CN103566604A - 基于液体表面电磁波吸收结构膜的高效液体蒸发方法 - Google Patents

基于液体表面电磁波吸收结构膜的高效液体蒸发方法 Download PDF

Info

Publication number
CN103566604A
CN103566604A CN201310595076.9A CN201310595076A CN103566604A CN 103566604 A CN103566604 A CN 103566604A CN 201310595076 A CN201310595076 A CN 201310595076A CN 103566604 A CN103566604 A CN 103566604A
Authority
CN
China
Prior art keywords
wave absorption
liquid
electro
structural membrane
magnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310595076.9A
Other languages
English (en)
Other versions
CN103566604B (zh
Inventor
邓涛
尚文
王振辉
陶鹏
刘颜铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201310595076.9A priority Critical patent/CN103566604B/zh
Publication of CN103566604A publication Critical patent/CN103566604A/zh
Application granted granted Critical
Publication of CN103566604B publication Critical patent/CN103566604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,该方法包括以下步骤:(1)电磁波吸收结构膜的制备:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构制备成电磁波吸收结构膜;(2)利用电磁波吸收结构膜的光热转换进行液体蒸发:将电磁波吸收结构膜移到待蒸发液体的液面上,使其浮于液体表面,当电磁波照射到该电磁波吸收结构膜时,电磁波吸收结构膜的吸收电磁波,并将其转化为热能,所产生的热量主要集中在有蒸汽产生的局部表面,减少液体表面对流,提高蒸汽的制备效率。与现有技术相比,本发明具有提高热量转化效率和利用效率等优点。

Description

基于液体表面电磁波吸收结构膜的高效液体蒸发方法
技术领域
本发明属于微纳米结构的应用技术领域,通过利用浮于液体表面微纳米结构膜的光热转换来进行液体蒸发,达到提高液体蒸发效率,以及节省原材料和能源的目的。
背景技术
提高蒸发过程的能量转换效率对很多工业应用领域都非常关键。比如在热发电厂,有效的蒸发过程可以提高发电效率;在导热管和均热板中,高效的蒸发过程可以增强热传输系统中相变材料的相变过程;在灭菌过程中,高效挥发速度可大大减少医疗器械被微生物污染的可能性;在蒸馏过程中,有选择性的挥发可以提高蒸馏分选效率。
在现有的蒸发技术中,加热液体所需要的热量通常是来源于容器的底部。在这一过程中,外加热源提供足够的热量使整个液体的温度达到沸点以上,液体产生气泡并且气泡向液气界面运动,最终蒸汽逃逸到外围环境中。在这一过程中,很大一部分热量用于加热液体和容器以及产生对流,因此热量的利用率极低。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法。
本发明的目的可以通过以下技术方案来实现:一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,该方法包括以下步骤:
(1)电磁波吸收结构膜的制备:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构制备成电磁波吸收结构膜;
(2)利用电磁波吸收结构膜的光热转换进行液体蒸发:将电磁波吸收结构膜移到待蒸发液体的液面上,使其浮于液体表面,当电磁波照射到该电磁波吸收结构膜时,电磁波吸收结构膜的吸收电磁波,并将其转化为热能,这时,液体会在结构膜周围汽化生成汽泡。随着电磁辐射时间的延长,汽泡的直径变大直至破裂而释放其中的水蒸汽。由于该膜对液面的局部加热作用,因此所产生的热量主要集中在有蒸汽产生的局部表面,而不是用来加热液体或容器。同时,由于液体上层温度较高,对流很弱,这也很大程度上减少了热能的浪费。综上所述,该技术的热能利用率高,提高了蒸汽的制备效率。随着液体的汽化,电磁波吸收结构膜和加热区域都会随着液面的下降而下降,从而保证液体汽化的持续性。
所述的具有电磁波吸收特性的金属包括铜,铝或金等;所述的非金属无机物包括碳,氧化铝或氮化硅等。
所述的电磁波吸收结构膜是通过自组装、涂膜或提拉等工艺制得。
所述的自组装工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中(重量浓度0.1%-20%),通过改变结构单元的稳定性,如减少表面电荷(通过与带相反电荷离子结合以减少表面电荷)等,使结构单元在液面实现可控的自组装。通过液体间转移将所组装的电磁波吸收结构膜转移至所需蒸发液体的表面。所述的溶剂为水或水与乙醇的混合液。
所述的涂膜工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中(重量浓度0.1%-20%),通过可控旋涂装置在有牺牲层的固体表面形成电磁波吸收结构膜。通过去除牺牲层将该膜转移至所需蒸发液体的表面。所述的有牺牲层的固体为金属氧化物或可溶性聚合物;所述的溶剂为水,乙醇或甲苯。
所述的拉伸工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中(重量浓度0.1%-20%),通过可控提拉装置在有牺牲层的固体表面形成电磁波吸收结构膜。通过去除牺牲层将该膜转移至所需蒸发液体的表面。所述的有牺牲层的固体为金属氧化物或可溶性聚合物;所述的溶剂为水,乙醇或甲苯。
所述的微纳米结构是通过以下方法制得:在自组装,旋涂,或提拉的过程中,通过控制结构单元的形貌(如球形,柱状,多边形等),大小(1纳米-500微米)来控制形成微纳米结构。
所述的电磁波为激光波,可见光波,太阳光,红外光波,微波。
与现有技术相比,本发明具有以下优点:
(1)采用微纳米结构的电磁波吸收效应将光能转化为热能,转化效率极高,可接近100%。
(2)本方法由于电磁波吸收结构膜产生的热量主要集中在液体蒸发区域,而不是用来加热液体或容器,因而热量的利用效率可大为提高。
(3)电磁波吸收结构膜及其加热区域随着液面的变化而变化,可保证蒸发过程的持续有效地进行。
附图说明
图1为等离子体金膜的扫描电镜图;
图2为蒸发量随时间的变化关系图;
图3为在2W激光照射下的等离子体金颗粒膜和金颗粒溶液的蒸发速度。
具体实施方式
下面结合具体实施案例,以金纳米颗粒所形成的等离子体膜为例对本发明作进一步说明。
实施例1
(1)金纳米颗粒的制备
按配方要求将HAuCl4溶液加入至沸腾的去离子水中,搅拌1分钟后再加入柠檬酸三钠溶液,然后持续搅拌20分钟后便得到粒径为10~100nm的纳米金颗粒。
(2)等离子体膜的制备
将装有5~10mL金溶液的烧杯和装有5~10mL甲酸的培养皿放入干燥器中,真空密封24~48小时,可得到如图2所示的等离子体膜。
(3)利用等离子体膜的光热转换进行液体蒸发
将等离子体膜转入至装有~4mL水的比色皿中,用532nm的绿激光对等离子体膜进行垂直照射,激光瓦数为1.0W和2.0W,照射时间为800秒,所测蒸发速度见图2。
比较例1
为了突出该技术的优点,将表面带有等离子体膜的水溶液换成均匀分散的金颗粒溶液,用2W的激光照射金溶液1200秒,蒸发速度如图3所示。
从上图中可知,采用该技术的等离子体金颗粒膜进行蒸发的速度是用金颗粒溶液进行蒸发的速度的两倍。金颗粒溶液达到最大蒸发速度所用的时间为800秒,而等离子体金颗粒膜材料体系仅为200秒;后者为前者的1/4。
实施例2
一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,该方法包括以下步骤:
(1)电磁波吸收结构膜的制备:将具有电磁波吸收特性的金属铝微纳米结构制备成电磁波吸收结构膜:具体为:将具有电磁波吸收特性的粒径大小为1~10纳米的球形金属铝的微纳米结构单元均匀分散至水中,得到重量浓度0.1%-20%的溶液,通过与带相反电荷离子结合以减少表面电荷,改变结构单元的稳定性,使结构单元在液面实现可控的自组装。通过液体间转移将所组装的电磁波吸收结构膜转移至所需蒸发液体的表面。
(2)利用电磁波吸收结构膜的光热转换进行液体蒸发:将电磁波吸收结构膜移到待蒸发液体的液面上,使其浮于液体表面,当电磁波(可见光波)照射到该电磁波吸收结构膜时,电磁波吸收结构膜的吸收电磁波,并将其转化为热能,这时,液体会在结构膜周围汽化生成汽泡。随着电磁辐射时间的延长,汽泡的直径变大直至破裂而释放其中的水蒸汽。由于该膜对液面的局部加热作用,因此所产生的热量主要集中在有蒸汽产生的局部表面,而不是用来加热液体或容器。同时,由于液体上层温度较高,对流很弱,这也很大程度上减少了热能的浪费。综上所述,该技术的热能利用率高,提高了蒸汽的制备效率。随着液体的汽化,电磁波吸收结构膜和加热区域都会随着液面的下降而下降,从而保证液体汽化的持续性。
实施例3
所述的具有电磁波吸收特性物质为碳;电磁波吸收结构膜的制备是通过涂膜工艺制得:将具有电磁波吸收特性的碳的微纳米结构单元均匀分散至乙醇中(重量浓度0.1%-20%),通过可控旋涂装置在有牺牲层的固体表面(氧化铝)形成电磁波吸收结构膜。通过去除牺牲层将该膜转移至所需蒸发液体的表面。其余同实施例2。
实施例4
所述的具有电磁波吸收特性物质为氮化硅;电磁波吸收结构膜的制备是通过提拉工艺制得:将具有电磁波吸收特性的粒径大小为450~500微米柱形氮化硅的微纳米结构单元均匀分散至溶剂甲苯中(重量浓度0.1%-20%),通过可控提拉装置在有牺牲层的固体表面(氧化铜)形成电磁波吸收结构膜。通过去除牺牲层将该膜转移至所需蒸发液体的表面。其余同实施例2。

Claims (10)

1.一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,该方法包括以下步骤:
(1)电磁波吸收结构膜的制备:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构制备成电磁波吸收结构膜;
(2)利用电磁波吸收结构膜的光热转换进行液体蒸发:将电磁波吸收结构膜移到待蒸发液体的液面上,使其浮于液体表面,当电磁波照射到该电磁波吸收结构膜时,电磁波吸收结构膜的吸收电磁波,并将其转化为热能,所产生的热量主要集中在有蒸汽产生的局部表面,减少液体表面对流,提高蒸汽的制备效率。
2.根据权利要求1所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的具有电磁波吸收特性的金属包括铜,铝或金等;所述的非金属无机物包括碳,氧化铝或氮化硅等。
3.根据权利要求1所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的电磁波吸收结构膜是通过自组装、涂膜或提拉等工艺制得。
4.根据权利要求3所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的自组装工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中,得到重量浓度0.1%-20%的溶液,通过改变结构单元的稳定性,使结构单元在液面实现可控的自组装;通过液体间转移将所组装的电磁波吸收结构膜转移至所需蒸发液体的表面。
5.根据权利要求4所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的改变结构单元的稳定性为通过与带相反电荷离子结合以减少表面电荷,所述的溶剂为水或水与乙醇的混合液。
6.根据权利要求3所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的涂膜工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中,得到重量浓度0.1%-20%的溶液,通过可控旋涂装置在有牺牲层的固体表面形成电磁波吸收结构膜;通过去除牺牲层将该膜转移至所需蒸发液体的表面。
7.根据权利要求6所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的有牺牲层的固体为金属氧化物或可溶性聚合物;所述的溶剂为水,乙醇或甲苯。
8.根据权利要求3所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的提拉工艺步骤如下:将具有电磁波吸收特性的金属或其合金或非金属无机物的微纳米结构单元均匀分散至溶剂中,得到重量浓度0.1%-20%的溶液,通过可控提拉装置在有牺牲层的固体表面形成电磁波吸收结构膜。通过去除牺牲层将该膜转移至所需蒸发液体的表面。
9.根据权利要求3所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的有牺牲层的固体为金属氧化物或可溶性聚合物;所述的溶剂为水,乙醇或甲苯。
10.根据权利要求1所述的一种基于液体表面电磁波吸收结构膜的高效液体蒸发方法,其特征在于,所述的微纳米结构是通过以下方法制得:在自组装,旋涂,或提拉的过程中,通过控制结构单元的形貌为球形,柱状或多边形,大小为1纳米-500微米来控制形成微纳米结构;
所述的电磁波为激光波,可见光波,太阳光,红外光波,微波。
CN201310595076.9A 2013-11-21 2013-11-21 基于液体表面电磁波吸收结构膜的高效液体蒸发方法 Active CN103566604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310595076.9A CN103566604B (zh) 2013-11-21 2013-11-21 基于液体表面电磁波吸收结构膜的高效液体蒸发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310595076.9A CN103566604B (zh) 2013-11-21 2013-11-21 基于液体表面电磁波吸收结构膜的高效液体蒸发方法

Publications (2)

Publication Number Publication Date
CN103566604A true CN103566604A (zh) 2014-02-12
CN103566604B CN103566604B (zh) 2015-07-08

Family

ID=50039848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310595076.9A Active CN103566604B (zh) 2013-11-21 2013-11-21 基于液体表面电磁波吸收结构膜的高效液体蒸发方法

Country Status (1)

Country Link
CN (1) CN103566604B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941227A (zh) * 2015-06-05 2015-09-30 上海交通大学 一种基于多孔复合材料的液态混合物蒸发分离方法
CN105031950A (zh) * 2015-06-05 2015-11-11 上海交通大学 一种基于多孔复合材料的可控蒸发表面温度的方法
CN107805488A (zh) * 2017-10-24 2018-03-16 上海交通大学 一种基于光热效应的气泡可控驱动装置和方法
CN107940424A (zh) * 2017-10-16 2018-04-20 上海交通大学 一种基于光热效应的蒸汽驱动装置
CN109958487A (zh) * 2019-03-13 2019-07-02 华北电力大学 一种基于光热效应的蒸汽驱动液柱活塞式运动执行器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607901A (ja) * 1983-06-27 1985-01-16 Kobe Steel Ltd 液体の蒸発、濃縮方法
CN1320476A (zh) * 2001-03-16 2001-11-07 杨勇 吸收谱匹配气态分离法
CN200975798Y (zh) * 2006-12-08 2007-11-14 王世亮 空间差分能源吸收转换系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607901A (ja) * 1983-06-27 1985-01-16 Kobe Steel Ltd 液体の蒸発、濃縮方法
CN1320476A (zh) * 2001-03-16 2001-11-07 杨勇 吸收谱匹配气态分离法
CN200975798Y (zh) * 2006-12-08 2007-11-14 王世亮 空间差分能源吸收转换系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941227A (zh) * 2015-06-05 2015-09-30 上海交通大学 一种基于多孔复合材料的液态混合物蒸发分离方法
CN105031950A (zh) * 2015-06-05 2015-11-11 上海交通大学 一种基于多孔复合材料的可控蒸发表面温度的方法
CN105031950B (zh) * 2015-06-05 2017-03-15 上海交通大学 一种基于多孔复合材料的可控蒸发表面温度的方法
CN107940424A (zh) * 2017-10-16 2018-04-20 上海交通大学 一种基于光热效应的蒸汽驱动装置
CN107805488A (zh) * 2017-10-24 2018-03-16 上海交通大学 一种基于光热效应的气泡可控驱动装置和方法
CN107805488B (zh) * 2017-10-24 2020-06-02 上海交通大学 一种基于光热效应的气泡可控驱动装置和方法
CN109958487A (zh) * 2019-03-13 2019-07-02 华北电力大学 一种基于光热效应的蒸汽驱动液柱活塞式运动执行器
CN109958487B (zh) * 2019-03-13 2024-05-28 华北电力大学 一种基于光热效应的蒸汽驱动液柱活塞式运动执行器

Also Published As

Publication number Publication date
CN103566604B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
CN103566604B (zh) 基于液体表面电磁波吸收结构膜的高效液体蒸发方法
Dao et al. Carbon‐based sunlight absorbers in solar‐driven steam generation devices
Li et al. Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression
Yu et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles
Yin et al. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination
CN106735286A (zh) 氧化石墨烯/金纳米复合材料及其制备方法和应用
CN102717083B (zh) 激光制备金属镉纳米颗粒的方法
CN107178772A (zh) 一种三元复合的太阳能蒸汽产生装置及其应用
AU2014317914A1 (en) Localized solar collectors
CN104906816B (zh) 一种基于多孔复合材料的可控液体蒸发方法
CN103203465A (zh) 银纳米颗粒的制备方法
CN103923620A (zh) 基于纳米粒子电磁波吸收的热储存复合材料的制备方法
CN103466590A (zh) 一种SiCO空心纳米球的制备方法
Chang et al. Interaction promotes the formation and photothermal conversion of carbon dots/polydopamine composite for solar‐driven water evaporation
CN111945300A (zh) 兼具光热转换和储放热功能的复合材料、制备方法及应用
Yao et al. Solar vapor generation using bubbly flow nanofluids with collaborative light-harvesting nanoparticles
Li et al. Magnetic‐controllable Janus fibrous membranes with wind‐resistant floatability for airflow‐enhanced solar evaporation
CN105031950B (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
Deng et al. A high-efficiency geopolymer-based 3D photoevaporation membrane enhances evaporation by using low temperature waste heat
Liu et al. Electricity‐Boosted Solar‐to‐Vapor Conversion upon Fiber‐Supported CDs@ CuS for Rapidly Vaporizing Seawater
CN110358507A (zh) 一种用于集热管的换热工质及该集热管和灌注方法
CN104357055B (zh) 一种将油溶性纳米颗粒转换为水溶性纳米颗粒的方法
CN101817086A (zh) 一种含银废料转化纳米银的新工艺
CN104986756B (zh) 一种适用于光热沸腾的改性膨胀石墨材料的制备方法
CN103762281B (zh) 一种Ag和Au双金属纳米颗粒陷光结构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant