CN103607006A - 一种充放电复用电路 - Google Patents

一种充放电复用电路 Download PDF

Info

Publication number
CN103607006A
CN103607006A CN201310573132.9A CN201310573132A CN103607006A CN 103607006 A CN103607006 A CN 103607006A CN 201310573132 A CN201310573132 A CN 201310573132A CN 103607006 A CN103607006 A CN 103607006A
Authority
CN
China
Prior art keywords
switching tube
mos switching
charge
resistance
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310573132.9A
Other languages
English (en)
Inventor
袁金钢
石云烽
范劲忠
寻民忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zkenergy Science & Technology Co Ltd
Original Assignee
Zkenergy Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zkenergy Science & Technology Co Ltd filed Critical Zkenergy Science & Technology Co Ltd
Priority to CN201310573132.9A priority Critical patent/CN103607006A/zh
Publication of CN103607006A publication Critical patent/CN103607006A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明提供的一种充放电复用电路,将充电电路与放电电路整合为一个拓扑,既实现了高效率的充放电,又简化了电路结构。本发明的充放电复用电路包括复合充放电电路、充/放电转换模块、控制模块、电源模块,所述复合充放电电路通过充/放电转换模块连接电源/负载,所述控制模块分别连接充/放电转换模块和复合充放电电路,由控制模块控制所述充/放电转换模块选择所述复合充放电电路工作于充电通路还是放电通路,所述电源模块分别连接控制模块和充/放电转换模块,分别为控制模块和充/放电转换模块提供电源。

Description

一种充放电复用电路
技术领域
本发明涉及一种电路,尤其是涉及一种充放电复用电路。非常适合应用于光伏LED照明系统或充放电分时运行的系统。
背景技术
随着光伏技术的发展和世界经济可持续发展的需要,太阳能光伏的应用已经非常的广泛,特别是从太阳能电池的光伏特性出发,围绕太阳能光伏技术和LED照明技术,光伏LED照明系统得到广泛应用。光伏LED照明系统一般由太阳能光伏电池板、蓄电池、控制器、LED灯源及其恒流驱动电路等部分组成,通过太阳能光伏板将太阳能转换为电能存储到蓄电池中,由蓄电池为整个系统提供电能,在系统运行过程中,需要根据蓄电池的特性对蓄电池进行充电和放电,蓄电池输出再通过恒流驱动电路保证LED灯源稳定可靠的工作。传统的可充电电池的使用包括两部分。第一部分:充电电路加控制电路。第二部分:放电电路加控制电路。由于独立工作因此电路各自有一套拓扑,各自一套控制电路。每一类拓扑都有相当多的器件支持以完成其功能。目前低压应用的光伏LED照明系统的控制器多是采用分立的BUCK电路充电,BOOST电路放电的电路结构,要实现高效率还需要加同步整流电路,如此一来,电路上用于做高频开关的MOSFET数量众多、电路结构复杂、控制器体积庞大、成本高。
发明内容
本发明的目的是克服现有技术的不足,提供一种充放电复用电路,应用于光伏LED照明系统或充放电可以分时运行的系统,简化了电路结构,节约了成本。
本发明的技术方案是:
一种充放电复用电路,其特征在于,包括复合充放电电路、充/放电转换模块、控制模块、电源模块,所述复合充放电电路通过充/放电转换模块连接电源/负载,所述控制模块分别连接充/放电转换模块和复合充放电电路,由控制模块控制所述充/放电转换模块选择所述复合充放电电路工作于充电通路还是放电通路,所述电源模块分别连接控制模块和充/放电转换模块,分别为控制模块和充/放电转换模块提供电源;所述复合充放电电路包括第一MOS开关管Q101、第二MOS开关管Q102、电感L101、储能电容E101和E102、检流电阻R101、蓄电池,所述第一MOS开关管Q101和第二MOS开关管Q102的栅极均连接控制模块,第一MOS开关管Q101的源级和第二MOS开关管Q102的漏极均连接电感L101的一端,电感L101的另一端连接储能电容E102的正极,电容E102的负极连接第二MOS开关管Q102的源极,电容E102的正极和蓄电池正极连接,蓄电池的负极串联检流电阻R101后接地;储能电容E101的正极和负极分别连接第一MOS开关管Q101的漏级和第二MOS开关管Q102的源极;当所述复合充放电电路通过充/放电转换模块选择连接电源+与电源-端时,所述第一MOS开关管Q101为PWM降压充电开关,所述第二MOS开关管Q102为反逻辑PWM同步整流开关,实现为蓄电池降压充电的功能;当所述复合充放电电路通过充/放电转换模块选择连接连接负载+与负载-端时,所述第二MOS开关管Q102为PWM升压放电开关,所述第一MOS开关管Q101为反逻辑PWM同步整流开关,实现蓄电池升压放电的功能。
所述充/放电转换模块包括第三MOS开关管Q103、第四MOS开关管Q104、第五MOS开关管Q105、光耦U131、三极管Q121,Q122、电阻R121,R122,R123,R124,R125,R131,R132,R133;所述三极管Q122的基极经限流电阻R123连接至控制模块的主控芯片U101的I/O2端口,三极管Q122的集电极经限流电阻R122连接三极管Q121的基极,为三极管Q121提供基极电流;所述三极管Q121的发射极连接电源模块的VDD1端,集电极通过栅极电阻R124连接第三MOS开关管Q103的栅极,为Q103提供栅极驱动电源;所述Q121连接偏置电阻R121,为Q121关断提供可靠上拉偏置;所述栅极电阻R124为Q103提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q103快速可靠导通;所述栅源电阻R125为Q103关断时提供栅源电荷泄放通路,保证Q103快速可靠关断;所述光耦U131的输入端连接于控制模块的主控芯片U101的I/O3端口与限流电阻R131之间,为Q104、Q105提供开关控制信号;所述U131输出端的一端连接于电源模块的VDD3端,另一端通过栅极电阻R132分别连接第四MOS开关管Q104、第五MOS开关管Q105的栅极,所述栅极电阻R132为Q104、Q105提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q104、Q105快速可靠导通;所述栅源电阻R133为Q104、Q105关断时提供栅源电荷泄放通路,保证Q104、Q105快速可靠关断;当主控芯片U101的I/01使能信号输入端口接收到高电平信号时,U101的I/O3端口将输出高电平,第四MOS开关管Q104和第五MOS开关管Q105将同时导通,U101的I/O2端口将输出低电平,第三MOS开关管Q103将关断,因此充电通路被选通,所述复合充放电电路工作于充电状态;当U101的I/01端口接收到低电平信号时,U101的I/O3端口将输出低电平,第四MOS开关管Q104和第五MOS开关管Q105将同时关断,U101的I/O2端口将输出高电平,第三MOS开关管Q103将导通,因此放电通路被选通,所述复合充放电电路工作于放电状态。
所述控制模块包括主控芯片U101、MOS驱动芯片U111、旁路电容C111、阻尼电阻R111、R112,电压采样电阻R161、R162、R171、R172、R181、R182,运放U141、U151,同相输入电阻R143、R144、R153、R154,反相输入电阻R141、R151,反馈电阻R142、R152,阻尼电阻R145、R155;所述MOS管驱动芯片U111的高边驱动输出端ho连接第一MOS开关管Q101的栅极,低边驱动输出端lo连接第二MOS开关管Q102的栅极,MOS管驱动芯片U111的高边驱动参考端hs连接第一MOS开关管Q101的源级和第二MOS开关管Q102的漏级,所述MOS管驱动芯片U111的hb接VDD2电源,hs接GND2,为第一MOS开关管Q101提供驱动电源;所述MOS管驱动芯片U111的高边控制输入端hi和低边控制输入端li分别通过阻尼电阻R111、R112连接至主控芯片U101的PWM1和PWM2输出端,为复合充放电电路提供充电/放电PWM驱动信号;所述采样电阻R161、R162采样电源电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样1端口;所述采样电阻R171、R172采样负载电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样2端口;所述采样电阻R181、R182采样电池电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样5端口;主控芯片U101通过采样的电压信号,产生相应的PWM占空比来控制复合充放电电路工作在降压充电或升压放电状态;所述集成运放U141采样充电电流信号,所述集成运放U141的同相输入端通过电阻R143连接蓄电池负极,反相输入端通过电阻R141连接地,所述集成运放U141的输出端通过阻尼电阻R145连接于U101的A/D采样3端口;集成运放U141通过R141、R142、R143、R144构成的差分放大电路,将流过检流电阻R101的电流转化为电压信号输送至U101的A/D采样3端口;所述集成运放U151采样负载电流信号,所述集成运放U151的输出端通过阻尼电阻R155连接于U101的A/D采样4端口;集成运放U151通过R151、R152、R153、R154构成的差分放大电路,将流过检流电阻R101的电流转化为电压信号输送至U101的A/D采样4端口;所述采样的充电电流信号和负载电流信号为复合充放电电路提供电流控制,控制充电电流和放电电流的大小。
所述电源模块包括DC-DC电源U191、低压差线性稳压器U194,所述DC-DC电源U191从蓄电池两端取电,将蓄电池电压转换为VDD1,VDD2,VDD3三路相互隔离的12V电源,VDD1再通过U194转换为VCC5V电源;所述VDD1为MOS驱动芯片U111及第三MOS开关管Q103的驱动电路供电,所述VDD2为第一MOS开关管Q101的驱动电路供电,所述VDD3为第四MOS开关管Q104、第五MOS开关管Q105的驱动电路供电,所述VCC电源为U101、运放U141、运放U151供电。
本发明的技术效果:
本发明提供的一种充放电复用电路,将充电电路与放电电路整合为一个拓扑,既实现了高效率的充放电,又简化了电路结构;减小了体积,节约了成本。非常适合应用于光伏LED照明系统或充放电可以分时运行的系统。
附图说明
图1为本发明的充放电复用电路的电路结构示意图。
图2为本发明的充放电复用电路的充/放电转换模块的电路结构示意图。
图3为本发明的充放电复用电路的控制模块的电路结构示意图。
图4为本发明的充放电复用电路的电源模块电路结构示意图。
图5为本发明充放电复用电路应用于光伏LED照明系统的工作流程图。
具体实施方式
以下结合附图对本发明的实施例做进一步的详细说明。
如图1所示,为本发明的充放电复用电路的电路结构示意图。一种充放电复用电路,包括复合充放电电路、充/放电转换模块、控制模块、电源模块,所述复合充放电电路通过充/放电转换模块连接电源/负载,所述控制模块分别连接充/放电转换模块和复合充放电电路,由控制模块控制所述充/放电转换模块选择所述复合充放电电路工作于充电通路还是放电通路,所述电源模块分别连接控制模块和充/放电转换模块,分别为控制模块和充/放电转换模块提供电源;所述复合充放电电路包括第一MOS开关管Q101、第二MOS开关管Q102、电感L101、储能电容E101和E102、检流电阻R101、蓄电池,所述第一MOS开关管Q101和第二MOS开关管Q102的栅极均连接控制模块,第一MOS开关管Q101的源级和第二MOS开关管Q102的漏极均连接电感L101的一端,电感L101的另一端连接储能电容E102的正极,电容E102的负极连接第二MOS开关管Q102的源极,电容E102的正极和蓄电池正极连接,检流电阻R101连接在蓄电池的负极与地之间做电流采样;储能电容E101的正极和负极分别连接第一MOS开关管Q101的漏级和第二MOS开关管Q102的源极;当所述复合充放电电路通过充/放电转换模块选择连接电源+与电源-端时,所述第一MOS开关管Q101为PWM降压充电开关,所述第二MOS开关管Q102为反逻辑PWM同步整流开关,实现为蓄电池降压充电的功能;当所述复合充放电电路通过充/放电转换模块选择连接连接负载+与负载-端时,所述第二MOS开关管Q102为PWM升压放电开关,所述第一MOS开关管Q101为反逻辑PWM同步整流开关,实现蓄电池升压放电的功能。
如图2所示,为本发明的充放电复用电路的充/放电转换模块的电路结构示意图。充/放电转换模块包括第三MOS开关管Q103、第四MOS开关管Q104、第五MOS开关管Q105、光耦U131、三极管Q121,Q122、电阻R121,R122,R123,R124,R125,R131,R132,R133;所述三极管Q122的基极经限流电阻R123连接至控制模块的主控芯片U101的I/O2端口,三极管Q122的集电极经限流电阻R122连接三极管Q121的基极,为三极管Q121提供基极电流;所述三极管Q121的发射极连接电源模块的VDD1端,集电极通过栅极电阻R124连接第三MOS开关管Q103的栅极,为Q103提供栅极驱动电源;所述Q121连接偏置电阻R121,为Q121关断提供可靠上拉偏置;所述栅极电阻R124为Q103提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q103快速可靠导通;所述栅源电阻R125为Q103关断时提供栅源电荷泄放通路,保证Q103快速可靠关断;所述光耦U131的输入端连接于控制模块的主控芯片U101的I/O3端口与限流电阻R131之间,为Q104、Q105提供开关控制信号;所述U131输出端的一端连接于电源模块的VDD3端,另一端通过栅极电阻R132分别连接四MOS开关管Q104、第五MOS开关管Q105的栅极,所述栅极电阻R132为Q104、Q105提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q104、Q105快速可靠导通;所述栅源电阻R133为Q104、Q105关断时提供栅源电荷泄放通路,保证Q104、Q105快速可靠关断;当主控芯片U101的I/01使能信号输入端口接收到高电平信号时,U101的I/O3端口将输出高电平,第四MOS开关管Q104和第五MOS开关管Q105将同时导通,U101的I/O2端口将输出低电平,第三MOS开关管Q103将关断,因此充电通路被选通,所述复合充放电电路工作于充电状态;当U101的I/01端口接收到低电平信号时,U101的I/O3端口将输出低电平,第四MOS开关管Q104和第五MOS开关管Q105将同时关断,U101的I/O2端口将输出高电平,第三MOS开关管Q103将导通,因此放电通路被选通,所述复合充放电电路工作于放电状态。
充/放电转换模块中的第三MOS开关管Q103、第四MOS开关管Q104,第五MOS开关管Q105的导通状态决定了充/放电转换模块工作在充电通路还是放电通路,当第三MOS开关管Q103关断、第四MOS开关管Q104第五MOS开关管Q105同时导通时,充/放电转换模块工作在充电通路;所述第一MOS开关管Q101为PWM降压开关,第二MOS开关管Q102为同步整流开关,实现为蓄电池充电的功能。当第三MOS开关管Q103导通、第四MOS开关管Q104第五MOS开关管Q105同时关断时,充/放电转换模块工作在放电通路;所述第二MOS开关管Q102为PWM升压开关,第一MOS开关管Q101为同步整流开关,实现负载放电的功能。其中,第三MOS开关管Q103连接负载负端和地作为负载放电通路的开关、第四MOS开关管Q104、第五MOS开关管Q105连接在电源正端与第一MOS开关管Q101之间作为充电通路的开关。所述三极管Q122经基极限流电阻R123连接至U101的I/O2端口,为三极管Q121提供基极电流。所述三极管Q121连接VDD1电源和第三MOS开关管Q103,为Q103提供栅极驱动电源;所述Q121基极连接限流电阻R122,为Q121导通提供基极电流;所述Q121连接偏置电阻R121,为Q121关断提供可靠上拉偏置。所述栅极电阻R124为Q103提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q103快速可靠导通。所述栅源电阻R125为Q103关断时提供栅源电荷泄放通路,保证Q103快速可靠关断。所述光耦U131连接于U101的I/O3端口与限流电阻R131之间,为Q104、Q105提供开关控制信号。所述U131连接于VDD3电源端,为Q104、Q105提供栅极驱动电源。所述栅极电阻R132为Q104、Q105提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q104、Q105快速可靠导通。所述栅源电阻R133为Q104、Q105关断时提供栅源电荷泄放通路,保证Q104、Q105快速可靠关断。当U101的I/01端口接收到来自外部的充电信号时,U101的I/O3端口将输出高电平,第四MOS开关管Q104和第五MOS开关管Q105将同时导通;U101的I/O2端口将输出低电平,第三MOS开关管Q103将关断,因此充电通路被选通,所述复合充放电电路工作于充电状态。当U101的I/01端口接收到来自外部的放电信号时,U101的I/O3端口将输出低电平,第四MOS开关管Q104和第五MOS开关管Q105将同时关断;U101的I/O2端口将输出高电平,第三MOS开关管Q103将导通,因此放电通路被选通,所述复合充放电电路工作于放电状态。
如图3所示,是本发明的充放电复用电路的控制模块的电路结构示意图。控制模块包括主控芯片U101、MOS驱动芯片U111、旁路电容C111、阻尼电阻R111、R112,电压采样电阻R161、R162、R171、R172、R181、R182,运放U141、U151,同相输入电阻R143、R144、R153、R154,反相输入电阻R141、R151,反馈电阻R142、R152,阻尼电阻R145、R155;所述MOS管驱动芯片U111的高边驱动输出端ho连接第一MOS开关管Q101的栅极,低边驱动输出端lo连接第二MOS开关管Q102的栅极,MOS管驱动芯片U111的高边驱动参考端hs连接第一MOS开关管Q101的源级和第二MOS开关管Q102的漏级,所述MOS管驱动芯片U111的hb接VDD2电源,hs接GND2,为第一MOS开关管Q101提供驱动电源;所述MOS管驱动芯片U111的高边控制输入端hi和低边控制输入端li分别通过阻尼电阻R111、R112连接至主控芯片U101的PWM1和PWM2输出端,为复合充放电电路提供充电/放电PWM驱动信号;
充电电路工作说明:蓄电池接入后,当U101的I/O1端口接收到高电平且U101通过电压检测电路检测到电源电压大于蓄电池电压5V时,充/放电转换模块选通充电通路,Q104、Q105将同时导通,Q103关断。U101的PWM1端口输出PWM信号给MOS驱动芯片U111的hi端,由U111的ho端输出一个与PWM1逻辑相同的驱动信号控制第一MOS开关管Q101做降压PWM开关。电源模块提供VDD2电源给Q101的驱动供电。U101的PWM2端口输出一个与PWM1端口逻辑关系互补且带一定死区时间的信号至MOS驱动芯片U111的li端,由U111的lo端输出一个与PWM2逻辑相同的信号控制第二MOS开关管Q102做同步整流。蓄电池电压检测,电源电压检测为PWM1输出合适占空比提供依据,充电电流检测为充电电路提供准确的电流控制。
放电电路工作说明:蓄电池接入后,当U101的I/O1端口接收到低电平,充/放电转换模块选通放电通路,Q104、Q105将同时关断,Q103导通。U101的PWM2端口输出PWM信号给MOS驱动芯片U111的li端,由U111的lo端输出一个与PWM2逻辑相同的驱动信号控制第二MOS开关管Q102做升压PWM开关。U101的PWM1端口输出一个与PWM2端口逻辑关系互补且带一定死区时间的信号至MOS驱动芯片U111的hi端,由U111的ho端输出一个与PWM1逻辑相同的信号控制第一MOS开关管Q101做同步整流。电源模块提供VDD2电源给Q101的驱动供电。蓄电池电压检测,负载电压检测为PWM2输出合适占空比提供依据,放电电流检测为放电电路提供准确的电流控制。
如图4所示,是电源模块电路图。电源模块包括DC-DC电源U191、低压差线性稳压器U194,DC-DC电源U191从蓄电池两端取电,将蓄电池电压转换为VDD1,VDD2,VDD3三路相互隔离的12V电源,VDD1再通过U194转换为VCC5V电源;VDD1为MOS驱动芯片U111及第三MOS开关管Q103的驱动电路供电,VDD2为第一MOS开关管Q101的驱动电路供电,VDD3为第四MOS开关管Q104、第五MOS开关管Q105的驱动电路供电,VCC电源为主控芯片U101、运放U141、运放U151供电。
如图5所示,为本发明的充放电复用电路应用于光伏LED照明系统的工作流程图。其中电源端为光伏板,负载端为LED照明设备。光伏LED照明系统利用白天为蓄电池充电,夜晚蓄电池放电,为LED照明设备供电。工作过程如下:1)首先进行白天/夜晚检测,白天时,光伏端电压比蓄电池电压高,且检测到光伏电压大于蓄电池电压5V时,选通充电通路,光伏板为蓄电池充电;2)晚上时,光伏端电压下降且光伏电压小于5V,再检测维持时间是否大于1分钟,选通放电通路,蓄电池为负载放电。
应当指出,以上所述具体实施方式可以使本领域的技术人员更全面地理解本发明创造,但不以任何方式限制本发明创造。因此,尽管本说明书和实施例对本发明创造已进行了详细的说明,但是,本领域技术人员应当理解,仍然可以对本发明创造进行修改或者等同替换;而一切不脱离本发明创造的精神和范围的技术方案及其改进,其均涵盖在本发明创造专利的保护范围当中。

Claims (4)

1.一种充放电复用电路,其特征在于,包括复合充放电电路、充/放电转换模块、控制模块、电源模块,所述复合充放电电路通过充/放电转换模块连接电源/负载,所述控制模块分别连接充/放电转换模块和复合充放电电路,由控制模块控制所述充/放电转换模块选择所述复合充放电电路工作于充电通路还是放电通路,所述电源模块分别连接控制模块和充/放电转换模块,分别为控制模块和充/放电转换模块提供电源;所述复合充放电电路包括第一MOS开关管Q101、第二MOS开关管Q102、电感L101、储能电容E101和E102、检流电阻R101、蓄电池,所述第一MOS开关管Q101和第二MOS开关管Q102的栅极均连接控制模块,第一MOS开关管Q101的源级和第二MOS开关管Q102的漏极均连接电感L101的一端,电感L101的另一端连接储能电容E102的正极,电容E102的负极连接第二MOS开关管Q102的源极,电容E102的正极和蓄电池正极连接,蓄电池的负极串联检流电阻R101后接地;储能电容E101的正极和负极分别连接第一MOS开关管Q101的漏级和第二MOS开关管Q102的源极;当所述复合充放电电路通过充/放电转换模块选择连接电源+与电源-端时,所述第一MOS开关管Q101为PWM降压充电开关,所述第二MOS开关管Q102为反逻辑PWM同步整流开关,实现为蓄电池降压充电的功能;当所述复合充放电电路通过充/放电转换模块选择连接连接负载+与负载-端时,所述第二MOS开关管Q102为PWM升压放电开关,所述第一MOS开关管Q101为反逻辑PWM同步整流开关,实现蓄电池升压放电的功能。
2.根据权利要求1所述的充放电复用电路,其特征在于,所述充/放电转换模块包括第三MOS开关管Q103、第四MOS开关管Q104、第五MOS开关管Q105、光耦U131、三极管Q121,Q122、电阻R121,R122,R123,R124,R125,R131,R132,R133;所述三极管Q122的基极经限流电阻R123连接至控制模块的主控芯片U101的I/O2端口,三极管Q122的集电极经限流电阻R122连接三极管Q121的基极,为三极管Q121提供基极电流;所述三极管Q121的发射极连接电源模块的VDD1端,集电极通过栅极电阻R124连接第三MOS开关管Q103的栅极,为Q103提供栅极驱动电源;所述Q121连接偏置电阻R121,为Q121关断提供可靠上拉偏置;所述栅极电阻R124为Q103提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q103快速可靠导通;所述栅源电阻R125为Q103关断时提供栅源电荷泄放通路,保证Q103快速可靠关断;所述光耦U131的输入端连接于控制模块的主控芯片U101的I/O3端口与限流电阻R131之间,为Q104、Q105提供开关控制信号;所述U131输出端的一端连接于电源模块的VDD3端,另一端通过栅极电阻R132分别连接第四MOS开关管Q104、第五MOS开关管Q105的栅极,所述栅极电阻R132为Q104、Q105提供驱动路径且消除栅源间引线电感的高频寄生振荡,保证Q104、Q105快速可靠导通;所述栅源电阻R133为Q104、Q105关断时提供栅源电荷泄放通路,保证Q104、Q105快速可靠关断;当主控芯片U101的I/01使能信号输入端口接收到高电平信号时,U101的I/O3端口将输出高电平,第四MOS开关管Q104和第五MOS开关管Q105将同时导通,U101的I/O2端口将输出低电平,第三MOS开关管Q103将关断,因此充电通路被选通,所述复合充放电电路工作于充电状态;当U101的I/01端口接收到低电平信号时,U101的I/O3端口将输出低电平,第四MOS开关管Q104和第五MOS开关管Q105将同时关断,U101的I/O2端口将输出高电平,第三MOS开关管Q103将导通,因此放电通路被选通,所述复合充放电电路工作于放电状态。
3.根据权利要求1所述的充放电复用电路,其特征在于,所述控制模块包括主控芯片U101、MOS驱动芯片U111、旁路电容C111、阻尼电阻R111、R112,电压采样电阻R161、R162、R171、R172、R181、R182,运放U141、U151,同相输入电阻R143、R144、R153、R154,反相输入电阻R141、R151,反馈电阻R142、R152,阻尼电阻R145、R155;所述MOS管驱动芯片U111的高边驱动输出端ho连接第一MOS开关管Q101的栅极,低边驱动输出端lo连接第二MOS开关管Q102的栅极,MOS管驱动芯片U111的高边驱动参考端hs连接第一MOS开关管Q101的源级和第二MOS开关管Q102的漏级,所述MOS管驱动芯片U111的hb接VDD2电源,hs接GND2,为第一MOS开关管Q101提供驱动电源;所述MOS管驱动芯片U111的高边控制输入端hi和低边控制输入端li分别通过阻尼电阻R111、R112连接至主控芯片U101的PWM1和PWM2输出端,为复合充放电电路提供充电/放电PWM驱动信号;所述采样电阻R161、R162采样电源电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样1端口;所述采样电阻R171、R172采样负载电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样2端口;所述采样电阻R181、R182采样电池电压,经过分压将采样的电压信号输送至主控芯片U101的A/D采样5端口;主控芯片U101通过采样的电压信号,产生相应的PWM占空比来控制复合充放电电路工作在降压充电或升压放电状态;所述集成运放U141采样充电电流信号,所述集成运放U141的同相输入端通过电阻R143连接蓄电池负极,反相输入端通过电阻R141连接地,所述集成运放U141的输出端通过阻尼电阻R145连接于U101的A/D采样3端口;集成运放U141通过R141、R142、R143、R144构成的差分放大电路,将流过检流电阻R101的电流转化为电压信号输送至U101的A/D采样3端口;所述集成运放U151采样负载电流信号,所述集成运放U151的输出端通过阻尼电阻R155连接于U101的A/D采样4端口;集成运放U151通过R151、R152、R153、R154构成的差分放大电路,将流过检流电阻R101的电流转化为电压信号输送至U101的A/D采样4端口;所述采样的充电电流信号和负载电流信号为复合充放电电路提供电流控制,控制充电电流和放电电流的大小。
4.根据权利要求1所述的充放电复用电路,其特征在于,所述电源模块包括三路隔离输出的DC-DC电源U191、低压差线性稳压器U194,所述DC-DC电源U191从蓄电池两端取电,将蓄电池电压转换为VDD1,VDD2,VDD3三路相互隔离的12V电源,VDD1再通过U194转换为VCC5V电源;所述VDD1为MOS驱动芯片U111及第三MOS开关管Q103的驱动电路供电,所述VDD2为第一MOS开关管Q101的驱动电路供电,所述VDD3为第四MOS开关管Q104、第五MOS开关管Q105的驱动电路供电,所述VCC电源为主控芯片U101、运放U141、运放U151供电。
CN201310573132.9A 2013-11-15 2013-11-15 一种充放电复用电路 Pending CN103607006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310573132.9A CN103607006A (zh) 2013-11-15 2013-11-15 一种充放电复用电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310573132.9A CN103607006A (zh) 2013-11-15 2013-11-15 一种充放电复用电路

Publications (1)

Publication Number Publication Date
CN103607006A true CN103607006A (zh) 2014-02-26

Family

ID=50125211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310573132.9A Pending CN103607006A (zh) 2013-11-15 2013-11-15 一种充放电复用电路

Country Status (1)

Country Link
CN (1) CN103607006A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821620A (zh) * 2015-04-23 2015-08-05 中科恒源科技股份有限公司 一种光伏充电控制系统和控制方法
CN104955193A (zh) * 2014-03-25 2015-09-30 深圳市海洋王照明工程有限公司 一种led灯电路
CN104967172A (zh) * 2015-07-07 2015-10-07 厦门乾芯能源科技有限公司 电池组主动均衡控制系统
CN106134033A (zh) * 2014-03-28 2016-11-16 三星电子株式会社 用于对电池进行充电的方法和电子装置
CN106655443A (zh) * 2015-10-28 2017-05-10 北京汇能精电科技股份有限公司 充放电控制器及光伏充放电系统
CN108462233A (zh) * 2018-03-23 2018-08-28 深圳市道通智能航空技术有限公司 电池管理装置及无人机
CN109031017A (zh) * 2018-06-28 2018-12-18 上海英恒电子有限公司 应用于无刷电机的电路故障状态检测方法
CN109149934A (zh) * 2018-09-05 2019-01-04 国充充电科技江苏股份有限公司 一种直流电网用降压式充电桩系统
CN109245188A (zh) * 2017-07-10 2019-01-18 深圳市爱克斯达电子有限公司 一种充电装置及边充边放电源路径管理方法
US10199837B2 (en) 2014-03-28 2019-02-05 Samsung Electronics Co., Ltd. Method for charging battery and electronic device
CN109831017A (zh) * 2019-02-27 2019-05-31 北京汇能精电科技股份有限公司 供电装置及系统
CN111162661A (zh) * 2020-01-14 2020-05-15 上海南芯半导体科技有限公司 一种双向开关电源的控制电路和方法
CN111987756A (zh) * 2020-05-20 2020-11-24 杭州士兰微电子股份有限公司 充电电路
CN112994451A (zh) * 2021-03-04 2021-06-18 西安微电子技术研究所 一种可实现升压、保持和降压的预稳压输出电路及控制方法
CN113110146A (zh) * 2021-03-30 2021-07-13 广州金升阳科技有限公司 一种驱动电源电路及其驱动方法
WO2022006846A1 (zh) * 2020-07-10 2022-01-13 深圳欣锐科技股份有限公司 基于数字信号处理的脉冲宽度调制端口复用电路和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301306B2 (en) * 2003-09-17 2007-11-27 Seiko Instruments Inc. Charging and discharging control circuit and charging type power supply device
CN101621873A (zh) * 2009-07-24 2010-01-06 重庆大学 基于led阵列的路灯智能驱动系统及路灯节能控制方法
CN203645360U (zh) * 2013-11-15 2014-06-11 中科恒源科技股份有限公司 一种充放电复用电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301306B2 (en) * 2003-09-17 2007-11-27 Seiko Instruments Inc. Charging and discharging control circuit and charging type power supply device
CN101621873A (zh) * 2009-07-24 2010-01-06 重庆大学 基于led阵列的路灯智能驱动系统及路灯节能控制方法
CN203645360U (zh) * 2013-11-15 2014-06-11 中科恒源科技股份有限公司 一种充放电复用电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖志凌等: "一种独立光伏发电系统双向变换器的控制策略", 《电工技术学报》, vol. 23, no. 1, 31 January 2008 (2008-01-31) *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955193A (zh) * 2014-03-25 2015-09-30 深圳市海洋王照明工程有限公司 一种led灯电路
CN104955193B (zh) * 2014-03-25 2019-04-12 深圳市海洋王照明工程有限公司 一种led灯电路
CN106134033B (zh) * 2014-03-28 2020-09-04 三星电子株式会社 用于对电池进行充电的方法和电子装置
CN106134033A (zh) * 2014-03-28 2016-11-16 三星电子株式会社 用于对电池进行充电的方法和电子装置
US10199837B2 (en) 2014-03-28 2019-02-05 Samsung Electronics Co., Ltd. Method for charging battery and electronic device
CN104821620B (zh) * 2015-04-23 2017-03-08 中科恒源科技股份有限公司 一种光伏充电控制系统和控制方法
CN104821620A (zh) * 2015-04-23 2015-08-05 中科恒源科技股份有限公司 一种光伏充电控制系统和控制方法
CN104967172A (zh) * 2015-07-07 2015-10-07 厦门乾芯能源科技有限公司 电池组主动均衡控制系统
CN106655443A (zh) * 2015-10-28 2017-05-10 北京汇能精电科技股份有限公司 充放电控制器及光伏充放电系统
CN109245188A (zh) * 2017-07-10 2019-01-18 深圳市爱克斯达电子有限公司 一种充电装置及边充边放电源路径管理方法
CN109245188B (zh) * 2017-07-10 2024-01-19 深圳市爱克斯达电子有限公司 一种充电装置及边充边放电源路径管理方法
CN108462233A (zh) * 2018-03-23 2018-08-28 深圳市道通智能航空技术有限公司 电池管理装置及无人机
CN109031017A (zh) * 2018-06-28 2018-12-18 上海英恒电子有限公司 应用于无刷电机的电路故障状态检测方法
CN109149934A (zh) * 2018-09-05 2019-01-04 国充充电科技江苏股份有限公司 一种直流电网用降压式充电桩系统
CN109831017A (zh) * 2019-02-27 2019-05-31 北京汇能精电科技股份有限公司 供电装置及系统
CN111162661B (zh) * 2020-01-14 2021-09-03 上海南芯半导体科技有限公司 一种双向开关电源的控制电路和方法
CN111162661A (zh) * 2020-01-14 2020-05-15 上海南芯半导体科技有限公司 一种双向开关电源的控制电路和方法
CN111987756A (zh) * 2020-05-20 2020-11-24 杭州士兰微电子股份有限公司 充电电路
WO2022006846A1 (zh) * 2020-07-10 2022-01-13 深圳欣锐科技股份有限公司 基于数字信号处理的脉冲宽度调制端口复用电路和装置
CN114175506A (zh) * 2020-07-10 2022-03-11 深圳欣锐科技股份有限公司 基于数字信号处理的脉冲宽度调制端口复用电路和装置
CN114175506B (zh) * 2020-07-10 2023-05-16 深圳欣锐科技股份有限公司 基于数字信号处理的脉冲宽度调制端口复用电路和装置
CN112994451A (zh) * 2021-03-04 2021-06-18 西安微电子技术研究所 一种可实现升压、保持和降压的预稳压输出电路及控制方法
CN113110146A (zh) * 2021-03-30 2021-07-13 广州金升阳科技有限公司 一种驱动电源电路及其驱动方法
CN113110146B (zh) * 2021-03-30 2022-07-19 广州金升阳科技有限公司 一种驱动电源电路及其驱动方法

Similar Documents

Publication Publication Date Title
CN103607006A (zh) 一种充放电复用电路
CN102163067B (zh) 太阳能最大功率跟踪方法及太阳能充电装置
CN203722882U (zh) 实现线电压补偿的高精度原边控制led恒流驱动电路
CN101771294A (zh) 集合驱动控制电路及其控制方法
CN204316150U (zh) 一种延长串联蓄电池组使用寿命的电路
CN101807805B (zh) 一种充电管理电路及电源适配装置
EP3591823A1 (en) Combined dc-dc converter for use in hybrid power system
CN203645360U (zh) 一种充放电复用电路
CN105743343A (zh) 一种高效率dc-dc型升压转换器
CN105939112A (zh) 一种高增益准开关升压dc-dc变换器
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
CN205070828U (zh) 一种ac-dc单级控制芯片及其控制系统
CN101378228B (zh) 一种电源转换控制装置及电源电路
CN102882417A (zh) Ups隔离型双向直流变换器
CN103997086A (zh) 放大器用超级电容器式电池供电系统
CN103532379A (zh) 双向dc-dc变换器及混合动力机动车
CN103501114B (zh) 具有临界导通模式的反激变换器
CN102916470A (zh) 一种用于串联电池之间能量转移的电池能量转移电路
CN205847090U (zh) 一种混合型准开关升压dc‑dc变换器
Chen et al. A multiple-winding bidirectional flyback converter used in the solar system
CN112865536B (zh) 一种高电压增益非隔离三端口变换器
CN111342508B (zh) 单口双向的移动电源管理芯片及移动电源
CN105471248B (zh) 一种开关电源启动电路
CN204721218U (zh) 升压与线性充电共用功率器件的移动电源转换器
CN204068336U (zh) 一种充电电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140226