CN103580721A - 一种复杂时变多径信道中多天线迭代多用户检测方法与装置 - Google Patents

一种复杂时变多径信道中多天线迭代多用户检测方法与装置 Download PDF

Info

Publication number
CN103580721A
CN103580721A CN201310537434.0A CN201310537434A CN103580721A CN 103580721 A CN103580721 A CN 103580721A CN 201310537434 A CN201310537434 A CN 201310537434A CN 103580721 A CN103580721 A CN 103580721A
Authority
CN
China
Prior art keywords
user
module
channel
information
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310537434.0A
Other languages
English (en)
Other versions
CN103580721B (zh
Inventor
周小林
蔡荣成
祁卿峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201310537434.0A priority Critical patent/CN103580721B/zh
Publication of CN103580721A publication Critical patent/CN103580721A/zh
Application granted granted Critical
Publication of CN103580721B publication Critical patent/CN103580721B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明属于无线通信技术领域,具体为一种复杂时变多径信道中多天线交织迭代多用户检测方法与装置。本发明检测装置包括:多用户模式下的发射机和多用户模式下的迭代接收机;发射机完成由用户输入数据到对应的码片的信息流发送到信道中的过程;接收机由次优的Turbo型迭代译码结构组成,包括ESE模块、DEC模块、2个交织器,经过循环迭代,将接收到混合信号中的噪声信号完全剥离,译码器模块分别输出的信息流序列,作为K个用户信号相应的硬判决值。本发明可大幅降低信道编码难度,并为处理无线体域网多种环境下的不同信道提供了可能;多用户的交织迭代检测的复杂度不再受到多用户数目的限制,很好的适应了体域网通信节。

Description

一种复杂时变多径信道中多天线迭代多用户检测方法与装置
技术领域
本发明属于无线通信技术领域,具体涉及复杂时变多径信道中多天线交织迭代多用户检测方法与装置。
背景技术
MIMO交织迭代技术能使相对于本用户的其他用户信息之和被认为是符合高斯分布的白噪声,从而使得迭代检测运算与用户数不再相关,这大大简化了多用户检测的复杂度,降低了对通信节点计算能力的要求。在多用户通信中具有良好的应用前景,很好的释放了无线体域网系统中对于传感器节点低计算能力,低功耗的限制
通常的迭代检测过程中,对于多用户单径信道,一般假定各用户的单径符合相同的概率分布。对于多用户简单多径信道,一般假定信道是时不变的,各用户的多径数是相同的,多用户单径延时码片数是连续的,且不同用户之间的延时情况也是一样的。然而这些假设过于理想化,且与实际研究的信道环境尤其是像无线体域网这种复杂信道相差甚多。
因此,本发明针对更复杂的时变多径信道提出一种可以更普遍应用于各种复杂信道的迭代检测方法。通过测试仿真,利用改进后的迭代检测方法能使系统的对抗多径能力增强,对于复杂的时变多径信道,系统有很好的抗干扰能力,系统性能优异。
发明内容
本发明的目的在于提出一种能使系统抗干扰能力强,可在多用户模式下对抗时变多径信道中衰落的,复杂时变多径信道中多天线交织迭代多用户检测装置与方法。
本发明提出的复杂时变多径信道中多天线交织迭代多用户检测装置,包括:多用户模式下的发射机和多用户模式下的迭代接收机;其中:
1、多用户模式下的发射机,其结构如图1所示,设发送端有K个用户,发射机由前向编码器ENCk,交织器 ,信道矩阵hk,加法器依次连接组成,k =1,2,3,……,K。
发送端的K个用户生成的原始信息比特流为
Figure 326989DEST_PATH_IMAGE002
,第k个用户输入数据
Figure 788057DEST_PATH_IMAGE003
首先进入编码器进行编码,在编码器部分完成前向纠错编码和序列扩频过程。前向编码器ENCk生成低码率的编码后序列
Figure 952322DEST_PATH_IMAGE004
Figure 131631DEST_PATH_IMAGE005
=1,2,3,……,
Figure 672334DEST_PATH_IMAGE006
(其中 为序列的分组数),
Figure 87189DEST_PATH_IMAGE008
(j)经过对应k用户的交织器
Figure 550532DEST_PATH_IMAGE001
,生成对应的码片(chips)
Figure 832608DEST_PATH_IMAGE009
,
Figure 330586DEST_PATH_IMAGE010
=1,2,3,……,
Figure 836654DEST_PATH_IMAGE006
;这个交织过程作为用户的唯一标识被送入分别对应的信道,并在后面的解码解交织过程中用来区分不同的用户。在编码器部分,一般使用turbo码扩频,但是由于在交织分多址中,所有扩频码主要是以频谱扩展的目的被使用,而非用来区分用户, 所以具体何种编码对于系统的性能影响不再像原来那么重要。
在这里还需要提前强调的是,为了在后面的迭代多用户检测过程中能够满足所有码片均符合独立同分布的假设,在交织过程中必须确保不同用户的交织过程是独立随机过程,从而使得码片被打乱后满足随机分布,彼此独立。
总而言之,发射机完成由用户输入数据
Figure 990554DEST_PATH_IMAGE011
到对应编码后数据再到分组交织后的对应码片
Figure 163227DEST_PATH_IMAGE012
的信息流发送到信道中的过程;各路信号生成完成后,由加法器进行叠加,进入信道进行传输。
2、多用户模式下的迭代接收机,其结构图如图2所示,接收机主要由次优的Turbo型迭代译码结构组成。包括三个部分:ESE基本信号检测模块(elementary signal estimator)(简称ESE模块)、译码器DEC模块(Decoder)(简称DEC模块)、2个交织器,2个交织器连接于ESE模块和DEC模块之间;其中,ESE基本信号检测模块分别对应发送端K个用户交织过程的去交织过程,主要解决多址接入信道的约束条件;译码器DEC模块基于后验概率APP算法(a posteriori probability)标准函数,主要用于解决编码的约束条件,然后通过Turbo码循环迭代检测将三个过程有序循环的串联在一起;发送端信号经过信道干扰后到达接收端(图中描述的是AWGN信道),ESE模块、交织器、DEC模块之间进行循环迭代过程。
通过ESE基本信号检测模块和译码器DEC模块输出的外信息作为互相的输入输出,完成一次码片到码片的迭代循环过程,经过多次迭代后,与发射机对应的用户接收端可以将接收到混合信号中除该用户信号以外的噪声信号完全剥离,最后把和每个发送端一一对应的译码器模块分别输出的信息流序列,作为K个用户信号相应的
Figure 840196DEST_PATH_IMAGE013
的硬判决值, k=1,2,……,K。
本发明提出的复杂时变多径信道中多天线交织迭代多用户检测方法,其时变多径效应下的迭代检测过程如下:
按照理论前提,不同用户的多径数是不同的,这种多径数的不同不光体现在空间上,各用户的多径数在时间的维度上也是时刻变化的。用户之间多径信道的延时状况也彼此不同的,且单个用户不同单径的延时状况也随时间不断发生变化。各用户的多径幅度参数也不再是静态的,而是不断变化的。
整个迭代检测中,接收机后面的DEC模块的输入和输出(作为ESE模块的先验)与具体的信道关系不大的,且先验与后验仅涉及到具体的加减运算而已。在Li Ping等人的文章中是可以通过标准函数的形式出现,既无论是多用户单径,多用户简单多径,还是像本文中所研究的复杂多用户时变多径信道都可以正常调用。
而ESE模块的推导与信道特征有很大的关系,不同特征信道出来的信息对应的外信息最大似然比之间的理论公式以及具体的代码实现都有很大的差别。但是无论信道怎么变,无论是单径,多径,还是复杂多径时变,对于独立同分布叠加信号的高斯分布假设仍然成立,所以可以从这个假设及数学原理出发,仍然可以去推导多用户复杂时变多径信道ESE模块中各种信息变量的表达式。下面,分别列出ESE和DEC模块的运算过程,合起来即是完整的迭代检测过程。
1、多用户检测ESE过程
尽管信道是时变的,但是仍然可以假设任意一个极短的时间内,信道参数不发生变化。在这里为了推导叙述的方便性,假设在发送一帧的时间内,信道的各种分布参数均不发生变化,在第五章系统性能仿真部分,将对这一假设的适用性进行论证。因此由时变多径衰落信道的特征可得K个用户的信号经过信道后的接收序列为 :
Figure 391756DEST_PATH_IMAGE015
()
其中,
Figure 649879DEST_PATH_IMAGE017
为接收端收到的第j个信号序列,K是用户数,
Figure 575110DEST_PATH_IMAGE018
是第i个用户的多径数,
Figure 737101DEST_PATH_IMAGE019
为第i个用户的第l条径的信道矩阵,
Figure 64177DEST_PATH_IMAGE020
为第
Figure 286211DEST_PATH_IMAGE021
用户,第
Figure 433158DEST_PATH_IMAGE022
条多径的时延,
Figure 461157DEST_PATH_IMAGE023
为第j个码片的噪声信号。
由各个用户发送信息是相互独立的前提假设以及实验测量的体域网信道特征可知,对于任一用户的多径数是满足泊松分布的,所以不同用户的多径数不一定相等。且在不同时间内同一个用户的多径数也各不相同,在这里对于极端发送接收时间内的准静态环境下第
Figure 78958DEST_PATH_IMAGE021
用户的多径数用
Figure 534210DEST_PATH_IMAGE024
表示。
对于第
Figure 371716DEST_PATH_IMAGE021
个用户来说,相邻多径分量之间的时延满足泊松分布同样由发送信息独立的假设可知,不同客户的第
Figure 937827DEST_PATH_IMAGE022
条多径延时长度也不一定相同,在这里第
Figure 911599DEST_PATH_IMAGE021
用户,第
Figure 537752DEST_PATH_IMAGE022
条多径的时延用表示。
定义第
Figure 966777DEST_PATH_IMAGE026
个用户,第
Figure 562099DEST_PATH_IMAGE022
条径的噪声信号为:
(2)
所以,接收序列
Figure 905673DEST_PATH_IMAGE028
又可以表示为:
Figure 688952DEST_PATH_IMAGE029
Figure 699634DEST_PATH_IMAGE030
(3)
其中,是第个用户,第
Figure 911544DEST_PATH_IMAGE022
条径的噪声信号,由其他用户以及其他径的信号共同构成,由(2)给出。各个用户的在发送一帧的时间内,K个用户的输入信号序列是满足相同的分布参数,既满足独立同分布的前提假设条件。而对于经过信道时K个用户产生的
Figure 979994DEST_PATH_IMAGE032
条多径分量,由于仅仅是对输入新号序列发生了不同时间延迟的平移,但对于参与运算的任一条分径中的任一点都仍然符合原来相同的概率分布。因此计算第k个用户的第l条分径的
Figure 118852DEST_PATH_IMAGE033
时,由独立同分布以及中心极限定理可知,仍可以认为接收到的中除了以外的信息和
Figure 874952DEST_PATH_IMAGE031
(既
Figure 122394DEST_PATH_IMAGE034
的噪声)仍是是满足高斯分布的。
所以,
Figure 927539DEST_PATH_IMAGE035
为第k用户第
Figure 980945DEST_PATH_IMAGE022
条径第
Figure 820725DEST_PATH_IMAGE005
个点的噪声期望,表示如下:
Figure 740533DEST_PATH_IMAGE036
(4)
Figure 827755DEST_PATH_IMAGE038
为第k用户第
Figure 787621DEST_PATH_IMAGE022
条径第
Figure 376865DEST_PATH_IMAGE005
个点的噪声方差,表示如下:
Figure 156602DEST_PATH_IMAGE039
Figure 551811DEST_PATH_IMAGE040
(5)
Figure 303867DEST_PATH_IMAGE041
是第k个用户第
Figure 126329DEST_PATH_IMAGE022
条分径的外信息的最大似然比,是在信道观测和
Figure 829581DEST_PATH_IMAGE034
噪声的先验信息的基础上获得的。
Figure 28481DEST_PATH_IMAGE042
(6)
其中由中心极限定理可知,
Figure 635043DEST_PATH_IMAGE028
同样满足高斯分布。
其中由公式(3)可知,
Figure 628407DEST_PATH_IMAGE043
时,
(7)
Figure 323010DEST_PATH_IMAGE045
(8)
时,
Figure 10661DEST_PATH_IMAGE047
(9)
(10)
基于
Figure 730672DEST_PATH_IMAGE028
满足高斯分布,又可以表示为:
Figure 108564DEST_PATH_IMAGE049
Figure 148457DEST_PATH_IMAGE050
(11)
所以,
(12)
将等式(4),(5)带入等式(12)中,可得:
(13)
所以第k用户的外信息最大似然比为:
Figure 126275DEST_PATH_IMAGE053
(14)
2、多用户译码DEC过程
接收机端正向DEC译码详细过程如下:
译码模块通过计算后验概率(APP)来实现译码,基本信号检测器输出的外信息LLR,经过解交织器后,进入相对应的DEC模块中(既第k路的外信息
Figure 897921DEST_PATH_IMAGE054
进入第k路DEC模块中进行译码)。进行译码后生成
Figure 786243DEST_PATH_IMAGE055
)(DEC模块输入先验信息)经过与这一路对应的交织器后输出更新上一次迭代使用的
Figure 668748DEST_PATH_IMAGE056
(x的似然值)作为基本信号检测器的输入的先验信息,更新噪声的方差均值等信息,再次进入ESE基本信号检测的流程中去。如此信息循环在DEC,ESE模块中流动,经过多次迭代后,任何一路信息的噪声信息都几乎被清除干净,最终经过译码DEC模块输出对应各个用户的信息序列的硬判决值。
首本,信号检测模块的输出外信息经过解交织后,更新上一次循环时译码模块的先验信息,从而获得对每一路用户信息相应码片
Figure 901464DEST_PATH_IMAGE058
,
Figure 339398DEST_PATH_IMAGE010
=1,2,3,……,的大致估计。
由交织和解交织过程的随机独立性,一个合理的假设是
Figure 668803DEST_PATH_IMAGE059
的各码片也可被认为是相互独立的。
那么对于
Figure 782253DEST_PATH_IMAGE058
的估计可以表示为:
Figure 707483DEST_PATH_IMAGE060
(15)
Figure 869474DEST_PATH_IMAGE061
可得:
(16)
接下来可以用第一步初步的
Figure 153005DEST_PATH_IMAGE063
的软估计值进行APP译码,获得经过APP译码模块后的{
Figure 565532DEST_PATH_IMAGE064
}的后验概率最大似然比LLRs {},
Figure 712797DEST_PATH_IMAGE005
=1,2,3,……,
Figure 168049DEST_PATH_IMAGE006
。 最后由公式
Figure 253159DEST_PATH_IMAGE066
+
Figure 819270DEST_PATH_IMAGE059
可以计算译码模块的外信息:
Figure 120938DEST_PATH_IMAGE067
(17)
其中,
Figure 747091DEST_PATH_IMAGE068
为第k个用户的第j个码片的
Figure 806314DEST_PATH_IMAGE069
的基本信号检测ESE模块与译码器DEC模块先验对数似然比(LLR),
3、 逆向反馈过程
完成译码后,接收机的逆向信息反馈过程和信号的发送过程非常相似。
每次迭代后,将从译码模块中输出的DEC外信息的送入与该用户对应发射模块相同的交织器中并用来更新进入到基本信号检测模块中先验信息 ,然后开始下一轮的迭代。直到完成所设定的次数迭代过程,最终在译码器端输出最终的硬判决值。
至此一次完整的循环迭代检测结束。
发明优点
(1)考虑到体域网密集时变多径信道的复杂性,编码也会比较复杂。而该交织迭代检测技术可以通过交织变相实现对信道的改造,无论信道如何复杂,多用户信号经过交织后均可以统一为独立差错随机信道,这将极大地降低了信道编码的难度,并为处理无线体域网多种环境下的不同信道提供了可能。
(2)体域网通信节点的计算能力有限,而多用户通信必然会要求接收节点能够有较高的计算能力。多用户的交织迭代检测的复杂度不再受到多用户数目的限制,在接收端迭代检测的复杂度降低,这个很好的适应体域网通信节点的需求。
(3)随着可穿戴设备的种类和应用逐渐增多,以后部署于体域网内的传感器节点将会不断增多,同时考虑到体域网复杂的信道环境,节点的增多将会将加速系统性能的恶化程度,多用户之间的相互干扰将会更加明显。而交织迭代检测技术对于多用户通信良好的支持,降低多用户干扰的特点可以很好的提高体域网系统容量,使得可容纳的用户数量大大增加。
附图说明
图1多用户模式下的发射机结构。
图2多用户模式下的迭代接收机结构。
图3 采用迭代检测前后的信噪比-误码率图。
图4 不同扩频码长下的信噪比-误码率图。
图5 多用户下的迭代检测系统信噪比-误码率图。
具体实施方式
对于本发明提出的迭代检测方案,具体实施过程如下:
1、由图1,可知在发送端有K个用户,设它们生成的原始信息比特流为
Figure 176116DEST_PATH_IMAGE002
第k个用户输入数据
Figure 269974DEST_PATH_IMAGE003
首先进入编码器进行编码,在编码器部分完成前向纠错编码和序列扩频过程。生成低码率的
Figure 67028DEST_PATH_IMAGE004
Figure 613547DEST_PATH_IMAGE005
=1,2,3,……,
Figure 521461DEST_PATH_IMAGE006
Figure 968360DEST_PATH_IMAGE008
经过对应k用户的交织器
Figure 936316DEST_PATH_IMAGE001
,生成对应的码片(chips)
Figure 32448DEST_PATH_IMAGE009
,
Figure 681735DEST_PATH_IMAGE010
=1,2,3,……,
Figure 546923DEST_PATH_IMAGE006
。将各路信号叠加后进行发送。
2、由图2,可知在发送信号在经过AWGN信道后,是一个带有噪声和各种干扰信号的信号,因此进入接收端开始迭代消除噪声过程。迭代过程如下。
首先定义对于任意
Figure 685780DEST_PATH_IMAGE005
Figure 206892DEST_PATH_IMAGE026
的ESE和DEC模块的非本征最大似然比值(外信息),
Figure 722187DEST_PATH_IMAGE070
(18)
Figure 441881DEST_PATH_IMAGE071
(19)
其中,ESE似然比公式中
Figure 689323DEST_PATH_IMAGE072
代表从信道中出来的K用户的混合接收信号。
Figure 760047DEST_PATH_IMAGE073
Figure 252601DEST_PATH_IMAGE074
分别代表ESE和DEC模块的输出,DEC似然比值公式中的y对应的是从解交织模块中输出信息。
定义对应任意k,j的
Figure 92381DEST_PATH_IMAGE069
的基本信号检测ESE模块与译码器DEC模块先验对数似然比(LLR):
(20)
Figure 68745DEST_PATH_IMAGE075
(21)
其中,
Figure 354550DEST_PATH_IMAGE077
这两个先验对数似然比作为基本信号检测器模块和译码模块的输入信号。对于ESE模块,同时作为输入信息的还有从信道中出来的多用户混合接收信号
Figure 209373DEST_PATH_IMAGE028
根据原理图可知,基本信号检测模块的输入信号为从信道出来的接收信号以及先验对数似然比, 输出信号为ESE的外信息,在这部分只考虑多址信道限制。
译码DEC模块的输入则是DEC的先验对数似然比, 输出为DEC外信息。ESC输出的外信息经过解交织后作为DEC的先验信息输入,DEC的外信息经过交织后作为ESE模块的先验信息输入。最初的迭代过程是从复合信号进入ESE模块中开始,由于复合信号刚刚进入接收机,DEC反馈的外信息还没有生成,则所 有的
Figure 989110DEST_PATH_IMAGE078
的初始值为0并作为初始的先验信息输入。
假设已知信道信息为{hk , ∀k} ,则 xk ( j ), ∀k, j的后验概率的LLR为:
Figure 322003DEST_PATH_IMAGE079
(22)
其中,
Figure 136375DEST_PATH_IMAGE080
是基于信道观测的关于
Figure 395056DEST_PATH_IMAGE081
的外信息。
Figure 662089DEST_PATH_IMAGE082
Figure 860989DEST_PATH_IMAGE081
的先验信息。
由上式可知后验概率最大似然比由两个部分组成,一个是
Figure 467551DEST_PATH_IMAGE009
的先验概率信息,另外一个是由信道参数和除其他用户的码片先验信息决定的
Figure 152927DEST_PATH_IMAGE081
的外信息。
同理,定义是第k个用户经过解交织后DEC译码模块的输入信息。则由上式可以推导出考虑编码限制C的xk ( j ), ∀k, j 的后验概率LLR公式(既第k个用户的DEC译码模块的输出)
=+
Figure 461625DEST_PATH_IMAGE059
Figure 736749DEST_PATH_IMAGE086
(23)
其中,
Figure 380220DEST_PATH_IMAGE087
是通过设定在
Figure 653069DEST_PATH_IMAGE088
Figure 381991DEST_PATH_IMAGE089
=0来实现的。
通过这种类Turbo交织循环迭代检测过程,在基本信号检测模块到译码DEC模块之间完成了
Figure 398488DEST_PATH_IMAGE054
Figure 896466DEST_PATH_IMAGE089
的更新以及
Figure 605796DEST_PATH_IMAGE055
Figure 556434DEST_PATH_IMAGE056
的更新。先验信息由(14)(17)式得到,即如下2式。
Figure 438940DEST_PATH_IMAGE090
(24)
Figure 227642DEST_PATH_IMAGE091
(25)
3、图3~图5为仿真结果
图3采用随机交织,16位重复扩频码:{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1},数据帧长为256,信道频率5GHz,交织码片数目为16*256。系统仿真发送50帧。用户数为3,假定系统在发送一帧的时间内3个用户的信道参数不发生变化,符合准静态信道特征。
分别对无迭代检测的体域网系统,仅有随机交织无迭代检测过程的无线体域网系统,有完整的IDMA随机交织和8次迭代检测的无线体域网系统进行仿真,并对误码率进行分析。
如图3所示,未使用迭代检测技术的体域网系统可以达到30%以上的的误码率,而且随着信道环境的改变(信噪比的增加),系统的性能并不会发生任何显著的改善。由此可见,体域网复杂的密集时变多径信道极大的影响了体域网系统的传输性能。在体域网系统中加入Turbo码和随机交织器后可以发现,交织器的应用可以很好的离散时变多径信道中的集中错误,在一定程度上降低系统传输的误码率,改善系统性能。但是这种改善仍然是有限的,在较高的信噪比情况下,误码率也只能降低到10%左右。然而经过由迭代检测循环迭代检测8次后再输出的硬判决结果后,系统性能出产生了极大的提高。随着信噪比的改善,误码率显著下降,在本试验仿真条件下,在0~2dB信噪比范围内,误码率就降到零了,各用户的噪声信号经过8次迭代后被明显的消除了。
图4仿真条件为:3用户,随机交织器,5GHz频带,重复扩频码位数分别为2^(i+1)位,其中i=1,2,3,4,5。数据帧长为256,交织码片数目为2^(i+1)*256,i=1,2,3,4,5。迭代次数8次。系统仿真发送50帧。分别仿真扩频码长度为4,8,16,32,64比特情况下的误码率曲线。
由仿真结果可以进行如下观测与分析:从总体的趋势来说,相同信噪比条件下,随着扩频码长度的增加,迭代检测系统的误码率逐渐降低。扩频码长度在16位以上的系统之间的差别并不大,误码率水平均比较低,并随信噪比的增加而产生显著迅速增加的趋势,在较低的信噪比水平下(Eb/No=2dB~4dB)就能够达到零误码率。
图5仿真条件为:随机交织器,5GHz频带,重复扩频码位数为16位。数据帧长为256,交织码片数目为16*256,迭代次数为8次,系统仿真发送50帧。分别仿真用户数为1,3,4,5,6,7,8,9,10,12情况下的误码率曲线。
由图5可以观测得出,当用户数少于8个时,不同用户数情况下的误码率曲线差别不算大,都是随着信噪比增加而迅速降低。且基本呈现随着用户数的增加,系统性能随之改善的状况,在极低信噪比的情况下,不同用户数情况下的误码率均较高,但是误码率随着信噪比增加迅速降低,在信噪比为4~6dB范围内误码率均降为0,表现出非常好的系统性能。
可见,运用了MIMO迭代检测技术,能很好的对抗时变多径效应带来的干扰,使多用户系统性能提高。

Claims (2)

1.一种复杂时变多径信道中多天线交织迭代多用户检测装置,包括:多用户模式下的发射机和多用户模式下的迭代接收机;其特征在于:
所述多用户模式下的发射机,发射机由前向编码器ENCk,交织器 ,信道矩阵hk,加法器依次连接组成,k =1,2,3,……,K,K为发送端的用户数:
发送端的K个用户生成的原始信息比特流为
Figure 411828DEST_PATH_IMAGE002
,第k个用户输入数据
Figure 2013105374340100001DEST_PATH_IMAGE003
首先进入编码器进行编码,在编码器部分完成前向纠错编码和序列扩频过程;前向编码器ENCk生成低码率的已编码序列
Figure 849763DEST_PATH_IMAGE004
=1,2,3,……,
Figure 208063DEST_PATH_IMAGE006
,其中
Figure 680633DEST_PATH_IMAGE008
为序列的分组数,
Figure DEST_PATH_IMAGE009
(j)经过对应k用户的交织器
Figure 731765DEST_PATH_IMAGE001
,生成对应的码片,
Figure DEST_PATH_IMAGE011
=1,2,3,……,
Figure 317522DEST_PATH_IMAGE006
;这个交织过程作为用户的唯一标识被送入分别对应的信道,并在后面的解码解交织过程中用来区分不同的用户;
其中,编码器使用turbo码扩频;不同用户的交织过程是独立随机过程,使得码片被打乱后满足随机分布,彼此独立;
发射机完成由用户输入数据
Figure 379019DEST_PATH_IMAGE012
到对应编码后数据
Figure 601053DEST_PATH_IMAGE004
再到分组交织后的对应码片
Figure DEST_PATH_IMAGE013
的信息流发送到信道中的过程,各路信号生成完成后,由加法器进行叠加,进入信道进行传输;
所述多用户模式下的迭代接收机,由次优的Turbo型迭代译码结构组成,包括三个部分:ESE基本信号检测模块、译码器DEC模块、2个交织器,2个交织器连接于ESE基本信号检测模块和译码器DEC模块之间;其中,ESE基本信号检测模块分别对应发送端K个用户交织过程的去交织过程,主要解决多址接入信道的约束条件;译码器DEC模块基于后验概率APP算法标准函数,主要用于解决编码的约束条件,然后通过Turbo码循环迭代检测,将三个过程有序循环的串联在一起;发送端信号经过信道干扰后到达接收端,ESE基本信号检测模块、交织器、译码器DEC模块之间进行循环迭代过程;
通过ESE基本信号检测模块和译码器DEC模块输出的外信息作为互相的输入输出,完成一次码片到码片的迭代循环过程,经过多次迭代后,与发射机对应的用户接收端将接收到混合信号中除该用户信号以外的噪声信号完全剥离,最后把和每个发送端一一对应的译码器模块分别输出的信息流序列,作为K个用户信号相应的序列
Figure 13580DEST_PATH_IMAGE014
的硬判决值
Figure DEST_PATH_IMAGE015
, k=1,2,……,K。
2.一种基于权利要求1所述检测装置的复杂时变多径信道中多天线交织迭代多用户检测方法,其特征在于时变多径效应下的迭代检测过程如下:
(1)多用户检测ESE过程
假设在发送一帧的时间内,信道的各种分布参数均不发生变化,由时变多径衰落信道的特征可得K个用户的信号经过信道后的接收序列为 :
Figure 979262DEST_PATH_IMAGE016
(1)
其中,
Figure DEST_PATH_IMAGE017
为接收端收到的第j个信号序列,K是用户数,
Figure 98527DEST_PATH_IMAGE018
是第i个用户的多径数,
Figure DEST_PATH_IMAGE019
为第i个用户的第l条径的信道矩阵,
Figure DEST_PATH_IMAGE021
为第
Figure 727348DEST_PATH_IMAGE022
用户,第
Figure DEST_PATH_IMAGE023
条多径的时延,为第j个码片的噪声信号;
由各个用户发送信息是相互独立的前提假设以及实验测量的体域网信道特征可知,对于任一用户的多径数是满足泊松分布的,所以不同用户的多径数不一定相等,且在不同时间内同一个用户的多径数也各不相同,对于极端发送接收时间内的准静态环境下第
Figure 6331DEST_PATH_IMAGE022
用户的多径数用
Figure DEST_PATH_IMAGE025
表示;
对于第
Figure 744218DEST_PATH_IMAGE022
个用户来说,相邻多径分量之间的时延满足泊松分布同样由发送信息独立的假设可知,不同客户的第
Figure 104792DEST_PATH_IMAGE023
条多径延时长度也不一定相同,在这里第
Figure 429594DEST_PATH_IMAGE022
用户,第
Figure 799395DEST_PATH_IMAGE023
条多径的时延用
Figure 689991DEST_PATH_IMAGE026
表示;
定义第个用户,
Figure 424729DEST_PATH_IMAGE023
条径的噪声信号为:
Figure 33565DEST_PATH_IMAGE028
(2)
所以,接收序列又可以表示为:
Figure DEST_PATH_IMAGE031
Figure 144740DEST_PATH_IMAGE032
(3)
为第k用户第
Figure 594569DEST_PATH_IMAGE023
条径第
Figure 562525DEST_PATH_IMAGE005
个点的噪声期望,表示如下:
Figure DEST_PATH_IMAGE035
Figure 596340DEST_PATH_IMAGE036
(4)
Figure DEST_PATH_IMAGE037
为第k用户第
Figure 245628DEST_PATH_IMAGE023
条径第
Figure 110815DEST_PATH_IMAGE005
个点的噪声方差,表示如下:
Figure DEST_PATH_IMAGE039
Figure 187356DEST_PATH_IMAGE040
(5)
Figure DEST_PATH_IMAGE041
是第k个用户第
Figure 207002DEST_PATH_IMAGE023
条分径的外信息的最大似然比,是在信道观测和噪声的先验信息的基础上获得:
(6)
由中心极限定理可知,
Figure 379675DEST_PATH_IMAGE029
同样满足高斯分布;
由公式(3)可知,
Figure 689433DEST_PATH_IMAGE044
时,
Figure DEST_PATH_IMAGE045
(7)
Figure 697841DEST_PATH_IMAGE046
(8)
Figure DEST_PATH_IMAGE047
时,
Figure 688930DEST_PATH_IMAGE048
(9)
Figure DEST_PATH_IMAGE049
(10)
基于
Figure 956140DEST_PATH_IMAGE029
满足高斯分布,又可以表示为:
Figure DEST_PATH_IMAGE051
Figure 436799DEST_PATH_IMAGE052
(11)
所以,
Figure DEST_PATH_IMAGE053
(12)
将等式(4),(5)带入等式(12)中,得:
Figure 666924DEST_PATH_IMAGE054
(13)
所以第k用户的外信息最大似然比为:
Figure DEST_PATH_IMAGE055
(14)
(2)多用户译码DEC过程
接收机端正向DEC译码详细过程如下:
译码模块通过计算后验概率(APP)来实现译码,基本信号检测模块输出的外信息LLR,经过解交织器后,进入相对应的DEC模块中,即第k路的外信息
Figure 461704DEST_PATH_IMAGE056
进入第k路DEC模块中进行译码,进行译码后生成
Figure DEST_PATH_IMAGE057
),经过与这一路对应的交织器后输出更新上一次迭代使用的
Figure 93674DEST_PATH_IMAGE058
(x的似然值)作为基本信号检测器的输入的先验信息,更新噪声的方差均值等信息,再次进入ESE基本信号检测的流程中去;如此信息循环在DEC,ESE模块中流动,经过多次迭代后,任何一路信息的噪声信息都几乎被清除干净,最终经过译码DEC模块输出对应各个用户的信息序列的硬判决值;
首先,信号检测ESE模块的输出外信息经过解交织后,更新上一次循环时译码模块的先验信息
Figure DEST_PATH_IMAGE059
,从而获得对每一路用户信息相应码片
Figure 745235DEST_PATH_IMAGE060
,
Figure 226770DEST_PATH_IMAGE011
=1,2,3,……,
Figure 621979DEST_PATH_IMAGE006
的大致估计;
由交织和解交织过程的随机独立性,假设
Figure DEST_PATH_IMAGE061
的各码片是相互独立的;那么对于
Figure 108455DEST_PATH_IMAGE060
的估计表示为:
Figure 196497DEST_PATH_IMAGE062
(15)
Figure DEST_PATH_IMAGE063
得:
Figure 401213DEST_PATH_IMAGE064
(16)
接下来,用第一步初步的
Figure DEST_PATH_IMAGE065
的软估计值进行APP译码,获得经过APP译码模块后的{
Figure 600113DEST_PATH_IMAGE066
}的后验概率最大似然比LLRs {
Figure DEST_PATH_IMAGE067
}, =1,2,3,……,; 最后,由公式
Figure 393516DEST_PATH_IMAGE068
+
Figure 130528DEST_PATH_IMAGE061
计算译码模块的外信息:
Figure DEST_PATH_IMAGE069
(17)
其中,
Figure 591597DEST_PATH_IMAGE070
为第k个用户的第j个码片的
Figure DEST_PATH_IMAGE071
的基本信号检测ESE模块与译码器DEC模块先验对数似然比(LLR);
(3)逆向反馈过程
完成译码后,接收机的逆向信息反馈过程和信号的发送过程相似;
每次迭代后,会从译码模块中得到DEC的外信息,将这个外信息经过交织后作为下一轮迭代需要的先验信息,输入到基本信号检测模块中,这里所用的交织器与该用户在发射模块中使用的交织器一致;如此进行下一轮迭代过程,直到完成所设定的次数迭代过程,最终在译码器端输出最终的硬判决值。
CN201310537434.0A 2013-11-04 2013-11-04 一种复杂时变多径信道中多天线迭代多用户检测方法与装置 Expired - Fee Related CN103580721B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310537434.0A CN103580721B (zh) 2013-11-04 2013-11-04 一种复杂时变多径信道中多天线迭代多用户检测方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310537434.0A CN103580721B (zh) 2013-11-04 2013-11-04 一种复杂时变多径信道中多天线迭代多用户检测方法与装置

Publications (2)

Publication Number Publication Date
CN103580721A true CN103580721A (zh) 2014-02-12
CN103580721B CN103580721B (zh) 2015-12-02

Family

ID=50051767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310537434.0A Expired - Fee Related CN103580721B (zh) 2013-11-04 2013-11-04 一种复杂时变多径信道中多天线迭代多用户检测方法与装置

Country Status (1)

Country Link
CN (1) CN103580721B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795501A (zh) * 2014-02-24 2014-05-14 哈尔滨工业大学 基于交织和迭代译码的同频同时全双工系统的自干扰消除方法
CN104901911A (zh) * 2015-04-27 2015-09-09 复旦大学 一种迭代邻小区间干扰抑制的方法与装置
CN110535524A (zh) * 2019-08-27 2019-12-03 中科芯(苏州)微电子科技有限公司 一种激光卫星中继通信方法与装置
CN111431662A (zh) * 2014-09-25 2020-07-17 索尼公司 无线通信装置和无线通信方法
WO2021254207A1 (zh) * 2020-06-18 2021-12-23 华为技术有限公司 发送数据帧的方法、接收数据帧的方法及通信装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247417A (zh) * 1998-08-04 2000-03-15 朗迅科技公司 用于码分多址系统的检测器
CN1310888A (zh) * 1999-05-24 2001-08-29 诺基亚网络有限公司 码分多址通信系统的反向链路的差值多级检测的方法和装置
CN1391730A (zh) * 1999-09-22 2003-01-15 艾利森公司 利用复干扰正交化技术进行干扰对消的方法和装置
CN101827050A (zh) * 2010-04-11 2010-09-08 哈尔滨工业大学(威海) 一种新型cdma下行通信方法及系统
CN102195672A (zh) * 2011-06-02 2011-09-21 华南理工大学 一种基于idma的ofdm系统小区间干扰消除方法
CN102201833A (zh) * 2011-05-26 2011-09-28 南京邮电大学 时分同步码分多址集群系统中的终端多小区联合检测方法
CN102368689A (zh) * 2011-10-17 2012-03-07 北京正唐科技有限责任公司 基于无线扩频通信的多点数据传输系统
CN102571140A (zh) * 2012-02-24 2012-07-11 长安大学 一种基于交织差分最小均方误差准则的多用户检测方法
CN102739283A (zh) * 2011-04-07 2012-10-17 联发科技(新加坡)私人有限公司 时分同步码分多址接收机中基于激活码道选择的联合检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247417A (zh) * 1998-08-04 2000-03-15 朗迅科技公司 用于码分多址系统的检测器
CN1310888A (zh) * 1999-05-24 2001-08-29 诺基亚网络有限公司 码分多址通信系统的反向链路的差值多级检测的方法和装置
CN1391730A (zh) * 1999-09-22 2003-01-15 艾利森公司 利用复干扰正交化技术进行干扰对消的方法和装置
CN101827050A (zh) * 2010-04-11 2010-09-08 哈尔滨工业大学(威海) 一种新型cdma下行通信方法及系统
CN102739283A (zh) * 2011-04-07 2012-10-17 联发科技(新加坡)私人有限公司 时分同步码分多址接收机中基于激活码道选择的联合检测方法
CN102201833A (zh) * 2011-05-26 2011-09-28 南京邮电大学 时分同步码分多址集群系统中的终端多小区联合检测方法
CN102195672A (zh) * 2011-06-02 2011-09-21 华南理工大学 一种基于idma的ofdm系统小区间干扰消除方法
CN102368689A (zh) * 2011-10-17 2012-03-07 北京正唐科技有限责任公司 基于无线扩频通信的多点数据传输系统
CN102571140A (zh) * 2012-02-24 2012-07-11 长安大学 一种基于交织差分最小均方误差准则的多用户检测方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795501A (zh) * 2014-02-24 2014-05-14 哈尔滨工业大学 基于交织和迭代译码的同频同时全双工系统的自干扰消除方法
CN111431662A (zh) * 2014-09-25 2020-07-17 索尼公司 无线通信装置和无线通信方法
CN111431662B (zh) * 2014-09-25 2023-09-19 索尼公司 无线通信装置和无线通信方法
CN104901911A (zh) * 2015-04-27 2015-09-09 复旦大学 一种迭代邻小区间干扰抑制的方法与装置
CN110535524A (zh) * 2019-08-27 2019-12-03 中科芯(苏州)微电子科技有限公司 一种激光卫星中继通信方法与装置
WO2021254207A1 (zh) * 2020-06-18 2021-12-23 华为技术有限公司 发送数据帧的方法、接收数据帧的方法及通信装置

Also Published As

Publication number Publication date
CN103580721B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
Ping Interleave-division multiple access and chip-by-chip iterative multi-user detection
Ping et al. A simple approach to near-optimal multiuser detection: interleave-division multiple-access
CN103618585B (zh) 一种基于置信传播算法的联合多用户检测和译码方法
CN106453185B (zh) 一种基于ccsk调制的idma系统改进方法
CN101425871B (zh) 多元纠错码发射接收装置及数据传输系统以及相关方法
CN103841065A (zh) 非正交多用户接入发送及联合接收解调译码系统及方法
CN103580721B (zh) 一种复杂时变多径信道中多天线迭代多用户检测方法与装置
JP4388055B2 (ja) 複雑度が減少したインターリーブ分割多重アクセス(idma)のための受信機および受信方法
CN107318169A (zh) 一种swipt‑idma系统中基于不完全信道状态信息的功率与时分因子联合分配方法
CN101098163A (zh) 基于时分复用及时间反转的idma无线通信方案
CN107612861A (zh) 一种基于ccsk调制的idma系统通信方法
CN106209312A (zh) 一种利用软判决的循环码参数盲识别算法
CN108880758A (zh) 差分混沌比特交织编码调制系统的迭代接收机设计算法
Shi et al. Iterative multiuser detection and error control code decoding in random CDMA
CN110324065B (zh) 一种基于循环移位键控扩频调制的多用户水声通信方法
Wu et al. Collision-tolerant media access control with on-off accumulative transmission
Li et al. A low-rate code-spread and chip-interleaved time-hopping UWB system
Niroopan et al. A user-spread interleave division multiple access system
CN110995364B (zh) 一种提升双差分扩频水声通信系统通信速率的通信方法
Bilim et al. Effect of repetition coding on the BER performance of interleave-division multiple access systems
Patel Interleave-division multiple access systems with invert tree based interleavers with unequal power sharing algorithm
Bilim et al. A new approach to random interleavers for traditional IDMA systems
Abdullah et al. Performance evaluation of ZigBee transceivers using convolutional coding technique
Shukla et al. Performance improvement of IDMA scheme using chaotic map interleavers for future radio communication
Nasir Performance analysis of Interleave division multiple access system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20181104

CF01 Termination of patent right due to non-payment of annual fee