CN103580476A - 一种电能变换装置及其直流电路最优并联路数的确定方法 - Google Patents

一种电能变换装置及其直流电路最优并联路数的确定方法 Download PDF

Info

Publication number
CN103580476A
CN103580476A CN201310582717.7A CN201310582717A CN103580476A CN 103580476 A CN103580476 A CN 103580476A CN 201310582717 A CN201310582717 A CN 201310582717A CN 103580476 A CN103580476 A CN 103580476A
Authority
CN
China
Prior art keywords
unit
voltage
parallel
circuit
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310582717.7A
Other languages
English (en)
Inventor
王念春
吴晓玉
徐发喜
王晓龙
秦天平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201310582717.7A priority Critical patent/CN103580476A/zh
Publication of CN103580476A publication Critical patent/CN103580476A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电能变换装置及其直流电路最优并联路数的确定方法,该电能变换装置包括供电模块、与供电模块连接的N路交错并联直流变换电路、与N路交错并联直流变换电路的控制端连接的MPPT核心控制模块;N路交错并联直流变换电路包括电压变换电路和输入滤波电容,电压变换电路为降压单元、升压单元或升/降压单元。本发明方法首先计算出直流变换电路的占空比范围,然后画出占空比与电流归一化纹波幅值关系图,最后根据该图和占空比范围得到最优并联路数。本发明提高了供电可靠性,保证了整个系统的最大功率输出,提高了系统效率;使系统具有最优输出电流纹波特性,减小了滤波器容量,提高了系统输出功率。

Description

一种电能变换装置及其直流电路最优并联路数的确定方法
技术领域
本发明属于新能源装置领域,涉及一种电能变换装置,还涉及该电能变换装置直流变换电路最优并联路数的确定方法。
背景技术
太阳能与风能等新能源并网接入应用中,都存在最大功率点跟踪问题,直流端的纹波电压大小,会影响并网逆变器的谐波电流大小与逆变器的效率及滤波电容的大小,降低逆变直流侧纹波大小,减小滤波电容的大小,对并网逆变有重要意义。
另一方面,新能源离网系统中有贮能电池,需要对电池进行充电,新能源充电装置是指新能源供电模块对蓄电池进行充电的装置,当新能源供电模块的输入电压很高而配备的蓄电池电压等级较低时,现有的新能源发电控制器技术通常是采用经典Buck电路实现电压的变换和输出功率的控制。但传统的单路Buck电路存在一些缺点,如电感电流纹波较大、输出滤波器的容量较大、系统输出功率较低。
随着电子系统集成规模的不断加大,要求电源的输出电流和输出的功率也越来越大;电子系统工作频率的不断提高和工作电压的不断降低,要求电源的纹波越来越小;便携式电子设备安装空间有限且日益“轻薄”,要求电源设计中采用体积小、高度低的电感和电容。基于以上要求,市场上已见两路交错并联的电路结构,其工作占空比与电流归一化幅值K的关系如图2所示(其中电流归一化纹波幅值K定义为输出电流纹波幅值与单路直流变换电路输出纹波幅值的比值),其电流纹波和装置体积都有一定的改善,但两路并联依旧没能彻底的改善纹波问题,纹波幅值依然较大,为单路变换电路纹波幅值的2/3倍左右。并且,现有的并联交错电路结构的设计,并不是针对具体新能源供电模块电压与蓄电池电压进行设计的,没有给出指导性的设计方法及设计步骤。
针对以上不足,提出一种具有最优输出电流纹波特性的、输出滤波器容量小、可大功率输出的方案甚为必要。
发明内容
技术问题:本发明提供了一种减小输出电流纹波和输出滤波器容量,提高输出功率的电能变换装置,同时提供了一种该电能变换装置中直流电路最优并联路数的确定方法。
技术方案:本发明的电能变换装置,包括供电模块、与供电模块连接的N路交错并联直流变换电路、与N路交错并联直流变换电路的控制端连接的MPPT核心控制模块;N路交错并联直流变换电路包括并联的电压变换电路和输入滤波电容,电压变换电路为降压单元、升压单元或升/降压单元。
本发明电能变换装置的一种优选方案中,电压变换电路为降压单元,降压单元为N路Buck降压电路并联而成,N路BUCK降压电路共用一个输出滤波电容。
本发明电能变换装置的一种优选方案中,电压变换电路为升压单元,升压单元为N路Boost升压电路并联而成,N路Boost升压电路共用一个输出滤波电容。
本发明电能变换装置的一种优选方案中,电压变换电路为升/降压单元,升/降压单元为N路Buck-Boost升/降压电路并联而成,N路Buck-Boost升/降压电路共用一个输出滤波电容。
本发明电能变换装置中,MPPT核心控制模块包括MCU控制单元、分别与MCU控制单元的输入端连接的第一电压检测单元和第二电压检测单元、与MCU控制单元的输出端连接的驱动隔离单元、与MCU控制单元的电源输入端连接的辅助电源单元,驱动隔离单元的输入端与MCU控制单元的控制信号输出端相连,驱动隔离单元的输出端和N路交错并联直流变换电路的输入控制端相连,第一电压检测单元的输入端与供电模块的输出端连接,第二电压检测单元的输入端与负载连接。
本发明的对上述任一种电能变换装置中直流电路最优并联路数的确定方法,包括以下步骤:
1)根据供电模块的电压、负载的电压计算出直流变换电路的占空比范围;
2)根据下列电流归一化纹波幅值表达式,分别画出并联路数为2至N之间的所有N-1个占空比与电流归一化纹波幅值关系图:
K = ( D - j N ) · ( 1 + j - N · D D ( 1 - D ) )
其中,K为电流归一化纹波幅值,D为直流变换电路工作占空比,N为初始设定的直流变换电路并联路数,j为占空比限定参数,j的取值按照下式确定:
j = 0 0 ≤ D ≤ 1 N 1 1 N ≤ D ≤ 2 N . . . . . . N - 1 N - 1 N ≤ D ≤ 1
3)根据步骤1)确定的占空比范围,在步骤2)中得到的占空比与电流归一化纹波幅值关系图中,找出占空比范围对应的关系曲线,然后找出关系曲线中的电流归一化纹波幅值最大值,最后比较所有关系图中的电流归一化纹波幅值最大值,将最小一个幅值最大值所对应的并联路数N作为最终确定的最优并联路数。
有益效果:本发明和现有技术相比,具有以下优点:
(1)本发明的直流变换电路采用多路交错并联技术。而现在市场上多为两路交错并联的电路结构,其电流纹波和装置体积都有一定的改善,但两路并联依旧没能彻底的改善纹波问题,纹波幅值依然较大,为单路变换电路纹波幅值的2/3倍左右。采用多路交错并联技术,通过合理的选择交错并联的总相数,各路采用相同固定工作频率、驱动信号占空比大小相等、相位相差360°/N,各路产生的电流纹波便会相位相差360°/N,叠加抵消之后,总的纹波幅值减小,需要的滤波电感量减小,装置体积减小,同时总的输出电流增加,输出功率增大。(2)现有的并联交错电路结构的设计,并不是针对具体新能源供电模块电压与蓄电池电压进行设计的,没有给出指导性的设计方法及设计步骤,本发明提供的一种电能变换装置中直流变换电路最优并联路数的确定方法,根据前端供电模块的电压和负载的电压,计算出变换单路的占空比,然后就可以确定最优并联路数,使得负载电路输出纹波最小,该方法有指导意义。
附图说明
图1为本发明的一种电能变换装置的总体框图。
图2为两路直流变换电路并联时输出电流归一化纹波幅值K与占空比D的关系图。
图3为N=3、4、5、6时输出电流归一化纹波幅值K与占空比D的关系图。
图4为降压式N路交错并联直流变换电路结构示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的具体说明。
本发明的电能变换装置,包括供电模块1、与供电模块1连接的N路交错并联直流变换电路2、与N路交错并联直流变换电路2的控制端连接的MPPT(最大功率点跟踪)核心控制模块3;N路交错并联直流变换电路2包括并联的电压变换电路21和输入滤波电容C1,电压变换电路21为降压单元、升压单元或升/降压单元。N路交错并联直流变换电路2采用固定工作频率,每个电压变换电路21的开关管的驱动信号占空比大小相等,相位相差360°/N,其中N为交错并联电路的总相数。
本发明采用的交错并联拓扑具有最优输出电流纹波、减小输出滤波器的容量和扩大系统功率输出的显著优点,具体说明如下:
交错并联拓扑输出电流iout的纹波频率为N·fS,可以极大的降低输出滤波器和磁性元件的要求。其中,N为交错并联Buck电路的总相数,fS为每相开关管的开关频率。
输出电流的平均值Iout等于各个模块输出电流平均值Ii之和,即
Figure BDA0000416850360000041
在均流良好的情况下,Iout=N·Ii,扩大了系统的功率容量,其中Ii为第i个模块的平均电流。
交错并联拓扑的电压增益和单个模块相同,通过对单个模块占空比的控制实现交错拓扑输出电压的精确调节。
经过交错并联拓扑输出的电流纹波幅值Δiout会大大减少,通过合理的设计可以使输出电流纹波幅值接近于零甚至为零,实现零纹波输出。
通过分析,可以得出交错通道数N、输出电流纹波幅值Δiout和占空比D之间的关系式:
Δ i out = I 0 · ( D - j N ) · ( 1 + j - N · D D ( 1 - D ) )
式中,
Figure BDA0000416850360000043
j=0、1……N-1,I0为单路输出电流纹波幅值大小。
为了便于分析比较,定义电流归一化纹波幅值K表达式为:
K = i out I 0 = ( D - j N ) · ( 1 + j - N · D D ( 1 - D ) )
式中,
Figure BDA0000416850360000051
j=0、1……N-1,j为占空比限定参数,I0为单路输出电流纹波幅值,N为直流变换电路并联路数。
本发明的一个优选实施例中,电压变换电路21采用降压单元,降压单元为N路Buck降压电路并联而成,N路BUCK降压电路共用一个输出滤波电容C2。
本发明的另一实施例中,电压变换电路21采用升压单元,升压单元为N路Boost升压电路并联而成,N路Boost升压电路共用一个输出滤波电容C2。
本发明的另一实施例中,电压变换电路21采用升/降压单元,升/降压单元为N路Buck-Boost升/降压电路并联而成,N路Buck-Boost升/降压电路共用一个输出滤波电容C2。
本发明电能变换装置中,MPPT核心控制模块3包括MCU控制单元31、分别与MCU控制单元31的输入端连接的第一电压检测单元32和第二电压检测单元33、与MCU控制单元31的输出端连接的驱动隔离单元34、与MCU控制单元31的电源输入端连接的辅助电源单元35,驱动隔离单元34的输入端与MCU控制单元31的控制信号输出端相连,驱动隔离单元34的输出端和N路交错并联直流变换电路2的输入控制端相连,第一电压检测单元32的输入端与供电模块1的输出端连接,第二电压检测单元33的输入端与充电电池连接。
上述电能变换装置中直流电路最优并联路数的确定方法,包括以下步骤:
1)根据供电模块1的电压、充电负载的电压计算出直流变换电路的占空比范围;
2)根据电流归一化纹波幅值表达式
Figure BDA0000416850360000052
来作图,其中j的取值按照下式确定:
j = 0 0 ≤ D ≤ 1 N 1 1 N ≤ D ≤ 2 N . . . . . . N - 1 N - 1 N ≤ D ≤ 1
以直流变换电路工作占空比D(0~1)为横坐标,以电流归一化纹波幅值K为纵坐标,分别画出并联路数N为2、3、4、5、6时的占空比与电流归一化纹波幅值关系图。
3)根据步骤1)确定的占空比范围,在步骤2)中得到的占空比与电流归一化纹波幅值关系图中,找出占空比范围对应的关系曲线,然后找出关系曲线中的电流归一化纹波幅值最大值,最后比较所有关系图中的电流归一化纹波幅值最大值,将最小一个幅值最大值所对应的并联路数N作为最终确定的最优并联路数。
上述N路交错并联直流变换电路的控制脉冲产生可以由纯软件方式、软硬件结合方式或纯硬件方式来实现,纯软件方式可由ARM(微处理器)或DSP(数字信号处理器)来完成,软硬件结合方式可由ARM+FPGA(现场可编程门阵列)、ARM+CPLD(复杂可编程逻辑器件)或DSP+FPGA、DSP+CPLD来完成,纯硬件方式可由CPLD或FPGA来完成。
图3为交错并联数N=3、4、5、6时输出电流归一化纹波幅值K与占空比D的关系图。由图中可以看出,任意确定N的情况下,整个波形关于D=0.5对称,当占空比在0.2~0.8之间时,电流归一化纹波幅值K小于0.3,可知交错并联Buck电路可以有效减小输出电流纹波幅值。
现选择BP SOLAR公司的BP SOLAR-BP-350U太阳能电池板,其最大功率点输出电压为17.3V,铅酸蓄电池额定工作电压为12V,此时,直流变换电路控制信号占空比为D=12/17.3=0.694。在铅酸蓄电池正常工作状态下,其电压范围为9.6V~14.4V(12±20%V),可算出直流变换电路控制信号占空比为0.555~0.832。
如图2所示,为N=2时电流归一化纹波幅值K与占空比D的关系图,由图中可以看出,当直流变换电路工作在占空比为0.555~0.832范围内时,电流归一化纹波幅值为0.2~0.8,且在D=12/17.3=0.694附近,电流归一化纹波幅值约为0.571。
由图3可以看出,当直流变换电路工作在占空比为0.555~0.832范围内时,N=4时,电流归一化纹波幅值为0~0.386;N=5时,电流归一化纹波幅值为0~0.240;N=6时,电流归一化纹波幅值为0~0.225;且在D=12/17.3=0.694附近,N=5时,电流归一化纹波幅值约为0.238,N=6时,电流归一化纹波幅值约为0.127。可知,变换电路为4、5、6路并联时,比两路变换电路并联可以大幅度降低纹波幅值,且滤波电感量值可大幅减小,充电装置的体积得到缩减。综合以上数据可知,N=6时可以达到最好的纹波抑制效果。而如果继续增加路数(N=7、8、9......),理论上来说,对于纹波抑制效果更好,且电感量也越小,但是并联路数增加的代价是电路成本提高。考虑到经济型和实用性,当电流纹波小到一定程度时,变换电路的并联数不再增加。

Claims (6)

1.一种电能变换装置,其特征在于,该装置包括供电模块(1)、与所述供电模块(1)连接的N路交错并联直流变换电路(2)、与所述N路交错并联直流变换电路(2)的控制端连接的MPPT核心控制模块(3); 
所述N路交错并联直流变换电路(2)包括并联的电压变换电路(21)和输入滤波电容(C1),所述电压变换电路(21)为降压单元、升压单元或升/降压单元。 
2.根据权利要求1所述的电能变换装置,其特征在于,所述电压变换电路(21)为降压单元,所述降压单元为N路Buck降压电路并联而成,所述N路BUCK降压电路共用一个输出滤波电容(C2)。
3.根据权利要求1所述的电能变换装置,其特征在于,所述电压变换电路(21)为升压单元,所述升压单元为N路Boost升压电路并联而成,所述N路Boost升压电路共用一个输出滤波电容(C2)。 
4.根据权利要求1所述的电能变换装置,其特征在于,所述电压变换电路(21)为升/降压单元,所述升/降压单元为N路Buck-Boost升/降压电路并联而成,所述N路Buck-Boost升/降压电路共用一个输出滤波电容(C2)。 
5.根据权利要求1、2、3或4所述的电能变换装置,其特征在于,所述MPPT核心控制模块(3)包括MCU控制单元(31)、分别与所述MCU控制单元(31)的输入端连接的第一电压检测单元(32)和第二电压检测单元(33)、与MCU控制单元(31)的输出端连接的驱动隔离单元(34)、与MCU控制单元(31)的电源输入端连接的辅助电源单元(35),所述驱动隔离单元(34)的输入端与MCU控制单元(31)的控制信号输出端相连,所述驱动隔离单元(34)的输出端和N路交错并联直流变换电路(2)的输入控制端相连,所述第一电压检测单元(32)的输入端与供电模块(1)的输出端连接,第二电压检测单元(33)的输入端与负载连接。 
6.一种电能变换装置中直流电路最优并联路数的确定方法,其特征在于,该方法包括以下步骤: 
1)根据供电模块(1)的电压、负载的电压计算出直流变换电路的占空比范围; 
2)根据下列电流归一化纹波幅值表达式,分别画出并联路数为2至N之间的所有N-1个占空比与电流归一化纹波幅值关系图: 
Figure FDA0000416850350000011
其中,K为电流归一化纹波幅值,D为直流变换电路工作占空比,N为初始设 定的直流变换电路并联路数,j为占空比限定参数,j的取值按照下式确定: 
Figure FDA0000416850350000021
3)根据所述步骤1)确定的占空比范围,在所述步骤2)中得到的占空比与电流归一化纹波幅值关系图中,找出所述占空比范围对应的关系曲线,然后找出所述关系曲线中的电流归一化纹波幅值最大值,最后比较所有关系图中的电流归一化纹波幅值最大值,将最小一个幅值最大值所对应的并联路数作为最终确定的最优并联路数。 
CN201310582717.7A 2013-11-18 2013-11-18 一种电能变换装置及其直流电路最优并联路数的确定方法 Pending CN103580476A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310582717.7A CN103580476A (zh) 2013-11-18 2013-11-18 一种电能变换装置及其直流电路最优并联路数的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310582717.7A CN103580476A (zh) 2013-11-18 2013-11-18 一种电能变换装置及其直流电路最优并联路数的确定方法

Publications (1)

Publication Number Publication Date
CN103580476A true CN103580476A (zh) 2014-02-12

Family

ID=50051599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310582717.7A Pending CN103580476A (zh) 2013-11-18 2013-11-18 一种电能变换装置及其直流电路最优并联路数的确定方法

Country Status (1)

Country Link
CN (1) CN103580476A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825441A (zh) * 2014-03-14 2014-05-28 四川英杰电气股份有限公司 电源并联低纹波输出控制方法
CN111541439A (zh) * 2020-03-17 2020-08-14 西安电子科技大学 用于压电能量获取的开关电容电路效率预测方法及装置
CN113315376A (zh) * 2021-06-21 2021-08-27 哈尔滨工业大学 基于电流纹波优化的可变重数dcdc变换器
CN113852269A (zh) * 2021-11-30 2021-12-28 深圳市永联科技股份有限公司 一种多相交错拓扑电路及降低纹波输出的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852182A (zh) * 2010-03-22 2010-10-06 杭州东冠通信建设有限公司 一种高输出指标的风光互补发电装置
CN102638221A (zh) * 2012-04-26 2012-08-15 南京航空航天大学 用于大功率高速电动机控制的前端Buck变换器无损缓冲电路
CN102646987A (zh) * 2012-04-12 2012-08-22 华南理工大学 一种功率因数调整电路和调整方法
WO2013049548A1 (en) * 2011-09-28 2013-04-04 General Electric Company Interleaved boost converter for photovoltaic power systems
CN103036433A (zh) * 2012-12-12 2013-04-10 北京动力机械研究所 一种双向直流变换装置的控制方法
US20130214751A1 (en) * 2012-02-21 2013-08-22 Kabushiki Kaisha Toshiba Multiphase switching power supply circuit
CN203660883U (zh) * 2013-11-18 2014-06-18 东南大学 一种电能变换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852182A (zh) * 2010-03-22 2010-10-06 杭州东冠通信建设有限公司 一种高输出指标的风光互补发电装置
WO2013049548A1 (en) * 2011-09-28 2013-04-04 General Electric Company Interleaved boost converter for photovoltaic power systems
US20130214751A1 (en) * 2012-02-21 2013-08-22 Kabushiki Kaisha Toshiba Multiphase switching power supply circuit
CN102646987A (zh) * 2012-04-12 2012-08-22 华南理工大学 一种功率因数调整电路和调整方法
CN102638221A (zh) * 2012-04-26 2012-08-15 南京航空航天大学 用于大功率高速电动机控制的前端Buck变换器无损缓冲电路
CN103036433A (zh) * 2012-12-12 2013-04-10 北京动力机械研究所 一种双向直流变换装置的控制方法
CN203660883U (zh) * 2013-11-18 2014-06-18 东南大学 一种电能变换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴松荣等: "开关电源交错拓扑输出电流纹波数学分析", 《中国电工技术学会电力电子学会第八届学术年会论文集》, 30 November 2002 (2002-11-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825441A (zh) * 2014-03-14 2014-05-28 四川英杰电气股份有限公司 电源并联低纹波输出控制方法
CN111541439A (zh) * 2020-03-17 2020-08-14 西安电子科技大学 用于压电能量获取的开关电容电路效率预测方法及装置
CN111541439B (zh) * 2020-03-17 2023-05-30 西安电子科技大学 用于压电能量获取的开关电容电路效率预测方法及装置
CN113315376A (zh) * 2021-06-21 2021-08-27 哈尔滨工业大学 基于电流纹波优化的可变重数dcdc变换器
CN113852269A (zh) * 2021-11-30 2021-12-28 深圳市永联科技股份有限公司 一种多相交错拓扑电路及降低纹波输出的方法

Similar Documents

Publication Publication Date Title
CN106549577B (zh) 非隔离双向高增益dc/dc变换器及变频控制方法
US9000740B2 (en) Two-directional current double-boost quadratic DC/DC converter
CN105471238A (zh) 一种直流母线电压纹波补偿方法和光伏逆变器
CN203261235U (zh) 高增益sepic变换器
CN104218798A (zh) 基于开关电容和耦合电感的高电压增益双向dc-dc变换器
CN203660883U (zh) 一种电能变换装置
CN105958816B (zh) 一种多单元二极管电容网络和耦合电感高增益直流变换器
CN107517003A (zh) 一种输出浮地输入并联高增益Boost变换电路及切换方法
CN101826739A (zh) 一种两级双向的高效光伏充电器
CN106936319A (zh) 一种隔离型三端口双向dc‑dc变换器
CN205847093U (zh) 一种电流连续型高增益开关升压准z源变换器电路
CN204615647U (zh) 双向升降压直流变换电路
CN201733217U (zh) 带有电感电容开关网络的高增益升压变换器
CN103633866A (zh) 单相光伏并网逆变器输入电流低频脉动的抑制装置及方法
CN204376517U (zh) 一种用于直流电网储能的双向dc-dc变换器
CN102035391B (zh) 基于Cuk变换器的高频隔离式三电平直-直变换器
CN106130352A (zh) 中间电流型双管正激微逆变器及其数字控制装置
CN104009633A (zh) 一种电流连续型高增益dc-dc变换器电路
CN103825337B (zh) 基于v2g恒流放电系统及其控制方法
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
CN103580476A (zh) 一种电能变换装置及其直流电路最优并联路数的确定方法
CN203734527U (zh) 一种光伏离网系统两相交错移相Buck控制器
CN104270085A (zh) 一种太阳能光伏发电系统中的dc/dc变换电路
CN203722474U (zh) 一种准z源直流-直流升压变换器电路
CN103337961A (zh) 一种高电压变比双向直流变换器及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140212