CN103615624B - 一种熔融盐管道加热装置 - Google Patents

一种熔融盐管道加热装置 Download PDF

Info

Publication number
CN103615624B
CN103615624B CN201310628712.3A CN201310628712A CN103615624B CN 103615624 B CN103615624 B CN 103615624B CN 201310628712 A CN201310628712 A CN 201310628712A CN 103615624 B CN103615624 B CN 103615624B
Authority
CN
China
Prior art keywords
fuse salt
salt pipeline
control circuit
automatic control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310628712.3A
Other languages
English (en)
Other versions
CN103615624A (zh
Inventor
刘鸿
王志峰
李鑫
常春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201310628712.3A priority Critical patent/CN103615624B/zh
Publication of CN103615624A publication Critical patent/CN103615624A/zh
Application granted granted Critical
Publication of CN103615624B publication Critical patent/CN103615624B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/37Ohmic-resistance heating the heating current flowing directly through the pipe to be heated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种熔融盐管道加热装置,包括熔融盐管道(1)、自动控制电路(10)、电动调压器(13)、变压器(4)和传感器(12)。电动调压器(13)的输入端连接AC交流电,电动调压器(13)的输出端连接变压器(4)的输入端,变压器(4)的输出端分别连接熔融盐管道(1)的进口端和出口端;传感器(12)安装在熔融盐管道(1)的外壁。传感器(12)检测得到熔融盐管道(1)的实际温度与自动控制电路(10)设定的温度比较,当热电偶(12)测得的熔融盐管道(1)的温度低于自动控制电路(10)给定的温度设定值时,自动控制电路(10)发出信号控制电动调压器(13),电动调压器(13)进行调压,控制熔融盐管道(1)的温度。

Description

一种熔融盐管道加热装置
技术领域
本发明涉及一种加热装置,特别涉及一种熔融盐管道加热装置。
背景技术
在塔式太阳能聚光式热发电站中,采用适宜的传热和蓄热介质是十分必要的。从上世纪80年代开始太阳能热发电系统应用到实际以来,在不同系统中采用过不同的传热和蓄热介质。传热介质的温度越高,发电系统的效率就越高。熔融盐具有很好的传热特性,用熔融盐作为导热介质使得整个蒸汽压力具有较高的扩散能力和高的热容量。SolarOne太阳能电站中采用了导热油作为传热介质,但是导热油温度上限是400℃度,而且价格高不适合大规模太阳能电站的利用。SolarTwo太阳能电站中采用了硝酸钠和硝酸钾混合盐作为传热和蓄热材料,证明混合硝酸盐在太阳能热发电系统的可行性。熔融盐电站的管道在温度低时容易堵塞。熔融盐的工作温度在240℃至600℃之间,凝固点为240℃。熔融盐在管道中运行,需要管道的温度必须在240℃以上。
一种工程常用的熔融盐加热系统采用火焰直接加热管道,这种加热方法的缺点很多,主要是加热速度慢,管道加热不均匀,无法精确地计算功率,并且,明火遇到可燃物很容易造成火灾。另一种常用的熔融盐加热系统在熔融盐管道外加套管,套管里通蒸汽,利用蒸汽的温度给管道加热.此种方法装置结构太复杂,不能自动控制温度。
专利CN200820303404公开一种熔融盐加热站电伴热的配电设置,所用的电源是交流220伏,此发明所用电源的缺点是非安全电压,使得操作人员容易触电。
专利201120119682.X公开了一种复合肥防结块剂用管道电伴热保温装置。此发明在管道外壁上、保温层和防水防腐层上,依次由内向外每一层加伴热带,伴热带之间的距离为30厘米,此发明的缺点是加热温度低只有80℃。
专利201220672899.8公开了生产线上一种用于双履带加热的装置,是通过加热箱为双履带加热,双履带在加热箱之间运行,通过安装的加热装置对双履带进行加热升温,加热装置的加热管通过控制电流的大小来控制温度的,加热箱配有吹风机和吸风机,吹风机和吸风机运行来达到热空气的流动,此种加热方法的缺点是,加热功率小,加热速度慢,加热不均匀,不能够精确的计算功率,缺乏安全性和可靠性。
以熔融盐作为换热工质的塔式太阳能聚光式热发电站,比光伏发电和其它热发电形式具有规模大,商业前景广阔的优点。塔式太阳能发电站主要由定日镜、吸热器、熔融盐管道、高温油罐、低温油罐、熔融盐管道加热装置、换热器、汽轮机,以及发电机组成。定日镜通过反射太阳的光线把聚光后的辐射能流投射在吸热器的表面,吸热器里的熔融盐被加热到近600℃,通过熔融盐管道流入高温油罐,高温的熔融盐通过换热器产生高温蒸汽,高温蒸汽来推动汽轮机转动带动发电机发电。600℃熔融盐经过换热器温度降为240℃流入低温油罐,再经过熔融盐管道流回吸热器。整个流动的过程是由熔盐泵驱动的。在塔式太阳能发电系统运行前与运行过程中熔融盐管道必须加热到240℃,才能保证熔融盐在熔融盐管道内正常运行,本发明熔融盐管道加热装置可以把熔融盐管道加热到460℃,而且可以根据设定温度自动调节温度.
发明内容
本发明的目的是克服现有的熔融盐管道加热装置加热效率低、安全性能差的缺点,提出一种加热效率高安全可靠的熔融盐管道加热装置。一般功率在800W以上的电器为大功率电器。本发明采用800W以上的大功率调压器调整电压,控制功率,随之控制温度。并通过大功率变压器把高电压降为安全的低电压。本发明变压器的输出端加熔融盐管道的两端,熔融盐管道通过电流,直接加热熔融盐管道。本发明加热功率大,加热速度快,加热均匀,能够精确的计算功率,而且可以根据设定温度自动调节温度,既安全又可靠。
本发明融盐管道加热装置包括熔融盐管道、自动控制电路、电动调压器、变压器和传感器。自动控制电路通过光纤传输信号,控制电动调压器调整电压。电动调压器的输入端接AC交流电,电动调压器的输出端通过铜排连接变压器的输入端,变压器的输出端通过铜排分别连接熔融盐管道的进口端和出口端,变压器输出的是安全的低电压。熔融盐管道为不锈钢材质,铜排的制作材料是黄铜,为了减小换热器与铜排之间的接触电阻,不锈钢材料制作的熔融盐管道与黄铜制作铜排之间通过高压压接的方法连接在一起。变压器的输出端共有两极,其中一极通过铜排连接在熔融盐管道的进口,另一极通过铜排连接在熔融盐管道的出口。变压器输出端与铜排是通过螺丝连接,熔融盐管道与黄铜制作铜排之间通过高压压接的方法连接在一起。不锈钢的熔融盐管道具有非常好的导热性,同时具有很好的抗压性能。熔融盐管道外层加有保温层保温,保温层采用保温棉。热电偶传感器直接焊接在熔融盐管道外壁上,测量熔融盐管道的温度。
所述的自动控制电路采用热电偶作为传感器,将热电偶检测到熔融盐管道的实际温度与自动控制电路给出的设定温度比较,当热电偶测得的熔融盐管道的温度低于自动控制电路的设定值时,自动控制电路内的比较器输出信号控制自动控制电路内的继电器吸合通电,继电器吸合通电使得电动调压器的驱动电机通电转动,由驱动电机带动电动调压器进行调压。本自动控制电路的创新点在于,原有的热电偶传输信号是用补偿导线传输的,本自动控制电路的热电偶是利用光纤进行传输的,利用光纤进行传输的信号抗干扰能力强,传输的信号精度高。当热电偶测得的熔融盐管道的实际温度值与设定的温度值的差值越大时,自动控制电路控制电动调压器输出的电压值就越大。电动调压器的输出连接变压器的输入端,变压器的输出端连接熔融盐管道的两端,此时熔融盐管道通过的电流就越大,温度升高的速度越快。当热电偶测得的熔融盐管道的实际温度值与自动控制电路给出的设定温度值差值越小时,自动控制电路控制电动调压器输出的电压值随之越小,变压器输出的电压越小,此时熔融盐管道通过的电流越小,温度升高的速度越变小。当热电偶测得的熔融盐管道的温度值与自动控制电路设定温度值差值为零时,自动控制电路输出的电压值为零,电动调压器输出的电压为零,变压器的电压也为零,此时熔融盐管道通过电流为零,熔融盐管道温度不变。熔融盐管道温度的调节根据实际测得的温度值与自动控制电路设定温度值比较后自动调节。
附图说明
图1以熔融盐作为换热工质的塔式太阳能聚光式热发电站原理图;
图2本发明熔融盐管道加热装置结构图;
图3本发明熔融盐管道的剖面图;
图4自动控制电路的结构框图;
图中:1熔融盐管道、2定日镜、3吸热器、4变压器、5发电机、6汽轮机、7低温油罐、8换热器、9高温油罐、10自动控制电路、11保温层、12传感器、13电动调压器。
具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
图1为以熔融盐作为换热工质的塔式太阳能聚光式热发电站原理图。如图1所示,以熔融盐作为换热工质的塔式太阳能聚光式热发电站主要由定日镜2、吸热器3、熔融盐管道1、高温油罐9、低温油罐7、熔融盐管道1、熔融盐管道加热装置、换热器8、汽轮机6、发电机5组成。定日镜通2过反射太阳的光线把聚光后的辐射能流投射在吸热器3的表面,吸热器3里的熔融盐被加热到近600℃,通过熔融盐管道1流入高温油罐9,高温的熔融盐通过换热器8产生高温蒸汽,高温蒸汽推动汽轮机转动带动发电机发电。600℃熔融盐经过换热器8温度降为240℃,流入低温油罐7,再经过熔融盐管道1流回吸热器3。整个流动的过程是由熔盐泵驱动的。在塔式太阳能发电站运行前与运行过程中熔融盐管道必须加热到240℃,才能保证熔融盐在熔融盐管道1内正常运行。
如图2所示,本发明熔融盐管道加热装置包括熔融盐管道1、自动控制电路10、电动调压器13、变压器4和传感器12。自动控制电路10通过光纤传输信号,控制电动调压器13进行电压调整。电动调压器13的输入端接AC交流电,电动调压器13的输出端通过铜排连接变压器4的输入端,变压器4的输出端通过铜排分别连接熔融盐1管道的进口端和出口端。变压器4输出低电压。熔融盐管道1的材料是不锈钢材质的,铜排的材料是黄铜,为了减小熔融盐管道1与铜排之间的接触电阻,不锈钢材料制作的熔融盐管道1与黄铜制作铜排之间通过高压压接的方法连接在一起,变压器4的输出端的一极通过铜排连接在熔融盐管道1的进口,另一极通过铜排连接在熔融盐管道1的出口,变压器4输出端与铜排通过螺丝连接,熔融盐管道1与黄铜制作铜排之间通过高压压接的方法连接在一起。不锈钢的熔融盐管道1具有非常好的导热性,同时具有很好的抗压性能。如图3所示,熔融盐管道1的外层加有保温层11,保温层11采用保温棉。热电偶作为传感器12直接焊接在熔融盐管道1的外壁,测量熔融盐管道1的温度。
传感器12检测得到熔融盐管道1的实际温度与自动控制电路10设定的温度作比较,当热电偶测得的熔融盐管道1的温度低于自动控制电路10给定的设定值时,自动控制电路10发出信号,控制电动调压器13,由电动调压器13进行调压,当熔融盐管道1的实际温度值与设定的温度值的差值越大时,自动控制电路10控制电动调压器13输出的电压值就越大,此时熔融盐管道1通过电流就越大,温度升高的速度就越快。当熔融盐管道1的实际温度值与自动控制电路10给出的设定温度值差值越小时,自动控制电路10控制电动调压器13输出的电压值随之越小,变压器4输出的电压越小,此时熔融盐管道1通过电流也越小,温度升高的速度就越小。当实际测得的熔融盐管道1的温度值与自动控制电路10设定温度值差值为零时,自动控制电路10输出的电压值为零,电动调压器13输出的电压为零,变压器4的电压也为零,此时熔融盐管道1通过电流为零,熔融盐管道1温度不变。
如图4所示,所述的自动控制电路10由比较器、温度控制器、继电器和热电偶组成、热电偶通过光纤与比较器连接,比较器通过信号线与温度控制器连接,温度控制器通过电源线与继电器连接。通过热电偶检测到的实际温度值与自动控制电路内10给定温度值作比较后,自动控制电路10内的比较器输出信号控制自动控制电路内10的继电器吸合通电,继电器吸合通电使得电动调压器13的驱动电机通电转动,由驱动电机带动电动调压器13进行调压。热电偶作为传感器12直接焊接在熔融盐管道1的外壁,测量熔融盐管道1的温度,测得的实际温度通过光纤输入到自动控制电路10的比较器。

Claims (2)

1.一种熔融盐管道加热装置,其特征在于,所述的加热装置包括熔融盐管道(1)、自动控制电路(10)、电动调压器(13)、变压器(4)和传感器(12);所述的自动控制电路(10)通过光纤传输信号,控制电动调压器(13)进行调压;电动调压器(13)的输入端连接AC交流电,电动调压器(13)的输出端连接变压器(4)的输入端,变压器(4)的输出端分别连接熔融盐管道(1)的进口端和出口端;传感器(12)安装在熔融盐管道(1)的外壁;
所述的传感器(12)检测得到熔融盐管道(1)的实际温度与自动控制电路(10)设定的温度比较;所述的传感器为热电偶;当热电偶测得的熔融盐管道(1)的温度低于自动控制电路(10)给定的温度设定值时,自动控制电路(10)发出信号控制电动调压器(13),电动调压器(13)进行调压;当熔融盐管道(1)的实际温度值与给定的温度值的差值越大时,自动控制电路(10)控制电动调压器(13)输出的电压值就越大,此时熔融盐管道(1)通过电流就越大,温度升高的速度越快;当熔融盐管道(1)的实际温度值与自动控制电路(10)给出的设定温度值差值越小时,自动控制电路(10)控制电动调压器(13)输出的电压值随之越小,变压器(4)输出的电压越小,此时熔融盐管道(1)通过电流也越小,温度升高的速度便越小;当实际测得的熔融盐管道(1)的温度值与自动控制电路(10)设定温度值的差值为零时,自动控制电路(10)输出的电压值为零,电动调压器(13)输出的电压为零,变压器(4)的电压也为零,此时熔融盐管道(1)通过电流为零,熔融盐管道(1)的温度不变。
2.按照权利要求1所述的熔融盐管道加热装置,其特征在于,所述的熔融盐管道(1)与铜排之间通过高压压接的方法连接,熔融盐管道(1)通过铜排与变压器(4)的输出端连接。
CN201310628712.3A 2013-11-30 2013-11-30 一种熔融盐管道加热装置 Expired - Fee Related CN103615624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310628712.3A CN103615624B (zh) 2013-11-30 2013-11-30 一种熔融盐管道加热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310628712.3A CN103615624B (zh) 2013-11-30 2013-11-30 一种熔融盐管道加热装置

Publications (2)

Publication Number Publication Date
CN103615624A CN103615624A (zh) 2014-03-05
CN103615624B true CN103615624B (zh) 2015-12-02

Family

ID=50166335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310628712.3A Expired - Fee Related CN103615624B (zh) 2013-11-30 2013-11-30 一种熔融盐管道加热装置

Country Status (1)

Country Link
CN (1) CN103615624B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568377A (zh) * 2014-12-04 2015-04-29 中国核动力研究设计院 模拟混合堆次临界能源包层通道加热的偏心管及实验装置
CN105972339A (zh) * 2016-07-11 2016-09-28 江苏爱能森科技有限公司 一种预热及防凝固的输送管道结构
CN106247621B (zh) * 2016-10-10 2021-09-28 江苏鑫晨光热技术有限公司 分布式集热储能系统
CN110081312B (zh) * 2019-05-07 2020-04-28 核芯互联(北京)科技有限公司 一种油田管道伴热控制系统
CN110726072B (zh) * 2019-10-25 2021-05-14 梅瀚文 一种输油管太阳能加热装置
CN112628514B (zh) * 2020-12-25 2022-09-13 武汉联德化学品有限公司 液磷供应系统及保持液磷稳定供应的方法
CN115386970A (zh) * 2022-08-02 2022-11-25 绍兴柯桥大元化纤有限公司 涤纶高弹丝及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051529B2 (en) * 2002-12-20 2006-05-30 United Technologies Corporation Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
DE202006006307U1 (de) * 2006-04-18 2007-08-30 Michael Hesky Gmbh Anordnung zur Präparation von Rohrleitungen
BR112013029613A2 (pt) * 2011-05-19 2024-01-23 Basf Se Linha de tubulação para transporte de um sal fundido com uma parede de tubo estável em relaçãoàs temperaturas ocorrentes e utilização de um sal fundido contendo nitrato de sódio e nitrato de
CN102865685B (zh) * 2012-10-07 2014-08-27 中国科学院电工研究所 熔融盐吸热器预热保温防结冻装置
CN203147147U (zh) * 2013-03-11 2013-08-21 东方电气集团东方锅炉股份有限公司 三点式熔盐系统电伴热装置

Also Published As

Publication number Publication date
CN103615624A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
CN103615624B (zh) 一种熔融盐管道加热装置
CN201373378Y (zh) 电磁感应快速蒸汽、热水发生器
CN104567024B (zh) 显热蓄热式腔体聚光吸热太阳能集热装置及方法
CN109026239A (zh) 一种核反应堆联合太阳能光热发电系统
CN104456987A (zh) 一种太阳能储放热系统
CN204678701U (zh) 一种槽式储热系统
CN202747471U (zh) 太阳能储热供暖系统
CN104197552A (zh) 太阳能电气一体化能源系统
CN101298943A (zh) 中高温太阳能利用设备
CN203178062U (zh) 一种槽式太阳能聚光器集热效率移动测试装置
CN216481631U (zh) 一种即热式电热水器
CN103166505A (zh) 一种太阳能发电装置
CN103363509A (zh) 一种光电混合动力太阳能蒸汽发生器
CN211233448U (zh) 一种地铁暖通工程用新型热泵系统
CN207634246U (zh) 风光火热储多能互补系统
CN209587670U (zh) 一种太阳能光热油田原油加热伴热系统
CN204478535U (zh) 一种显热蓄热式腔体聚光吸热太阳能集热装置
CN202927806U (zh) 一种太阳能快速升温装置
CN209726311U (zh) 一种复合源供热系统
CN201787743U (zh) 一种太阳能集热装置
CN207333115U (zh) 太阳能槽式集热装置与低温斯特林发电机组联合发电系统
CN207333116U (zh) 太阳能塔式集热装置与低温斯特林发电机组联合发电系统
CN104135229A (zh) 一种太阳能热电联产系统
CN204462833U (zh) 一种光煤互补太阳能热发电系统
CN203517730U (zh) 一种光电混合动力太阳能蒸汽发生器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20181130