CN103594432A - Three-dimensional packaging heat radiation structure of rigid-flexible combined board - Google Patents

Three-dimensional packaging heat radiation structure of rigid-flexible combined board Download PDF

Info

Publication number
CN103594432A
CN103594432A CN201310533073.2A CN201310533073A CN103594432A CN 103594432 A CN103594432 A CN 103594432A CN 201310533073 A CN201310533073 A CN 201310533073A CN 103594432 A CN103594432 A CN 103594432A
Authority
CN
China
Prior art keywords
chip
rigid substrates
bottom substrate
hard
radiator structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310533073.2A
Other languages
Chinese (zh)
Other versions
CN103594432B (en
Inventor
侯峰泽
邱德龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Advanced Packaging Co Ltd
Original Assignee
Institute of Microelectronics of CAS
National Center for Advanced Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS, National Center for Advanced Packaging Co Ltd filed Critical Institute of Microelectronics of CAS
Priority to CN201310533073.2A priority Critical patent/CN103594432B/en
Publication of CN103594432A publication Critical patent/CN103594432A/en
Application granted granted Critical
Publication of CN103594432B publication Critical patent/CN103594432B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The invention discloses a three-dimensional packaging heat dissipation structure of a rigid-flexible combined board, which comprises: a flexible substrate; the flexible substrate comprises a bottom substrate and two rigid substrates, wherein the bottom substrate and the two rigid substrates are pressed on the flexible substrate, the two rigid substrates are symmetrically distributed on two sides of the bottom substrate, and cavities are formed in the two rigid substrates; two copper bases which are fixedly bonded on the back surfaces of the two rigid substrates; a bottom chip bonded to the bottom substrate; the lower chip salient point is formed between the bottom chip and the bottom substrate; the bottom filling glue is filled between the bottom chip and the bottom substrate and around the lower salient point of the chip; two top chips soldered or bonded to two copper bases, respectively; bonding wires bonding the two top chips to the rigid substrate; plastic packaging material; BGA balls formed on the back surface of the base substrate; fixing the PCB of the bottom substrate through BGA balls; and a heat spreader mounted on top of the two copper bases. By using the invention, the heat dissipation path of the packaging body is increased, and heat can be more effectively dissipated.

Description

A kind of three-dimension packaging radiator structure of hard and soft board
Technical field
The present invention relates to microelectronics three-dimensional systematic encapsulation technology field, especially a kind of three-dimension packaging radiator structure of hard and soft board.
Background technology
Fig. 1 realizes the schematic diagram of chip three-dimensional stacking structure by crooked flexible base, board in prior art.202Wei lower floor chip wherein; 204 is upper strata chip; 206 is flexible base, board; 208 is flexible base, board inner surface; 212Wei lower floor chip pin; 214 is upper strata chip pin; 216 for filling glue; 222 is BGA ball array; 224 is single BGA ball; 226 is flexible base, board outer surface; 232Wei lower floor chip front side; 234 is upper strata chip back; 236 is Heraeus; 238 is pcb board.
First this three-dimensional stacking structure carries out Plane Installation, two chips 202 and 204 is welded on to the two ends of flexible base, board 206, and between chip and flexible base, board, fills underfill 216; Then at chip 202 and 204, partly coat the Heraeus 236 of heat conduction upward; Finally, by flexible base, board 206 bendings, make two chips 202 and 204 consistencies from top to bottom stacking, affixed by the Heraeus 236 of heat conduction, two chips 202 and 204 electrical interconnection realize by the circuit on flexible base, board 206.
The shortcoming of this three-dimensional stacking structure is that upper strata chip 204 exists larger problem aspect heat radiation, most of heat that upper strata chip 204 produces needs through the Heraeus 236, of heat conduction lower floor chip 202, underfill 216, flexible base, board 206, BGA ball 224 and PCB238, to shed successively, heat is not easy to shed, finally cause chip 204 junction temperatures in upper strata to raise, affect the life-span.
Summary of the invention
(1) technical problem that will solve
In view of this, main purpose of the present invention is to provide a kind of three-dimension packaging radiator structure of hard and soft board, with the more efficiently heat that sheds.
(2) technical scheme
For achieving the above object, the invention provides a kind of three-dimension packaging radiator structure of hard and soft board, this three-dimension packaging radiator structure comprises:
A flexible base, board 100;
Be pressed together on a bottom substrate 102 and two rigid substrates 101 on flexible base, board 100, wherein, two rigid substrates 101 are symmetrically distributed in the both sides of bottom substrate 102, and have dug cavity in two rigid substrates 101;
Be adhesively fixed on two copper bases 103 at two rigid substrates 101 back sides;
Be welded on a bottom chip 201 on bottom substrate 102;
Be formed at salient point 301 under the chip between bottom chip 201 and bottom substrate 102;
Be filled between bottom chip 201 and bottom substrate 102 salient point 301 underfill 400 around under chip;
Be soldered to respectively or adhere to rigid substrates 101 due to two top chip 203 that hollow out on two copper bases 103 that expose in chamber;
Two top chip 203 are bonded to the bonding wire 302 on rigid substrates 101;
Capsulation material 600, pours in make two rigid substrates 101 of flexible base, board 100 both sides be placed in the space that bottom chip 201 tops on bottom substrate 102 form due to crooked flexible base, board 100;
Be formed at the BGA ball 700 at bottom substrate 102 back sides;
By BGA ball 700, fix the pcb board 1000 of bottom substrate 102; And
By heat-conducting cream 800, be installed on the radiator 900 on two copper bases 103 at top.
In such scheme, described bottom substrate 102 adopts rigid substrates or flexible base, board.
In such scheme, described two copper bases 103 are to use conductive silver paste to be adhesively fixed on respectively the back side of two rigid substrates 101, the length and width size of copper base 103 and the length and width of rigid substrates 101 are measure-alike, the both sides that are distributed in bottom substrate 102 back sides of left and right symmetrical configuration.
In such scheme, described bottom chip 201 is small-power chip, and its power is 20~500mW.
In such scheme, described top chip 203 is high-power chip, and its power is at least 1 watt.
In such scheme, described capsulation material 600 is for the protection of bonding wire 302 and support, top rigid substrates 101.
In such scheme, described BGA ball 700 is that steel mesh is planted BGA ball and formed by brushing solder(ing) paste on the pad at bottom substrate 102 back sides.
In such scheme, the three-dimension packaging radiator structure of this hard and soft board is symmetrical structure.
(3) beneficial effect
From technique scheme, can find out, the present invention has following beneficial effect:
1, the three-dimension packaging radiator structure of hard and soft board provided by the invention, by using rigid substrates and flexible base, board to combine, and on rigid substrates additional copper based structures, high or low power chip is carried out respectively to radiating treatment, increased the heat dissipation path of packaging body, heat can more efficientlyly shed.
2, the three-dimension packaging radiator structure of hard and soft board provided by the invention, by the enterprising parallel planes process Installation of hard and soft board chip, then realizes three-dimensional stackedly by bending flexible base, board, cost is low, and technique is simply ripe.
3, the three-dimension packaging radiator structure of hard and soft board provided by the invention, on the rigid substrates at upper strata chip, the copper basic mode piece of additional high heat conductance, increased the heat dissipation path of stacked chips, make the heat of upper strata chip by top copper base, conduct to rapidly packaging body outside and shed, heat effectively sheds.
4, the three-dimension packaging radiator structure of hard and soft board provided by the invention,, many little chips can be installed on rigid substrates simultaneously, the quantity of stacked chips is increased, be convenient to superchip integrated; And the heat producing can be by the copper base packaging body that sheds rapidly.
5, the three-dimension packaging radiator structure of hard and soft board provided by the invention, exposed copper base outside packaging body, installation heat abstractor that can be convenient thereon, as heat sink, can carry out more efficiently heat radiation to high-power chip.
Accompanying drawing explanation
Fig. 1 realizes the schematic diagram of chip three-dimensional stacking structure by crooked flexible base, board in prior art;
Fig. 2 is the schematic diagram of the three-dimension packaging radiator structure of hard and soft board provided by the invention;
Fig. 3 to Fig. 8 is the process chart according to the three-dimension packaging radiator structure of the hard and soft board of making of the embodiment of the present invention; Wherein:
Fig. 3 is the structural representation of flexible base, board;
Fig. 4 is the structural representation of hard and soft board;
Fig. 5 is that hard and soft board digs the structural representation behind chamber;
Fig. 6 is that hard and soft board sticks on the structural representation on copper base;
The structural representation of the hard and soft board planar package of Fig. 7;
The structural representation of the three-dimension packaging after the hard and soft board bending of Fig. 8.
Embodiment
For making the object, technical solutions and advantages of the present invention clearer, below in conjunction with specific embodiment, and with reference to accompanying drawing, the present invention is described in more detail.
Fig. 2 is the schematic diagram of the three-dimension packaging radiator structure of hard and soft board provided by the invention, and this three-dimension packaging radiator structure comprises:
A flexible base, board 100;
Be pressed together on a bottom substrate 102 and two rigid substrates 101 on flexible base, board 100, wherein, two rigid substrates 101 are symmetrically distributed in the both sides of bottom substrate 102, and dug cavity in two rigid substrates 101, bottom substrate 102 adopt rigid substrates and flexible base, board all can, what in the present embodiment, adopt is rigid substrates;
Be adhesively fixed on two copper bases 103 at two rigid substrates 101 back sides; Two copper bases 103 are to use conductive silver paste to be adhesively fixed on respectively the back side of two rigid substrates 101, and copper base 103 length and width sizes and rigid substrates 101 length and width are measure-alike, the both sides that are distributed in bottom substrate 102 back sides of left and right symmetrical configuration;
Be welded on a bottom chip 201 on bottom substrate 102; Bottom chip 201 is generally small-power chip, and its power is 20~500mW;
Be formed at salient point 301 under the chip between bottom chip 201 and bottom substrate 102;
Be filled between bottom chip 201 and bottom substrate 102 salient point 301 underfill 400 around under chip;
Be soldered to respectively or adhere to rigid substrates 101 due to two top chip 203 that hollow out on two copper bases 103 that expose in chamber; Top chip 203 is generally high-power chip, and its power is at least 1 watt;
Two top chip 203 are bonded to the bonding wire 302 on rigid substrates 101;
Capsulation material 600, pour in make two rigid substrates 101 of flexible base, board 100 both sides be placed in the space that bottom chip 201 tops on bottom substrate 102 form due to crooked flexible base, board 100, for the protection of bonding wire 302 and support, top rigid substrates 101;
Be formed at the BGA ball 700 at bottom substrate 102 back sides, BGA ball 700 is that steel mesh is planted BGA ball and formed by brushing solder(ing) paste on the pad at bottom substrate 102 back sides;
By BGA ball 700, fix the pcb board 1000 of bottom substrate 102, the back side of bottom substrate 102 is fixed on pcb board 1000 by BGA ball 700; And
By heat-conducting cream 800, be installed on the radiator 900 on two copper bases 103 at top.
The three-dimension packaging radiator structure of hard and soft board provided by the invention, by radiator 900 is implemented to the modes such as air-cooled, the heat that copper base 103 is derived more effectively sheds rapidly.The three-dimension packaging radiator structure of this hard and soft board is symmetrical structure.
The three-dimension packaging radiator structure of the hard and soft board based on shown in Fig. 2, Fig. 3 to Fig. 8 is according to the process chart of the three-dimension packaging radiator structure of the hard and soft board of making of the embodiment of the present invention, specifically comprises the following steps:
Step 101: make flexible base, board 100, as shown in Figure 3;
Step 102: bottom substrate 102 and two rigid substrates 101 are pressed together on flexible base, board 100, wherein two rigid substrates 101 are symmetrically distributed in the both sides of bottom substrate 102, as shown in Figure 4, bottom substrate 102 adopt rigid substrates and flexible base, board all can, what in the present embodiment, adopt is rigid substrates;
Step 103: hollow out chamber in two rigid substrates 101, as shown in Figure 5;
Step 104: use conductive silver paste two copper bases 103 to be adhesively fixed on respectively to the back side of two rigid substrates 101, copper base 103 length and width sizes and rigid substrates 101 length and width are measure-alike, the both sides that are distributed in bottom substrate 102 back sides of left and right symmetrical configuration, as shown in Figure 6;
Step 105: as shown in Figure 7, the mode by flip chip bonding (flip-chip) is welded to bottom chip 201 on bottom substrate 102 forms under chip salient point 301 and fills underfill 400 between bottom chip 201 and bottom substrate 102; Then, by eutectic solder or conductive silver paste 500, two top chip 203 are soldered to respectively or adhere to rigid substrates 101 owing to hollowing out on two copper bases 103 that expose in chamber, then by bonding wire 302, two top chip 203 are bonded on rigid substrates 101.
Step 106: as shown in Figure 8, by crooked flexible base, board 100, make two rigid substrates 101 of flexible base, board 100 both sides be placed in bottom chip 201 tops on bottom substrate 102, and making it fixed-type by pouring into capsulation material 600, capsulation material 600 plays the effect of protection bonding wire 302 and support, top rigid substrates 101; Then on the pad at bottom substrate 102 back sides, brush solder(ing) paste, steel mesh is planted BGA ball 700, refluxes, and forms packaging body.
Step 107: the back side of bottom substrate 102 is fixed on pcb board 1000 by BGA ball 700, and by heat-conducting cream 800 installation of heat radiator 900 on two copper bases 103 at packaging body top, is formed the three-dimension packaging radiator structure after hard and soft board bending.As shown in Figure 2, by radiator 900 is implemented to the modes such as air-cooled, the heat that copper base 103 is derived more effectively sheds rapidly three-dimension packaging radiator structure after the final hard and soft board bending forming.
Above-described specific embodiment; object of the present invention, technical scheme and beneficial effect are further described; institute is understood that; the foregoing is only specific embodiments of the invention; be not limited to the present invention; within the spirit and principles in the present invention all, any modification of making, be equal to replacement, improvement etc., within all should being included in protection scope of the present invention.

Claims (8)

1. a three-dimension packaging radiator structure for hard and soft board, is characterized in that, this three-dimension packaging radiator structure comprises:
A flexible base, board (100);
Be pressed together on a bottom substrate (102) and two rigid substrates (101) on flexible base, board (100), wherein, two rigid substrates (101) are symmetrically distributed in the both sides of bottom substrate (102), and have dug cavity in two rigid substrates (101);
Be adhesively fixed on two copper bases (103) at two rigid substrates (101) back side;
Be welded on the bottom chip (201) on bottom substrate (102);
Be formed at salient point (301) under the chip between bottom chip (201) and bottom substrate (102);
Be filled between bottom chip (201) and bottom substrate (102) salient point (301) underfill (400) around under chip;
Be soldered to respectively or adhere to rigid substrates (101) due to two top chip (203) that hollow out on two the copper bases (103) that expose in chamber;
Two top chip (203) are bonded to the bonding wire (302) on rigid substrates (101);
Capsulation material (600), pours in two rigid substrates (101) that make flexible base, board (100) both sides due to crooked flexible base, board (100) and is placed in the space that bottom chip (201) top on bottom substrate (102) forms;
Be formed at the BGA ball (700) at bottom substrate (102) back side;
By BGA ball (700), fix the pcb board (1000) of bottom substrate (102); And
By heat-conducting cream (800), be installed on the radiator (900) on two copper bases (103) at top.
2. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, described bottom substrate (102) adopts rigid substrates or flexible base, board.
3. the three-dimension packaging radiator structure of hard and soft board according to claim 1, it is characterized in that, described two copper bases (103) are to use conductive silver paste to be adhesively fixed on respectively the back side of two rigid substrates (101), the length and width of the length and width size of copper base (103) and rigid substrates (101) are measure-alike, the both sides that are distributed in bottom substrate (102) back side of left and right symmetrical configuration.
4. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, described bottom chip (201) is small-power chip, and its power is 20~500mW.
5. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, described top chip (203) is high-power chip, and its power is at least 1 watt.
6. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, described capsulation material (600) is for the protection of bonding wire (302) and support, top rigid substrates (101).
7. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, described BGA ball (700) is that steel mesh is planted BGA ball and formed by brushing solder(ing) paste on the pad at bottom substrate (102) back side.
8. the three-dimension packaging radiator structure of hard and soft board according to claim 1, is characterized in that, the three-dimension packaging radiator structure of this hard and soft board is symmetrical structure.
CN201310533073.2A 2013-10-31 2013-10-31 Three-dimensional packaging heat radiation structure of rigid-flexible combined board Active CN103594432B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310533073.2A CN103594432B (en) 2013-10-31 2013-10-31 Three-dimensional packaging heat radiation structure of rigid-flexible combined board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310533073.2A CN103594432B (en) 2013-10-31 2013-10-31 Three-dimensional packaging heat radiation structure of rigid-flexible combined board

Publications (2)

Publication Number Publication Date
CN103594432A true CN103594432A (en) 2014-02-19
CN103594432B CN103594432B (en) 2016-03-16

Family

ID=50084512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310533073.2A Active CN103594432B (en) 2013-10-31 2013-10-31 Three-dimensional packaging heat radiation structure of rigid-flexible combined board

Country Status (1)

Country Link
CN (1) CN103594432B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900612A (en) * 2015-06-09 2015-09-09 华进半导体封装先导技术研发中心有限公司 Package stack heat radiating structure with recessed heat radiating plate base and manufacturing method thereof
CN104900611A (en) * 2015-06-09 2015-09-09 中国科学院微电子研究所 Three-dimensional packaging heat dissipation structure based on flexible substrate and preparation method thereof
CN107567270A (en) * 2017-08-30 2018-01-09 艾威尔电路(深圳)有限公司 Rigid-flex combined board with high-intensity signal shielding
CN107889413A (en) * 2017-09-29 2018-04-06 艾威尔电路(深圳)有限公司 The multi-functional rigid-flex combined board of hollow out of ectonexine plug-in unit
US10609844B1 (en) 2019-02-03 2020-03-31 Hong Kong Applied Science and Technology Research Institute Company Limited Power converter
CN111863794A (en) * 2020-07-28 2020-10-30 南通通富微电子有限公司 Semiconductor packaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202306A1 (en) * 2006-02-27 2007-08-30 Fujikura Ltd. Connection configuration for rigid substrates
US20090090541A1 (en) * 2007-10-04 2009-04-09 Phoenix Precision Technology Corporation Stacked semiconductor device and fabricating method thereof
CN103094256A (en) * 2011-11-08 2013-05-08 中国科学院微电子研究所 Packaging system
CN103327738A (en) * 2012-03-22 2013-09-25 富葵精密组件(深圳)有限公司 Softness-hardness combined circuit board and manufacturing method thereof
CN203536412U (en) * 2013-10-31 2014-04-09 中国科学院微电子研究所 Three-dimensional packaging heat radiation structure of rigid-flexible combined board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202306A1 (en) * 2006-02-27 2007-08-30 Fujikura Ltd. Connection configuration for rigid substrates
US20090090541A1 (en) * 2007-10-04 2009-04-09 Phoenix Precision Technology Corporation Stacked semiconductor device and fabricating method thereof
CN103094256A (en) * 2011-11-08 2013-05-08 中国科学院微电子研究所 Packaging system
CN103327738A (en) * 2012-03-22 2013-09-25 富葵精密组件(深圳)有限公司 Softness-hardness combined circuit board and manufacturing method thereof
CN203536412U (en) * 2013-10-31 2014-04-09 中国科学院微电子研究所 Three-dimensional packaging heat radiation structure of rigid-flexible combined board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900612A (en) * 2015-06-09 2015-09-09 华进半导体封装先导技术研发中心有限公司 Package stack heat radiating structure with recessed heat radiating plate base and manufacturing method thereof
CN104900611A (en) * 2015-06-09 2015-09-09 中国科学院微电子研究所 Three-dimensional packaging heat dissipation structure based on flexible substrate and preparation method thereof
CN104900611B (en) * 2015-06-09 2017-09-08 中国科学院微电子研究所 Three-dimensional packaging heat dissipation structure based on flexible substrate and preparation method thereof
CN104900612B (en) * 2015-06-09 2017-10-27 华进半导体封装先导技术研发中心有限公司 A kind of packaging body with umbilicate type cooling fin fin base stacks radiator structure and preparation method thereof
CN107567270A (en) * 2017-08-30 2018-01-09 艾威尔电路(深圳)有限公司 Rigid-flex combined board with high-intensity signal shielding
CN107889413A (en) * 2017-09-29 2018-04-06 艾威尔电路(深圳)有限公司 The multi-functional rigid-flex combined board of hollow out of ectonexine plug-in unit
US10609844B1 (en) 2019-02-03 2020-03-31 Hong Kong Applied Science and Technology Research Institute Company Limited Power converter
CN111863794A (en) * 2020-07-28 2020-10-30 南通通富微电子有限公司 Semiconductor packaging device
CN111863794B (en) * 2020-07-28 2022-10-28 南通通富微电子有限公司 Semiconductor packaging device

Also Published As

Publication number Publication date
CN103594432B (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US9589868B2 (en) Packaging solutions for devices and systems comprising lateral GaN power transistors
CN103594432B (en) Three-dimensional packaging heat radiation structure of rigid-flexible combined board
CN103378017B (en) High density 3D encapsulates
US6919631B1 (en) Structures for improving heat dissipation in stacked semiconductor packages
JP4493121B2 (en) Semiconductor device and semiconductor chip packaging method
TWI281238B (en) Thermal enhanced package for block mold assembly
US20150200190A1 (en) Package on Packaging Structure and Methods of Making Same
CN102163590A (en) Three-dimensional multi-chip encapsulation module based on buried substrate and method
WO2015043499A1 (en) Semiconductor encapsulation structure and forming method thereof
CN103594433B (en) Method for manufacturing three-dimensional packaging heat dissipation structure of rigid-flexible combined board
JP2005217405A (en) Thermal dissipation type semiconductor package and manufacturing method of same
JPH09167813A (en) Integrated circuit package
JPH10261738A (en) Package body and semiconductor chip package using the package body
KR102170197B1 (en) Package-on-package structures
CN102683302A (en) Heat radiation structure for single chip package and system-in-package
CN106898591A (en) A kind of multi-chip framework encapsulation structure of radiating and preparation method thereof
JP2019071412A (en) Chip package
CN101887886A (en) Multi-chip package and manufacturing method
KR100885918B1 (en) Semiconductor device stack package, electronic apparatus using the same and method of manufacturing the package
CN103915405A (en) Semiconductor device and method of making a semiconductor device
CN203536412U (en) Three-dimensional packaging heat radiation structure of rigid-flexible combined board
CN106298724B (en) Plastic package type power module
CN115966564A (en) Chip packaging structure for improving heat dissipation and preparation method thereof
CN210778556U (en) Integrated circuit packaging structure
JP2017224788A (en) Electronic circuit device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190603

Address after: 214213 China Sensor Network International Innovation Park D1, 200 Linghu Avenue, Taihu International Science Park, Wuxi New District, Jiangsu Province

Patentee after: National Center for Advanced Packaging Co.,Ltd.

Address before: 100083 3 north Tu Cheng West Road, Chaoyang District, Beijing

Co-patentee before: National Center for Advanced Packaging Co.,Ltd.

Patentee before: Institute of Microelectronics of the Chinese Academy of Sciences