风圆柱的相对风向;Step 3: From the obtained pressure difference, according to the relationship between the wind pressure distribution on the cylindrical surface and the wind speed and direction, calculate the wind speed and the relative wind direction relative to the wind receiving cylinder;
步骤4:根据所述确定的测量仪的方位,计算实际风向。Step 4: Calculate the actual wind direction according to the determined orientation of the measuring instrument.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明提供的固态二维风速风向仪及其测量方法具有如下有益效果:It can be seen from the above technical scheme that the solid-state two-dimensional anemometer and its measurement method provided by the present invention have the following beneficial effects:
(1)本发明中,测量的物理量是压强,而受风圆柱表面的压强大小受尺寸的影响小,装置可以小型化;(1) In the present invention, the physical quantity of measurement is pressure, and the pressure of the surface of the wind cylinder is affected by the size little, and the device can be miniaturized;
(2)本发明中,受风部分是固态的,没有运动部件,结构不易损坏;(2) In the present invention, the wind-receiving part is solid, without moving parts, and the structure is not easily damaged;
(3)本发明中,压力或差压传感器的响应时间短,可以快速响应风速的变化。(3) In the present invention, the response time of the pressure or differential pressure sensor is short, and can quickly respond to changes in wind speed.
附图说明Description of drawings
图1是本发明的一个实施例的二维风速风向仪的结构示意图;Fig. 1 is the structural representation of the two-dimensional anemometer of an embodiment of the present invention;
图2是本发明的一个实施例的二维风速风向仪的受风圆柱部分的剖面示意图;Fig. 2 is a schematic cross-sectional view of a wind-receiving cylindrical part of a two-dimensional anemometer according to an embodiment of the present invention;
图3是本发明的另一个实施例的二维风速风向仪的结构示意图。Fig. 3 is a schematic structural diagram of a two-dimensional anemometer according to another embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的技术方案和优点更加清晰易懂,下面结合具体实施例,并参阅附图,对本发明进一步详细说明。In order to make the technical solutions and advantages of the present invention clearer and easier to understand, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
需要说明的是,在附图或说明书描述中,相似或相同的部分使用同样的附图标记。且在附图中,对实施例的形状和尺寸比例作了一定调整,以简化图示并方便说明各部分的相互关系。再者,附图和说明书中未绘制或描述、但为实施例正常运作所需的外围部件或实现方式,为所属技术领域的普通技术人员所熟知的形式。另外,虽然本文可提供包含特定值的参数的示范,但须知参数不必确切等于相应的值,在给定的容差范围或设计约束内可以做相应改动。It should be noted that, in the drawings or descriptions of the specification, similar or identical parts use the same reference numerals. In addition, in the accompanying drawings, some adjustments have been made to the shape and size ratio of the embodiment to simplify the illustration and facilitate the description of the relationship between the various parts. Moreover, the peripheral components or implementations that are not drawn or described in the drawings and descriptions but are required for the normal operation of the embodiments are forms well known to those skilled in the art. Also, although this article may provide examples of parameters that include specific values, it is important to understand that parameters do not have to be exactly equal to the corresponding values, and that changes can be made within given tolerances or design constraints.
本发明的核心思想在于:圆柱在受到垂直于圆柱纵轴的风的作用时,柱面上不同点的压强不同;任取圆柱的一条直径,其两端的压强差与该直径的迎风角(即风向)和风速有关;用合适设备测量出此压强差,并确定此压强差和风速风向的关系,即可解算风速风向。The core idea of the present invention is: when the cylinder is subjected to the effect of the wind perpendicular to the cylinder longitudinal axis, the pressure at different points on the cylinder surface is different; Wind direction) is related to wind speed; measure the pressure difference with suitable equipment, and determine the relationship between the pressure difference and wind speed and direction, then the wind speed and direction can be calculated.
实施例1Example 1
图1是本发明的一个实施例的结构示意图;参照图1所示,在本实施例中,所述固态二维风速风向仪包括受风圆柱2、导压管5和传感器6;所述受风圆柱的高度为120mm,直径为20mm;所述受风圆柱顶端是半球形风帽1;所述受风圆柱柱面上的孔3的数目最小为6,该实施例中选用8,所述受风圆柱柱面上的孔3均匀地分布在所述受风圆柱2的同一水平圆周上;所述受风圆柱柱面上的小孔3分布在所述受风圆柱2的中段,尽量避开所述受风圆柱2两端的风压分布异常区域;所述受风圆柱底端的小孔4的数目为8,和所述受风圆柱柱面上的小孔3一一对应并导通;所述导压管5连接所述受风圆柱底端的小孔4和所述传感器6;所述传感器6是气体压差传感器,共有4个,测量的是所述受风圆柱柱面上两小孔之间的压强差。Fig. 1 is a schematic structural view of an embodiment of the present invention; Referring to Fig. 1, in this embodiment, the solid-state two-dimensional anemometer includes a
需要注意的是,图1中绘制的所述导压管5和所述传感器6的连接关系只是简化了的示意,实际连接关系要使得所述传感器6与水平距离等于所述受风圆柱2直径的两个所述受风圆柱柱面上的小孔3相导通。It should be noted that the connection relationship between the
图2是所述受风圆柱2的剖面示意图,所述的受风圆柱柱面上的小孔3和所述受风圆柱底端的小孔4相导通。Fig. 2 is a schematic cross-sectional view of the wind-receiving
竖直圆柱受水平方向的风作用时,圆柱上一点和其在圆柱对面的点的压强差p,与该点的偏离圆柱上正迎风点的角度θ和风速v满足下式:When the vertical cylinder is affected by the wind in the horizontal direction, the pressure difference p between a point on the cylinder and its point opposite to the cylinder, the angle θ of the point’s deviation from the positive windward point on the cylinder and the wind speed v satisfy the following formula:
p=c(θ)×ρv2 p=c(θ)×ρv 2
其中ρ是空气密度;c(θ)是θ的函数,可以通过测量来确定,即通过给定速度的水平风,测量竖直圆柱表面各点的与其在圆柱对面的点的压强差p,再根据空气密度ρ和和所述给定速度计算c(θ)。在本实施例中c(θ)=0.49(cos2θ-1)+0.305,θ∈[-45°,45°]。where ρ is the air density; c(θ) is a function of θ, which can be determined by measurement, that is, through the horizontal wind at a given speed, measure the pressure difference p between each point on the surface of the vertical cylinder and the point opposite the cylinder, and then c(θ) is calculated from the air density ρ and the given velocity. In this embodiment, c(θ)=0.49(cos 2 θ−1)+0.305, θ∈[−45°, 45°].
根据上述原理,对于本实施例的二维固态风速风向仪,提供一种测量方法,包括如下步骤:According to the above principles, for the two-dimensional solid-state anemometer of this embodiment, a measurement method is provided, including the following steps:
(1)固定测量仪,确定其相对正北方的方位;(1) Fix the measuring instrument and determine its orientation relative to true north;
(2)有水平方向的风作用时,由所述传感器6测量各对水平距离等于所述受风圆柱2直径的所述受风圆柱柱面上小孔3的压强差,共四个测量值;(2) When there is a wind effect in the horizontal direction, the pressure difference of each pair of
(3)选定绝对值最大测量值p1和绝对值次大的测量值p2,根据公式:(3) Select the largest absolute value measured value p 1 and the measured value p 2 with the second largest absolute value, according to the formula:
计算出风速v和相对风向θ。公式中ρ是空气密度。这里计算出的相对风向是以测量值p1对应的一对所述受风圆柱柱面上的小孔3中正压孔为参考的;Calculate the wind speed v and the relative wind direction θ. ρ is the air density in the formula. The relative wind direction calculated here is based on the positive pressure hole in the
(4)由p1的正负,确定步骤(3)中所述的参考孔。根据参考孔相对圆柱的方位,和事先确定的正北方位,得知步骤(3)中所述的参考孔在大地坐标系中的方位,从而计算出实际风向。(4) Determine the reference hole described in step (3) according to the sign of p1 . According to the orientation of the reference hole relative to the cylinder and the predetermined north orientation, the orientation of the reference hole in the geodetic coordinate system described in step (3) is known, thereby calculating the actual wind direction.
实施例2Example 2
所述受风圆柱柱面上的小孔3的数量N至少为6;当N增大时,可用来求解的测量值更多,测量结果的可信度和准确度更高。各小孔3不必分布在同一高度上,在受风圆柱中段风压分布稳定区域,不同水平圆周上分压分布是一致的。受风圆柱柱面上的小孔3的数量N选用最小值6且小孔3分布在不同水平圆周上时,提供本发明的另一个具体实施例。The number N of
图3是本实施例的结构示意图;参照图3所示,在本实施例中,所述固态二维风速风向仪包括受风圆柱2、导压管5和传感器6;所述受风圆柱的高度选用100mm,直径选用26mm;所述受风圆柱2是空心的;所述受风圆柱顶端是圆盘形风帽7,可以为所述受风圆柱柱面上的小孔3遮挡雨水;所述受风圆柱柱面上的孔3的数目选用6,分布在所述受风圆柱2的不同水平圆周上,水平投影均匀地分布在柱面的水平投影圆周上;所述受风圆柱柱面上的小孔3分布在所述受风圆柱2的中段,尽量避开所述受风圆柱2两端的风压分布异常区域;所述导压管5直接连接所述受风圆柱柱面上的小孔3和所述传感器6;所述传感器6是气体压力传感器,共有6个,各自的测量腔连同所述受风圆柱柱面上的小孔3,各所述传感器6的参考腔压强相同。Fig. 3 is a schematic structural view of the present embodiment; with reference to Fig. 3, in the present embodiment, the solid-state two-dimensional anemometer comprises a wind-receiving
竖直圆柱受水平方向的风作用时,圆柱上一点和其在圆柱对面的点的压强差p,与该点的偏离圆柱上正迎风点的角度θ和风速v满足下式:When the vertical cylinder is affected by the wind in the horizontal direction, the pressure difference p between a point on the cylinder and its point opposite to the cylinder, the angle θ of the point’s deviation from the positive windward point on the cylinder and the wind speed v satisfy the following formula:
p=c(θ)×ρv2 p=c(θ)×ρv 2
其中ρ是空气密度;c(θ)是θ的函数,可以通过测量来确定,方法如实施例1中所述。c(θ)在[0°,60°]区间单调递减,在[60°,70°]区间上有拐点,如果所述受风圆柱柱面上的小孔3的数量N为4、两孔的水平角度差为90°时,无法得到唯一解,因此N至少为6。Wherein ρ is the air density; c(θ) is a function of θ, which can be determined by measurement, the method is as described in Example 1. c(θ) decreases monotonically in the [0°, 60°] interval, and there is an inflection point in the [60°, 70°] interval, if the number N of
根据上述原理,对于本实施例的二维固态风速风向仪,相应的测量方法,包括如下步骤:According to the above principles, for the two-dimensional solid-state anemometer of this embodiment, the corresponding measurement method includes the following steps:
(1)固定测量仪,确定其相对正北方的方位;(1) Fix the measuring instrument and determine its orientation relative to true north;
(2)有水平方向的风作用时,所述传感器6测量各对水平距离等于所述受风圆柱2直径的所述受风圆柱柱面上小孔3的压强,共6个测量值;(2) When there is a wind effect in the horizontal direction, the
(3)计算水平距离等于所述受风圆柱2的直径的两个小孔的压强差值,得到3个计算值;选定绝对值最大的计算值p1和绝对值次大的计算值p2;求解方程:(3) Calculate the pressure difference of two small holes whose horizontal distance is equal to the diameter of the wind-receiving
p1=c(θ)ρv2 p 1 =c(θ)ρv 2
得到风速v和相对风向θ。方程中ρ是空气密度,c(θ)是前述的通过测量确定的函数。这里计算出的相对风向,是以最大测量值所对应的所述受风圆柱柱面上的小孔3为参考的;Get wind speed v and relative wind direction θ. In the equation, ρ is the air density, and c(θ) is a function determined by measurement as described above. The relative wind direction calculated here is based on the
(4)根据步骤(3)中所述的测量值最大的参考孔相对圆柱的方位,和事先确定的正北方位,得到步骤(3)中所述参考孔在大地坐标系中的方位,从而计算出实际风向。(4) according to the orientation of the reference hole with the largest measured value described in the step (3) relative to the cylinder, and the due north orientation determined in advance, obtain the orientation of the reference hole in the geodetic coordinate system described in the step (3), thereby Calculate the actual wind direction.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310016160.0A CN103630705B (en) | 2013-01-16 | 2013-01-16 | A kind of measuring method utilizing solid state two dimensional wind speed and direction measuring instrument |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310016160.0A CN103630705B (en) | 2013-01-16 | 2013-01-16 | A kind of measuring method utilizing solid state two dimensional wind speed and direction measuring instrument |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103630705A true CN103630705A (en) | 2014-03-12 |
| CN103630705B CN103630705B (en) | 2016-09-21 |
Family
ID=50211968
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310016160.0A Active CN103630705B (en) | 2013-01-16 | 2013-01-16 | A kind of measuring method utilizing solid state two dimensional wind speed and direction measuring instrument |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103630705B (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104764901A (en) * | 2014-12-19 | 2015-07-08 | 太原航空仪表有限公司 | On-board omnidirectional solid-state wind measuring device for trains |
| CN104833819A (en) * | 2015-05-28 | 2015-08-12 | 重庆梅安森科技股份有限公司 | Wind speed on-line measurement system and test method |
| CN105372445A (en) * | 2015-11-03 | 2016-03-02 | 中国科学院电子学研究所 | Solid state wind sensor |
| CN105424975A (en) * | 2015-11-03 | 2016-03-23 | 中国科学院电子学研究所 | Wind sensing part applied to wind speed measuring instrument |
| CN105545592A (en) * | 2015-12-16 | 2016-05-04 | 大连尚能科技发展有限公司 | Data preprocessing method for angle measurement error curve |
| CN105545596A (en) * | 2015-12-16 | 2016-05-04 | 大连尚能科技发展有限公司 | Angle measurement error compensation method based on wind speed and position influence |
| CN105569922A (en) * | 2015-12-16 | 2016-05-11 | 大连尚能科技发展有限公司 | Anemorumbometer angle measurement error compensation method based on wind speed influence |
| CN105569921A (en) * | 2015-12-16 | 2016-05-11 | 大连尚能科技发展有限公司 | Angle measurement error compensation method for adding main control system data transfer error correction |
| CN106443057A (en) * | 2016-09-19 | 2017-02-22 | 王华锋 | Flow velocity pressure-sensing quantitative measuring instrument |
| CN109406825A (en) * | 2018-11-26 | 2019-03-01 | 华南理工大学 | A kind of two-D wind speed wind direction measuring device based on pressure difference |
| CN109709351A (en) * | 2019-02-01 | 2019-05-03 | 中国科学院电子学研究所 | Near-space real-time in-situ wind speed and direction sensor based on wind pressure prediction |
| CN105334346B (en) * | 2015-10-16 | 2019-09-03 | 东南大学 | A wind speed and direction measurement system and its measurement method |
| CN110988386A (en) * | 2019-12-12 | 2020-04-10 | 石家庄铁道大学 | Wind speed and direction testing device and testing method |
| CN112031582A (en) * | 2020-08-14 | 2020-12-04 | 佛山市三水凤铝铝业有限公司 | Intelligent door and window |
| CN113125799A (en) * | 2021-04-19 | 2021-07-16 | 重庆地格科技有限责任公司 | Intelligent anemorumbometer based on pitot tube |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2108926U (en) * | 1991-12-12 | 1992-07-01 | 清华大学 | Omni-directional two-dimensional air velocity measurement device |
| CN101692097A (en) * | 2009-07-24 | 2010-04-07 | 南京航空航天大学 | Anemoclinograph wind meter |
| CN101923101A (en) * | 2010-05-12 | 2010-12-22 | 西安交通大学 | A digital cross wind sensor for monitoring the wind speed and direction of the cross wind |
-
2013
- 2013-01-16 CN CN201310016160.0A patent/CN103630705B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2108926U (en) * | 1991-12-12 | 1992-07-01 | 清华大学 | Omni-directional two-dimensional air velocity measurement device |
| CN101692097A (en) * | 2009-07-24 | 2010-04-07 | 南京航空航天大学 | Anemoclinograph wind meter |
| CN101923101A (en) * | 2010-05-12 | 2010-12-22 | 西安交通大学 | A digital cross wind sensor for monitoring the wind speed and direction of the cross wind |
Non-Patent Citations (2)
| Title |
|---|
| F.W.HAGEN等: "固态正交风速表", 《气象科技》, no. 5, 31 October 1985 (1985-10-31), pages 91 - 95 * |
| PAOLO BRUSCHI .ETAL: "A Low-power 2-D Wind Sensor Based on Intergrated Flow Meters", 《IEEE SENSORS JOURNAL》, vol. 9, no. 12, 31 December 2009 (2009-12-31), pages 1688 - 1696, XP011278695, DOI: 10.1109/JSEN.2009.2030652 * |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104764901A (en) * | 2014-12-19 | 2015-07-08 | 太原航空仪表有限公司 | On-board omnidirectional solid-state wind measuring device for trains |
| CN104764901B (en) * | 2014-12-19 | 2017-09-26 | 太原航空仪表有限公司 | Train-installed omnidirectional's solid-state surveys the device of wind |
| CN104833819B (en) * | 2015-05-28 | 2017-08-04 | 重庆梅安森科技股份有限公司 | A kind of wind speed on-line measurement system and method for testing |
| CN104833819A (en) * | 2015-05-28 | 2015-08-12 | 重庆梅安森科技股份有限公司 | Wind speed on-line measurement system and test method |
| CN105334346B (en) * | 2015-10-16 | 2019-09-03 | 东南大学 | A wind speed and direction measurement system and its measurement method |
| CN105372445A (en) * | 2015-11-03 | 2016-03-02 | 中国科学院电子学研究所 | Solid state wind sensor |
| CN105424975A (en) * | 2015-11-03 | 2016-03-23 | 中国科学院电子学研究所 | Wind sensing part applied to wind speed measuring instrument |
| CN105569922A (en) * | 2015-12-16 | 2016-05-11 | 大连尚能科技发展有限公司 | Anemorumbometer angle measurement error compensation method based on wind speed influence |
| CN105569921A (en) * | 2015-12-16 | 2016-05-11 | 大连尚能科技发展有限公司 | Angle measurement error compensation method for adding main control system data transfer error correction |
| CN105545592A (en) * | 2015-12-16 | 2016-05-04 | 大连尚能科技发展有限公司 | Data preprocessing method for angle measurement error curve |
| CN105569921B (en) * | 2015-12-16 | 2018-08-14 | 大连尚能科技发展有限公司 | The angle measurement error compensation method of master control system data transfer error correction is added |
| CN105545592B (en) * | 2015-12-16 | 2018-09-25 | 大连尚能科技发展有限公司 | A method of obtaining angle measurement error curve |
| CN105545596A (en) * | 2015-12-16 | 2016-05-04 | 大连尚能科技发展有限公司 | Angle measurement error compensation method based on wind speed and position influence |
| CN106443057A (en) * | 2016-09-19 | 2017-02-22 | 王华锋 | Flow velocity pressure-sensing quantitative measuring instrument |
| CN109406825A (en) * | 2018-11-26 | 2019-03-01 | 华南理工大学 | A kind of two-D wind speed wind direction measuring device based on pressure difference |
| CN109709351A (en) * | 2019-02-01 | 2019-05-03 | 中国科学院电子学研究所 | Near-space real-time in-situ wind speed and direction sensor based on wind pressure prediction |
| CN110988386A (en) * | 2019-12-12 | 2020-04-10 | 石家庄铁道大学 | Wind speed and direction testing device and testing method |
| CN112031582A (en) * | 2020-08-14 | 2020-12-04 | 佛山市三水凤铝铝业有限公司 | Intelligent door and window |
| CN112031582B (en) * | 2020-08-14 | 2022-06-17 | 佛山市三水凤铝铝业有限公司 | Intelligent door and window |
| CN113125799A (en) * | 2021-04-19 | 2021-07-16 | 重庆地格科技有限责任公司 | Intelligent anemorumbometer based on pitot tube |
| CN113125799B (en) * | 2021-04-19 | 2024-01-26 | 重庆地格科技有限责任公司 | Intelligent anemograph based on pitot tube |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103630705B (en) | 2016-09-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103630705B (en) | A kind of measuring method utilizing solid state two dimensional wind speed and direction measuring instrument | |
| US11422057B2 (en) | Dynamic five-hole probe | |
| CN102359861B (en) | A wind pressure test device and test method for the surface of a building structure | |
| CN103292774B (en) | A kind of dynamic deflection metrology method of bridge | |
| CN104048808A (en) | Dynamic entropy probe | |
| CN104597273B (en) | A kind of test method and equipment of movement velocity | |
| JP6893678B2 (en) | Wind measuring device | |
| Sun et al. | A cylindrical vehicle-mounted anemometer based on 12 pressure sensors—Principle, prototype design, and validation | |
| CN104215219A (en) | High-precision magnetostrictive static level gauge and measurement method thereof | |
| CN106768827A (en) | A kind of steady temperature force combination probe for measuring transonic speed two-dimensional flow field | |
| US10495500B2 (en) | Flow measuring instrument comprising a wind velocity sensor | |
| CN110470860A (en) | A kind of time difference method ultrasonic wind velocity indicator and calibration method | |
| CN103175989A (en) | Three-dimensional direction test device | |
| CN106940241A (en) | A kind of steady temperature force combination probe for measuring transonic speed three-dimensional flow field | |
| CN102901487B (en) | Reluctance type inclination angle sensor | |
| CN119124453A (en) | A liquid pressure measuring device and method based on five-hole probe | |
| CN105372445B (en) | Solid-state wind sensor | |
| CN202216726U (en) | Rotary current regulator | |
| CN203643467U (en) | Ultrasonic Wind Meter | |
| CN106405147B (en) | A kind of ultrasonic transducer surveys wind array and its wind detection method | |
| CN206594300U (en) | A kind of GNSS height accuracies test device | |
| CN104833819A (en) | Wind speed on-line measurement system and test method | |
| CN216899540U (en) | A probe for measuring the two-dimensional dynamic boundary layer of the end wall between the rotating and stationary parts of a multi-stage compressor | |
| KR200454374Y1 (en) | Gas flow meter inspection device | |
| CN203758549U (en) | Capacitive sensor used for simultaneously obtaining inclination angle and liquid level of container |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |

