CN103624270A - 利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料 - Google Patents

利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料 Download PDF

Info

Publication number
CN103624270A
CN103624270A CN201310327276.6A CN201310327276A CN103624270A CN 103624270 A CN103624270 A CN 103624270A CN 201310327276 A CN201310327276 A CN 201310327276A CN 103624270 A CN103624270 A CN 103624270A
Authority
CN
China
Prior art keywords
nano
complex
metal
multicomponent
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310327276.6A
Other languages
English (en)
Inventor
金喜连
洪锡龙
宋光燮
金鸿守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOREA ENERGY TECHNOLOGY INST
Korea Institute of Energy Research KIER
Original Assignee
KOREA ENERGY TECHNOLOGY INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOREA ENERGY TECHNOLOGY INST filed Critical KOREA ENERGY TECHNOLOGY INST
Publication of CN103624270A publication Critical patent/CN103624270A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

本发明涉及一种使用同时气化制备多组分金属混杂纳米复合物的方法,其中一种多组分金属混杂纳米复合物通过一步法工艺制备,无需制作传统合金催化剂时包括的负载-干燥-焙烧-退火等步骤的复杂工艺,并且提供了一种所述方法制备的多组分金属混杂纳米复合物。本方法的优点在于,通过同时气化两种金属前驱体的简单方法就能够合成多组分金属混杂纳米复合物,并具有无需其他另外的后处理工序。

Description

利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料
相关申请的相互参考 
本申请要求2012年8月23日向韩国知识产权局递交的韩国专利申请号10-2012-0092229的权益,其公开内容作为参考整体引入。 
技术领域
本发明涉及一种通过简单的一步法工艺(one-step process)合成多组分金属混杂纳米复合物的方法,尤其涉及一种同时气化法制备多组分金属混杂纳米复合物的方法,其中,多组分金属混杂纳米复合物通过一步法工艺制备,省略制作传统合金催化剂时包括的负载-干燥-焙烧-退火等步骤的复杂的工艺,并且涉及一种据此方法制作的多组分金属混杂纳米复合物。 
背景技术
近来在催化剂研究领域最受关注的领域是,1)表面积大且物理/化学耐久性好的多孔载体的合成;2)随着金属原价上升,为解决催化剂制作费上升的问题,而纳米化及高度分散催化剂金属的技术。此外,3)正在研究为提高主要催化剂的反应活性,有效添加辅助催化剂的技术,4)最初以高度分散的状态制作的金属纳米粒子,随着高温催化反应的进行,发生冷凝(agglomeration)、或随着反应的进行发生脱落而发生催化剂活性下降的问题,为防止这些问题正在进行提高金属-载体间相互作用(metal-support interaction)的研究。添加辅助催化剂的理由有多种,一般情况下,辅助催化剂的加入是为了控制作为主要催化剂的金属的吸附位、或改善氧气、氢气等反应气体顺利传送到反应物、或加强金属催化剂与载体之间的相互作用(interaction)等用途。一般情况下,为了添加辅助催化剂,通常使用初湿浸渍法(incipient wetness method)或湿法浸渍法(wet-impregnation),其中,先负载主要催化剂后接着负载辅助催化剂。使用 两种以上催化剂的多组分金属催化剂,通常需要进行用800℃或以上高温进行热处理的合金化工艺。并且,当使用初湿浸渍法及湿法浸渍法时,通常存在由于金属离子容易冷凝而很难制取高度分散纳米大小的催化剂粒子的问题。 
发明内容
因此,本发明被设计用于解决上述提及的问题,并且本发明的目的在于提供一种使用一部分制备多组分金属混杂纳米复合物的方法,其中,同时气化多种的金属前驱体以形成气态金属前驱体,在气态金属前驱体之间合成纳米大小的金属-金属复合物,即,本发明发展了一种用一步法工艺有效制作纳米大小的金属混杂复合物的方法,并且无需包括多步骤的复杂工艺。 
本发明的另一目的在于提供一种负载于高性能/高耐久性载体的多组分金属混杂纳米复合物的制作方法,所述方法能够有效的应用于同时气化工艺,因为不会因生产规模增大发生转变,并且能够有效用于大多数使用传统非均相催化剂的催化工艺,因为载体由选自多种碳材料的碳材料和旋转多种陶瓷材料的陶瓷材料制备,所述陶瓷材料如氧化铝、二氧化硅、沸石、氧化锆、氧化钛等,并提供了一种所述方法制备的多组分金属混杂纳米复合物。 
为实现上述目的,本发明提供一种多组分金属混杂纳米复合物的制作方法,其包括:提供第一金属前驱体及第二金属前驱体在各自气化器内气化的步骤S1;以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S2;加热上述反应器后维持恒温,而合成多组分金属混杂纳米复合物的步骤S3。 
并且,本发明提供一种根据本发明制作的多组分金属混杂纳米复合物。 
本发明提供一种多组分金属混杂纳米复合物的制作方法,其包括:在反应器内部布置载体的步骤S1;提供第一金属前驱体及第二金属前驱体在各自气化器内气化的步骤S2;以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S3;以及加热上述反应器后维持恒温,而合成负载于载体的多组分金属混杂纳米复合物的步骤S4。 
并且,本发明提供一种根据本发明制作的负载于载体的多组分金属混杂纳米复合物。 
附图说明
从下述参照附图的详细描述中,本发明上述的以及其它的目的、特征和优点将更为清楚。附图中: 
图1是实施例1及比较例1中制作的镍-钯纳米复合物的XRD分析结果图。 
图2是使用实施例1中制作的镍钯纳米复合物及比较例1中制作的镍钯复合物,测试甲烷二氧化碳重整反应的性能的结果,是图示随着反应进行的反应物(甲烷、CH4)转化率的图表。 
具体实施方式
下面,进一步详细说明本发明。 
本发明一方面,能够利用同时气化工程,以粉末形状制作多组分金属混杂纳米复合物。具体说,本发明的多组分金属混杂纳米复合物的制作方法,其特征在于,包括:提供第一金属前驱体及第二金属前驱体在各自气化器内气化的步骤S1;以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S2;加热上述反应器后维持恒温,而合成多组分金属混杂纳米复合物的步骤S3。 
首先,提供在各自气化器内气化的第一金属前驱体及第二金属前驱体(步骤S1)。 
本步骤中在一个气化器内供应第一金属前驱体,而在另一气化器内供应第二金属前驱体后,将各自气化器温度上升为各前驱体的沸点附近,同时气化第一和第二前驱体。 
本步骤中使用的第一金属前驱体与第二金属前驱体互不相同,可使用能够气化的所有物质作为第一和第二金属前驱体。优先使用选自镍前驱体、钼前驱体、钯前驱体、铈前驱体以及钨前驱体的任意一个作为第一和第二金属前驱体。更优选地,镍前驱体可以选自乙酰丙酮镍(Ⅱ)、双(环戊二烯)镍、四(三氟膦)镍以及羰基镍的任意一个;钼前驱体可以是六羰基钼或氯化钼(Ⅴ);钯前驱体可以选自醋酸钯(Ⅱ)、六氟乙酰丙酮钯(Ⅱ)或乙酰丙酮钯(Ⅱ)组成的组;铈前驱体可以是选自四(2,2,6,6-四甲基-3,5-庚二酮酸)铈(IV)、硝酸铈、二叔戊酰甲烷(dipivaloylmethanate)铈、氯化铈(III)等组成的组;钨前驱体,可以是六羰基钨或氯化钨(IV)等,然而对于各个前驱体适用的气化条件与气化温度 相异,因此需要适当调节。 
本步骤中使用的气化器可使用公知的或直接制作的气化器,通常可以使用金属材料或玻璃类(石英玻璃或派热克斯玻璃)等材料的气化器。作为能够维持恒温,并可观察内容物的状态、余量,且不与前驱体反应的稳定的材料,玻璃材料用来制作汽化器为宜。 
本步骤中使用的第一前驱体与第二前驱体可以是液态、气态、固态的前驱体。 
根据本发明一具体实施例,作为镍前驱体使用二茂镍时,可用250℃或以上的温度气化,若使用羧基镍时,可在室温进行气化。作为钯前驱体使用醋酸钯时,在丙酮或苯等有机溶剂中溶解的状态下,使用定量泵传送到反应器的途中,用100-150℃温度进行气化。 
然后,以非接触状态在反应器内,供应在步骤S1中气化的第一金属前驱体及第二金属前驱体(步骤S2)。 
本步骤中以非接触状态、如通过另外的供应线,在反应器内供应各个前驱体,即、第一金属前驱体及第二金属前驱体。从而,气化的前驱体在最终反应的反应器流入部相遇。若各个前驱体在传送途中相遇,就会发生意料不到的副反应、或有可能涂敷在移动渠道的壁上。 
优先为,本步骤中通过运载气体在反应器内供应气态前驱体。运载气体能够防止前驱体冷凝或产生副反应,助其传送到反应器,可以使用氮气、氩气、氦气、氧气、氢气等作为运载气体。主要使用氮气、氩气、氦气等惰性气体作为运载气体为佳,但如果需要,根据前驱体也可以使用氧气或氢气作为运载气体。 
本步骤中通过调节供入反应器的各前驱体的流量比,能够控制最终复合物的组成。例如、第一金属前驱体与第二金属前驱体的流量比为2:1时,与流量比为1:1时相比,最终合成的复合物中第一金属的重量百分比(wt%)更大。因此根据适用的催化反应与目标的金属组合比率(ratio),改变流量比,就能够合成多样的多组分金属混杂纳米复合物。 
最后,在步骤S2中供入第一和第二前驱体的反应器,进行加热后维持恒温,就能够以粉末状态制作多组分金属混杂纳米复合物(步骤S3)。本步骤中用于合成多组分金属混杂纳米复合物的反应条件,根据各金属前驱体的种类相异,通常在600-1100℃温度下多组分金属混杂纳米复合物的合成顺利进行,并且通过适当 设计加热炉及反应器,就可选择合成温度。上述温度范围内,合成温度越低,纳米粒子的合成越容易,根据金属的种类,有可能出现合成温度越上升,粒子的大小越增大的趋势。在合成反应过程,合成时间优先为5分钟或以上,更优先维持1小时左右,并且很明显,合成时间越长,合成的金属混杂纳米复合物的量自然就会增加。 
本发明提供根据本发明的制作方法制作的多组分金属混杂纳米复合物。根据本发明的多组分金属混杂纳米复合物,制作成由纳米粒子构成的粉末形状,纳米粒子的直径大体上0.5-20nm范围。 
本发明另一方面,能够利用同时气化工艺与载体,以负载于载体的形式制作金属混杂纳米复合物。具体说,本发明的沉积在载体的金属混杂纳米复合物的制作方法,包括:在反应器内部布置载体的步骤S1;提供第一金属前驱体及第二金属前驱体在各自气化器内气化的步骤S2;以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S3;以及加热上述反应器后维持恒温,而合成沉积在载体的多组分金属混杂纳米复合物的步骤S4。 
本发明中使用的载体没有特别限制,但可以使用选自碳纸、活性炭、碳黑等碳材料;铝粉、铝板等铝材料;硅灰、氧化钛粉、氧化锆粉、各种沸石以及镍箔或铝箔等金属箔组成的组。更优先使用表面积大的载体,就可最大限度提高负载效果,因此作为载体使用碳粉、氧化铝粉、沸石粉等表面积大的材料,在表面合成多组分金属混杂复合物,能够适用于重整反应、热分解反应、氢化/脱氢反应等各种催化反应。 
本发明的具体实施例中,在反应器内事先布置载体,并在载体上面合成复合物,且最终产物为负载在载体上的金属混杂纳米复合物的内容,与上面说明的具体实施例不同,但步骤S2至步骤S4中的具体构成与上面说明的内容相同。 
本发明提供一种根据本发明的制作方法制作的负载于载体的多组分金属混杂纳米复合物。根据本发明的负载于载体的多组分金属混杂纳米复合物,优势在于,负载于载体上进行催化反应后,便于回收催化剂,并且以负载的形式应用,因此利用传统的整体式、蜂窝(Honeycomb)式或微通道型反应器、膜反应器、固定床反应器等进行催化反应时,特别有用,并且可以负载于传统的吸附剂上,便于应用于各种吸附-脱附工程。 
下面,本发明就爱那个参考下列实施例进行更加详细的描述,这些实施例用来举例说明本发明,并且本发明的范围不限于此。 
实施例1:负载于氧化铝的镍-钯纳米复合物的制作 
第一金属前驱体使用了镍前驱体即、四羰基镍(Nickel carbonyl,Ni(CO)4),并且第二金属前驱体使用了钯前驱体即醋酸钯(Pd(O2CCH3)2)。 
在维持恒温的烘箱内,设置隔断外部空气的状态的派热克斯材料的气化器,并使用气密进样针(gas-tight syringe)注入液态镍前驱体。然后,将供入镍前驱体的烘箱内部维持在35℃的状态下,流经运载气体(氮气,10sccm),形成气态镍前驱体,气态镍前驱体传送到反应器。于此同时,使用定量泵将溶解在苯中的钯前驱体移送到反应器,此时,用加热带(heating line)卷绕用于移送钯-苯溶液(5wt%(Pd基)钯)的管,而升温为120℃,从而防止钯前驱体在移送途中凝结,混合溶液被传送到反应器的同时,气化的钯前驱体也通过蒸汽压喷射到反应器内部。定量泵的流量为0.05ml/分。气化的两个前驱体通过各自的渠道在石英反应器内相遇的瞬间,就是开始合成所述金属纳米复合物的瞬间。另一方面,石英反应器内,投入事先干燥(110℃温度下干燥12小时)的氧化铝粉,然后流入气态前驱体。其合成温度维持在700℃,并持续1小时而制作负载于氧化铝的镍-钯纳米复合物。 
实施例2:负载于碳粉的镍-钯纳米复合物的制作 
在合成镍-钯纳米复合物的反应器内部,除了设置事先干燥(110℃温度下干燥12小时)的碳黑以外,进行与实施例1相同的工序,而制作负载于碳粉的镍-钯纳米复合物。 
实施例3:镍-钯纳米复合物的制作 
第一金属前驱体使用了镍前驱体即、四羰基镍(Nickel carbonyl,Ni(CO)4),并且第二金属前驱体使用了钯前驱体即醋酸钯(Pd(O2CCH3)2)。 
在维持恒温的烘箱内,设置隔断外部空气的状态的派热克斯材料的气化器,并使用气密进样针(gas-tight syringe)注入液态镍前驱体。然后,将供入镍前驱体的烘箱内部维持在35℃的状态下,流经运载气体(氮气30sccm)以形成气态镍前驱体,然后气态镍前驱体传送到反应器,于此同时使用定量泵将溶解在苯中的钯前驱体移送到反应器,两个前驱体在石英反应器内相遇的瞬间就是开始合 成金属纳米复合物的瞬间。此时,用加热带(heating line)卷绕用于移送钯-苯溶液(5wt%(Pd基)钯)的管而升温为120℃,从而防止钯前驱体在移送途中凝结,混合溶液传送到反应器的同时,气化的钯前驱体也通过蒸汽压喷射到反应器内部。定量泵的流量为0.05ml/分。各个前驱体沿着各个连接管移动,在装有反应炉(Furnace)的石英反应器入口相遇,此时反应炉维持用于生成金属混杂复合物即、镍钯纳米复合物的温度700℃温度下1小时而制作镍-钯纳米复合物。 
比较例1:用初湿浸渍法制作负载于氧化铝的镍-钯复合物 
首先备好在110℃烘箱内干燥12小时的氧化铝,10wt%重量百分比的钯(Pd)负载于所述干燥的氧化铝上,在大气中干燥12小时后,在110℃烘箱内进一步干燥12小时,然后5wt%的镍进一步负载到所述氧化铝上,空气中干燥12小时,然后110℃烘箱内进一步干燥12小时。硝酸钯(Pd(NO3)2)与硝酸镍(Ni(NO3)2·6H2O)作为前驱体,使用时,每一种前驱体溶解在蒸馏水。然后,负载两种金属(Pd和Ni)的氧化铝在450℃温度、氮气环境下焙烧4小时,然后以10℃/min的速度升温为800℃后,热处理2小时而最终制作负载于氧化铝的镍-钯复合物。 
测试实验例1:镍-钯纳米复合物的X射线衍射(XRD)分析 
对实施例1-3及比较例1中制作的镍-钯纳米复合物进行X射线衍射分析的结果如图1所示。图1中(a)Pd/Al2O3与(b)Ni/Al2O3是单一金属的波峰的分析结果;(c)是实施例1中制作的Pd-Ni/Al2O3复合物的分析结果;(d)是比较例1中制作的Pd-Ni/Al2O3复合物的分析结果。在图1中可以确认,根据本发明的复合物(c)与使用以前的合金催化剂的复合物即、依次经过金属的负载-干燥-焙烧-退火过程制备的传统复合物(d)比较,形成几乎相同的合金结构,并且合金粒子的结晶性也十分优秀。根据该结果可以证明,本发明的制作方法是一种能够简化以前经过多个步骤的合金催化剂的制作工程的十分有用、有效的技术。 
测试实验例2:根据合成时间的镍-钯纳米复合物负载量的分析 
利用与实施例1相同的方法合成镍-钯纳米复合物,将合成时间逐渐增加为5分、30分、3小时、6小时,并使用电感耦合等离子体发射光谱仪(ICP-OES,Perkin-Elmer),分析了在氧化铝表面沉积的镍-钯纳米复合物的负载量(wt%)。该结果如下表1所示。 
[表1] 
合成时间 5分 30分 3小时 6小时
Pd(wt%) 5 7 10 13
Ni(wt%) 2 4 5 6
从上述表1可知,氧化铝表面金属的负载量随着合成时间的流逝而增加,但随着时间的流逝,负载量增加速度一定程度上减少。这是因为初期金属颗粒与氧化铝载体表面的相互作用非常激烈,从而金属的吸附十分容易,但随着时间流逝,负载量增加,在氧化铝载体的表面覆盖了金属粒子,从而载体与金属间的相互作用减少所至。 
测试实验例3:使用镍-钯纳米复合物的甲烷二氧化碳重整反应的结果 
使用在实施例1中制作的镍-钯纳米复合物与在比较例1中制作的镍-钯复合物,测试甲烷二氧化碳重整反应的性能,随着反应的进行,反应物(甲烷、CH4)转化率如图2所示。为进行重整反应,以30ml/min的速度流入各反应物(甲烷与二氧化碳),并在维持700℃的反应器内进行重整反应。所述重整反应的反应式(I)如下: 
CH4+CO2→2CO+2H2    (I) 
进行72小时的重整反应的结果如图2所示,从图2中可以看出,实施例1中制作的Pd-Ni/Al2O3复合物催化剂比比较例1中制作的复合物催化剂(即、Pd-Ni/Al2O3),初期反应活性高出8%左右,经过72小时后,Pd-Ni/Al2O3复合物催化剂的相比于比较例1制作的Pd-Ni/Al2O3复合催化剂,活性仍高出10%左右。并且,如图1中可以看出,使用同时气化法的催化剂,随着反应时间流逝其反应活性几乎没有减少,但商业化催化剂根据反应时间的流逝,其催化活性减少。该结果是因为用同时气化法制作的催化剂,随着反应时间流逝,几乎不发生催化剂凝结的现象,也不会因产生焦炭(coke)而发生失活。 
如上所述,根据以前技术的合金制作工程,需要包括焙烧退火等步骤的复杂过程,以使前驱体逐步负载,以最终制作合金,然而根据本发明的制作方法,能够在无需另外的合金化工程(焙烧或退火)的合成过程中形成合金,从而实现一步法工艺。 
根据本发明的多组分金属混杂纳米复合物,能够以负载在诸如碳黑、活性炭、碳纳米管、氧化铝、沸石、二氧化硅、氧化钛、氧化锆等多种载体的形式合成, 或以独立的粉末状制作,因此可以用于多个领域。另外,本发明所述方法制备的多组分金属混杂纳米复合物粉末,特征在于,能够容易的通过范德华力被吸附到载体表面,因此,能够容易的应用于诸如整体式反应器、蜂窝式反应器、微通道反应器等管式催化反应器的内壁,管式反应器是用于非均匀反应的典型的催化反应器。另外,根据本发明所述的多组分金属混杂纳米组合物尤其能够用于各种膜材料,因为其能够应用于各种膜材料的内表面或外表面。 
尽管本发明为了阐述的目的公开了优选实施例,但是本领域技术人员应当理解的是,在不脱离本发明附属权利要求书公开的精神和范围的情况下,各种改进、增加以及替代是可能的。 

Claims (21)

1.一种多组分金属混杂纳米复合物的制作方法,其特征在于,包括:
提供第一金属前驱体及第二金属前驱体、在各自气化器内气化的步骤S1;
以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S2;
加热上述反应器后维持恒温,而合成多组分金属混杂纳米复合物的步骤S3。
2.根据权利要求1所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述第一金属前驱体与第二金属前驱体互不相同,
并选自由镍前驱体、钼前驱体、钯前驱体、铈前驱体以及钨前驱体组成的组。
3.根据权利要求2所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述镍前驱体是乙酰丙酮镍(Ⅱ)、双(环戊二烯)镍或四(三氟膦)镍。
4.根据权利要求2所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钼前驱体是六羰基钼或氯化钼(Ⅴ)。
5.根据权利要求2所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钯前驱体选自由醋酸钯(Ⅱ)、六氟乙酰丙酮钯(Ⅱ)或乙酰丙酮钯(Ⅱ)组成的组。
6.根据权利要求2所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述铈前驱体选自由四(2,2,6,6-四甲基-3,5-庚二酮酸)铈(IV)、硝酸铈、二叔戊酰甲烷铈、氯化铈(III)组成的组。
7.根据权利要求2所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钨前驱体是六羰基钨或氯化钨(IV)。
8.根据权利要求1所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S2中,反应器温度维持在第一和第二前驱体各自的沸点附近。
9.根据权利要求1所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S2以利用运载气体在反应器内供应气化的第一和第二金属前驱体的方式进行,上述运载气体是氧气、氢气、氩气、氦气或氮气。
10.根据权利要求1所述的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S3中,将反应器温度加热为600-1100℃范围的温度后,维持恒温。
11.一种多组金属混杂纳米复合物的制作方法,其特征在于,包括:
在反应器内部布置载体的步骤S1;
提供第一金属前驱体及第二金属前驱体、在各自气化器内气化的步骤S2;
以非接触状态,在反应器内供应已气化的第一金属前驱体及第二金属前驱体的步骤S3;以及
加热上述反应器后维持恒温,而合成沉积在载体的多组分金属混杂纳米复合物的步骤S4。
12.根据权利要求11所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述载体选自由碳纸、活性炭、碳黑、铝粉、铝板、硅粉、氧化钛粉、氧化锆粉、沸石以及镍箔和铝箔组成的组。
13.根据权利要求11所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述第一金属前驱体与第二金属前驱体互不相同,
并选自由镍前驱体、钯前驱体、铈前驱体以及钨前驱体组成的组。
14.根据权利要求13所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述镍前驱体是乙酰丙酮镍(Ⅱ)、双(环戊二烯)镍或四(三氟膦)镍。
15.根据权利要求13所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钼前驱体是六羰基钼或氯化钼(Ⅴ)。
16.根据权利要求13所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钯前驱体是醋酸钯(Ⅱ)、六氟乙酰丙酮钯(Ⅱ)或乙酰丙酮钯(Ⅱ)。
17.根据权利要求13所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述铈前驱体选自由四(2,2,6,6-四甲基-3,5-庚二酮酸)铈(IV)、硝酸铈、二叔戊酰甲烷铈、氯化铈(III)组成的组。
18.根据权利要求13所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述钨前驱体是六羰基钨或氯化钨(IV)。
19.根据权利要求11所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S2中,反应器温度维持在第一和第二前驱体中各自的沸点附近。
20.根据权利要求11所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S2以利用运载气体在反应器内供应第一和第二金属前驱体的方式进行,上述运载气体是氧气、氢气、氩气、氦气或氮气。
21.根据权利要求11所述的沉积在载体的多组分金属混杂纳米复合物的制作方法,其特征在于,
上述步骤S3中,将反应器温度加热为600-1100℃范围的温度后,维持恒温。
CN201310327276.6A 2012-08-23 2013-07-30 利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料 Pending CN103624270A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120092229 2012-08-23
KR20120092229A KR101334057B1 (ko) 2012-08-23 2012-08-23 동시기화법을 이용한 다중성분 금속-하이브리드 나노 복합체의 제조방법 및 이에 의해 제조된 다중성분 금속-하이브리드 나노 복합체

Publications (1)

Publication Number Publication Date
CN103624270A true CN103624270A (zh) 2014-03-12

Family

ID=49858681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310327276.6A Pending CN103624270A (zh) 2012-08-23 2013-07-30 利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料

Country Status (3)

Country Link
US (1) US9114387B2 (zh)
KR (1) KR101334057B1 (zh)
CN (1) CN103624270A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492102B1 (ko) * 2013-05-02 2015-02-10 한국에너지기술연구원 연료전지용 합금 촉매 제조방법 및 이에 따라 제조된 연료전지용 합금 촉매
KR101568247B1 (ko) * 2014-06-02 2015-11-12 한국에너지기술연구원 질소 도핑된 탄소 표면을 갖는 금속-탄소 하이브리드 복합체 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876503A (en) * 1996-11-27 1999-03-02 Advanced Technology Materials, Inc. Multiple vaporizer reagent supply system for chemical vapor deposition utilizing dissimilar precursor compositions
CN101233266A (zh) * 2004-10-13 2008-07-30 因特麦崔克斯股份有限公司 基于纳米粉末的组合库的制备
CN101495218A (zh) * 2005-06-21 2009-07-29 Ppg工业俄亥俄公司 纳米材料分散体的制造方法及其产品
CN101553895A (zh) * 2006-09-08 2009-10-07 通用汽车环球科技运作公司 一维金属和金属氧化物纳米结构
CN201864775U (zh) * 2010-11-03 2011-06-15 北京联合创美科技发展有限公司 气相纳米制备仪
CN102430762A (zh) * 2010-09-01 2012-05-02 戴雷克塔普拉斯有限公司 用于金属纳米粒子的生产的多进料器反应器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482641A (en) * 1983-02-28 1984-11-13 Standard Oil Company (Indiana) Metal-containing active carbon and method for making same
US5318797A (en) * 1990-06-20 1994-06-07 Clarkson University Coated particles, hollow particles, and process for manufacturing the same
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6660680B1 (en) * 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US6103393A (en) * 1998-02-24 2000-08-15 Superior Micropowders Llc Metal-carbon composite powders, methods for producing powders and devices fabricated from same
US6967183B2 (en) * 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
JP2001247967A (ja) * 1999-12-30 2001-09-14 Applied Materials Inc ジルコン酸チタン酸鉛膜の有機メタル化学気相堆積
KR100756626B1 (ko) * 2000-10-28 2007-09-07 주성엔지니어링(주) 기체 믹싱 포트 및 이를 이용한 액상반응원료 운반시스템
US6906000B1 (en) * 2001-12-11 2005-06-14 Hydrocarbon Technologies, Inc. Stable carbonous catalyst particles and method for making and utilizing same
KR100573295B1 (ko) * 2003-04-22 2006-04-24 한국기계연구원 나노 금속 또는 세라믹 분말의 생성장치
US7053021B1 (en) * 2004-04-22 2006-05-30 The Research Foundation Of The State University Of New York Core-shell synthesis of carbon-supported alloy nanoparticle catalysts
US7935655B2 (en) * 2005-11-04 2011-05-03 Kent State University Nanostructured core-shell electrocatalysts for fuel cells
US8648004B2 (en) * 2011-04-07 2014-02-11 National Cheng Kung University Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
US9650711B2 (en) * 2011-09-26 2017-05-16 California Institute Of Technology, Office Of Technology Transfer Efficient and simple method for metalorganic chemical vapor deposition
KR101365716B1 (ko) * 2012-09-24 2014-02-21 한국에너지기술연구원 동시기화법을 이용하는 수소 제조 공정용 금속-탄소 복합체 담지 촉매의 제조 방법 및 이에 의해 제조된 수소 제조 공정용 금속-탄소 복합체 담지 촉매

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876503A (en) * 1996-11-27 1999-03-02 Advanced Technology Materials, Inc. Multiple vaporizer reagent supply system for chemical vapor deposition utilizing dissimilar precursor compositions
CN101233266A (zh) * 2004-10-13 2008-07-30 因特麦崔克斯股份有限公司 基于纳米粉末的组合库的制备
CN101495218A (zh) * 2005-06-21 2009-07-29 Ppg工业俄亥俄公司 纳米材料分散体的制造方法及其产品
CN101553895A (zh) * 2006-09-08 2009-10-07 通用汽车环球科技运作公司 一维金属和金属氧化物纳米结构
CN102430762A (zh) * 2010-09-01 2012-05-02 戴雷克塔普拉斯有限公司 用于金属纳米粒子的生产的多进料器反应器
CN201864775U (zh) * 2010-11-03 2011-06-15 北京联合创美科技发展有限公司 气相纳米制备仪

Also Published As

Publication number Publication date
US9114387B2 (en) 2015-08-25
KR101334057B1 (ko) 2013-11-29
US20140057779A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
Song et al. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane
CN101018736B (zh) 选择性制备有序碳纳米管的方法
Luo et al. Base metal-Pt alloys: A general route to high selectivity and stability in the production of biofuels from HMF
JP6143761B2 (ja) 水素生成触媒及び水素の製造法
Rossetti et al. Nickel catalysts supported over TiO2, SiO2 and ZrO2 for the steam reforming of glycerol
Liu et al. Ordered mesoporous Ni–Fe–Al catalysts for CO methanation with enhanced activity and resistance to deactivation
JP5709954B2 (ja) 金属−炭素複合体担持触媒の製造方法
Shen et al. Effect of regeneration period on the selectivity of synthesis gas of Ba-hexaaluminates in chemical looping partial oxidation of methane
Liang et al. Gas-phase synthesis of Ni–CeO x hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas
Baamran et al. Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst
Chong et al. Methane dry reforming over Ni/fibrous SBA-15 catalysts: Effects of support morphology (rod-liked F-SBA-15 and dendritic DFSBA-15)
CN101421447A (zh) 流化床制备碳纳米管的方法
Zhang et al. Ethyne-reducing metal–organic frameworks to control fabrications of core/shell nanoparticles as catalysts
Wong et al. Investigation on cobalt aluminate as an oxygen carrier catalyst for dry reforming of methane
Zhang et al. Key properties of Ni/CeAlO3-Al2O3/SiC-foam catalysts for biogas reforming: Enhanced stability and CO2 activation
Lei et al. Effects of chlorine in titanium oxide on palladium atomic layer deposition
Liu et al. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La 2 O 3 metal–support interactions
Huang et al. Effects of promoters on the structure, performance, and carbon deposition of Ni-Al2O3 catalysts for CO2–CH4 reforming
Harshini et al. Catalytic steam reforming of propane over Ni/LaAlO 3 catalysts: influence of preparation methods and OSC on activity and stability
Ismaila et al. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst
Akansu et al. Nickel-based alumina supported catalysts for dry reforming of biogas in the absence and the presence of H2S: Effect of manganese incorporation
Ail et al. Fuel-Rich Combustion Synthesized Co/Al2O3 Catalysts for Wax and Liquid Fuel Production via Fischer–Tropsch Reaction
Zhang et al. Effect of boron nitride overlayers on Co@ BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde
CN103624270A (zh) 利用同时气化法的多组分金属混杂纳米复合物制作方法及制作的多组分金属混杂纳米材料
Li et al. Investigation of coke deposition during catalytic cracking of different biomass model tar: Effect of microwave

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140312