CN103557782A - 一种基于开关霍尔传感器顺序编码的直线电机定位方法 - Google Patents

一种基于开关霍尔传感器顺序编码的直线电机定位方法 Download PDF

Info

Publication number
CN103557782A
CN103557782A CN201310484970.9A CN201310484970A CN103557782A CN 103557782 A CN103557782 A CN 103557782A CN 201310484970 A CN201310484970 A CN 201310484970A CN 103557782 A CN103557782 A CN 103557782A
Authority
CN
China
Prior art keywords
hall sensor
time
stator
switch hall
relative displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310484970.9A
Other languages
English (en)
Other versions
CN103557782B (zh
Inventor
胡金春
朱煜
季国峰
尹文生
杨开明
张鸣
徐登峰
成荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
U Precision Tech Co Ltd
Original Assignee
Tsinghua University
U Precision Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, U Precision Tech Co Ltd filed Critical Tsinghua University
Priority to CN201310484970.9A priority Critical patent/CN103557782B/zh
Publication of CN103557782A publication Critical patent/CN103557782A/zh
Application granted granted Critical
Publication of CN103557782B publication Critical patent/CN103557782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种基于开关霍尔传感器顺序编码的直线电机定位方法,该方法在直线电机动子上,沿动子运动方向在半个磁场极距长度内等距离布置n个开关霍尔传感器,通过测量所在位置的磁感应强度矢量方向,各开关霍尔传感器输出状态值1或0。在动子运动过程中,记录各开关霍尔传感器的输出状态值,并将其按顺序编码成n位二进制编码值。对比当前编码值与前一次编码值,可以得出动子的运动方向及相对位移,累加所有相对位移,可以得到当前时刻动子的总位移。该方法针对包含直线磁钢阵列的直线电机运动系统,利用电机本身的磁场信息以及多个开关霍尔传感器的输出状态值,无需特别转换算法,实现运动平台的相对位移测量,具有简单便捷、高精度、鲁棒性好等特点。

Description

一种基于开关霍尔传感器顺序编码的直线电机定位方法
技术领域
本发明涉及一种基于开关霍尔传感器顺序编码的直线电机定位方法,特别涉及一种包含直线磁钢阵列的运动部件的一维定位方法,属于电机位移测量及数据处理技术领域。
背景技术
直线电机是一种将电磁能直接转换成直线运动机械能的电磁装置,它具有结构简单、定位精度高、响应速度快和灵敏度好等优点,由于它能直接驱动工作台,这样就消除了驱动电机和工作台之间的一切中间传动环节,从而克服了传统驱动方式的传动环节带来的缺点,因而广泛地应用于数控机床及工艺装备、交通运输、军事装备等众多领域。
在直线电机驱动的运动系统中,一般采用光栅尺和激光干涉仪等传感器作为位置检测元件。专利200720002447.8中,描述了利用光栅位置检测编码器进行位置检测;专利200610033455中,描述了利用光栅编码器进行位置实时反馈来进行定位。以上专利所运用的位置检测装置,虽然能够达到较高的测量精度,但是需要在直线电机的定子和动子上布置位移信号产生装置或电子处理单元装置,增加了传感器系统的结构复杂性,且成本较高。对于电机这样的对象,其磁场本身具有一定的规律性,如果能够利用电机本身的磁场信息,实现高精度位移测量,则可以降低传感器安装与信号的复杂性。类似专利201010034274.4,需要求解复杂非线性方程,这对工业实时应用带来困难;其他类似专利描述方法的测量结果对测量信号本身要求较高的信噪比,对实现电路提出复杂性、低噪声等高要求。因此,一种既能降低传感器安装与信号的复杂性,又能同时实现精度高、对原始信号质量不敏感、信号处理简单快速的测量方法亟待提出。
发明内容
本发明的目的在于提出了一种基于开关霍尔传感器顺序编码的直线电机定位方法,该方法针对包含直线磁钢阵列的直线电机运动系统,利用电机本身的磁场信息以及多个对电机磁场敏感的开关霍尔传感器输出状态值组成的顺序编码,无需特别转换算法,实现运动平台一维位移测量,使其具有简单便捷、高精度、鲁棒性好等特点。
为了达到上述目的,本发明所采用的技术方案是:一种基于开关霍尔传感器顺序编码的直线电机定位方法,所述的直线电机包括定子和相对于定子运动的动子,其特征在于所述方法包括如下步骤:
1)在定子上布置一排N极和S极磁钢交替放置的直线磁钢阵列,相邻N极和S极磁钢中心之间的距离为τ/2,其中τ是所述的直线磁钢阵列形成正弦周期性的空间磁场的极距,动子位于直线磁钢阵列产生的磁场中;
2)在所述的直线电机的动子上,沿动子运动方向布置开关霍尔传感器阵列,所述的开关霍尔传感器阵列的长度为s=τ/2,任意相邻的两个开关霍尔传感器之间距离为δ=τ/2n,δ亦为定位分辨率,其中n为所述的开关霍尔传感器阵列所包含的开关霍尔传感器的个数,n≥3;
3)通过测量所述的开关霍尔传感器阵列中的每个开关霍尔传感器所在位置的磁感应强度的矢量方向,确定各开关霍尔传感器的输出状态值为1或0;
4)在动子运动过程中,每隔时间Ts记录步骤3)中各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000021
其中Ts为相邻两次信号采样之间的时间间隔,k为信号采样次数,k=1,2,…,i=1,2,…,n;对于所述的各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000022
需要进行以下处理:
设S(k)为各个开关霍尔传感器第k次输出状态值
Figure BDA0000396634830000023
按实际安装顺序排列组成的n位二进制编码值 S ( k ) = S 1 ( k ) S 2 ( k ) . . . S i ( k ) . . . S n ( k ) ;
5)通过对比步骤4)中各个开关霍尔传感器第k次输出状态值组成的n位二进制顺序编码S(k)与第k-1次输出状态值组成的n位二进制顺序编码S(k-1),得出在tk-1至tk时间段内直线电机动子相对于定子的运动方向及相对位移,其中tk表示第k次信号采样时间,tk=kTs,tk-1表示第k-1次信号采样时间,tk-1=(k-1)Ts
6)累加步骤5)中从初始时刻至tk时间段内各时间段的动子相对于定子的相对位移,计算出从初始时刻t0=0至tk=kTs时间段内所述的直线电机的动子相对于定子运动的总相对位移为Δx=C(k)τ/2n。
上述技术方案中,对于步骤4)中在tk-1至tk时间段内直线电机动子的运动方向和相对运动位移的确定方法如下:
1)设C(k)为第k次测量时相对位移计数值,C(k-1)为第k-1次测量时相对位移计数值,Δx(k)为动子相对于在tk-1至tk时间段内的相对位移;
2)对比第k次n位二进制顺序编码S(k)与第k-1次n位二进制顺序编码S(k-1),如果S(k)=S(k-1),则相对位移计数值不变C(k)=C(k-1),表示在tk-1至tk时间段内直线电机动子相对于定子没有相对位移或者相对位移小于一个定位分辨率δ;
3)如果 S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 0 , S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 1 , 则第k次相对位移计数值C(k)=C(k-1)+1,表示直线电机动子相对于定子沿正向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=τ/2n;
4)如果 S ( k ) = 0 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , S ( k ) = 1 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , 则第k次相对位移计数值C(k)=C(k-1)-1,表示直线电机动子相对于定子沿反向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=-τ/2n。
采用以上技术方案,具有以下优点及突出性的技术效果:本发明利用电机本身的磁场信息和多个开关霍尔传感器输出状态值组成的二进制顺序编码,无需特别转换算法,实现运动平台一维位移测量,为包含直线磁钢阵列的直线电机运动系统提供一种简单便捷、高精度、鲁棒性好的运动平台定位方法。
附图说明
图1是一种U槽型直线电机结构及其位移测量装置示意图。
图2是U槽型直线电机的直线磁钢阵列磁感应强度示意图。
图3是U槽型直线电机的动子及开关霍尔传感器布局示意图。
图4是一种圆筒型直线电机结构示意图。
其中,1a-U槽型定子,1.1-第一定子,1.2-第二定子,2a-平板型动子,3a-直线磁钢阵列对,3.1-第一直线磁钢阵列,3.2-第二直线磁钢阵列,4-开关霍尔传感器阵列,4.1-第一开关霍尔传感器,4.2-第二开关霍尔传感器,4.3-第三开关霍尔传感器,4.4-第四开关霍尔传感器,4.5-第五开关霍尔传感器,5-信号连接线,6-信号处理板卡,1b-圆筒型定子,2b-圆柱型动子,3b-圆筒型直线磁钢阵列。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明提供的一种基于开关霍尔传感器顺序编码的直线电机定位方法,该方法包括如下步骤:
1)在定子上布置一排N极和S极磁钢交替放置的直线磁钢阵列,相邻N极和S极磁钢中心之间的距离为τ/2,其中τ是所述的直线磁钢阵列形成正弦周期性的空间磁场的极距,动子位于直线磁钢阵列产生的磁场中;所述的直线电机的定子可以为U槽型定子、圆环形定子或平板型定子。
2)在所述的直线电机的动子上,沿动子运动方向布置开关霍尔传感器阵列4,所述的开关霍尔传感器阵列的长度为s=τ/2,任意相邻的两个开关霍尔传感器之间距离为δ=τ/2n,δ亦为定位分辨率,其中n为所述的开关霍尔传感器阵列所包含的开关霍尔传感器的个数,n≥3;
3)通过测量所述的开关霍尔传感器阵列中的每个开关霍尔传感器所在位置的磁感应强度的矢量方向,确定各开关霍尔传感器的输出状态值为1或0;
4)在动子运动过程中,每隔时间Ts记录步骤3)中各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000041
其中Ts为相邻两次信号采样之间的时间间隔,k为信号采样次数,k=1,2,…,i=1,2,…,n;对于所述的各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000042
需要进行以下处理:
设S(k)为各个开关霍尔传感器第k次输出状态值
Figure BDA0000396634830000043
按实际安装顺序排列组成的n位二进制编码值 S ( k ) = S 1 ( k ) S 2 ( k ) . . . S i ( k ) . . . S n ( k ) ;
5)通过对比步骤4)中各个开关霍尔传感器第k次输出状态值组成的n位二进制顺序编码S(k)与第k-1次输出状态值组成的n位二进制顺序编码S(k-1),得出在tk-1至tk时间段内直线电机动子相对于定子的运动方向及相对位移,其中tk表示第k次信号采样时间,tk=kTs,tk-1表示第k-1次信号采样时间,tk-1=(k-1)Ts
在tk-1至tk时间段内直线电机动子相对于定子的运动方向和相对运动位移的确定方法如下:
a)设C(k)为第k次测量时相对位移计数值,C(k-1)为第k-1次测量时相对位移计数值,Δx(k)为动子相对于定子在tk-1至tk时间段内的相对位移;
b)对比第k次n位二进制顺序编码S(k)与第k-1次n位二进制顺序编码S(k-1),如果S(k)=S(k-1),则相对位移计数值不变C(k)=C(k-1),表示在tk-1至tk时间段内直线电机动子相对于定子没有相对位移或者相对位移小于一个定位分辨率δ;
c)如果 S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 0 , S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 1 , 则第k次相对位移计数值C(k)=C(k-1)+1,表示直线电机动子相对于定子沿正向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=τ/2n;
d)如果 S ( k ) = 0 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , S ( k ) = 1 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , 则第k次相对位移计数值C(k)=C(k-1)-1,表示直线电机动子相对于定子沿反向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=-τ/2n;
6)累加步骤5)中从初始时刻至tk时间段内各时间段的动子相对于定子的相对位移,计算出从初始时刻t0=0至tk=kTs时间段内所述的直线电机的动子相对于定子运动的总相对位移为Δx=C(k)τ/2n。
图1是一种U槽型直线电机结构及其位移测量装置示意图,包括U槽型定子1a、相对两个定子运动的平板型动子2a和固定在U槽型定子1a上的直线磁钢阵列对3a;所述的U槽型定子1a包括第一定子1.1和第二定子1.2,第一定子1.1上布置一排N极和S极磁钢交替放置的第一直线磁钢阵列3.1,第二定子1.2上布置一排N极和S极磁钢交替放置的第二直线磁钢阵列3.2,所述的第一直线磁钢阵列3.1和第二磁钢阵列3.2形成正弦周期性的空间磁场,空间磁场的极距为τ,动子位于第一直线磁钢阵列3.1和第二直线磁钢阵列3.2空间磁场中。
图2为U槽型直线电机的直线磁钢阵列磁感应强度示意图,其中x表示动子运动方向上的某一点的位置坐标,B(x)绝对值的大小表示该点的磁感应强度的大小,B(x)的正负代表磁感强度矢量的方向。
图3为U槽型直线电机动子及开关霍尔传感器布局示意图,在所述的平板型动子2a上,沿平板型动子2a的运动方向布置开关霍尔传感器阵列4,所述的开关霍尔传感器阵列的长度为s=τ/2,任意相邻的两个开关霍尔传感器之间距离为δ=τ/2n,δ亦为定位分辨率,其中n为所述的开关霍尔传感器阵列所包含的开关霍尔传感器的个数,本实施例中,取n=5,即:第一开关霍尔传感器4.1、第二开关霍尔传感器4.2、第三开关霍尔传感器4.3、第四开关霍尔传感器4.4、第五开关霍尔传感器4.5,则所述的两个传感器之间距离为τ/10;还包括信号连接线5和信号处理板卡6,信号连接线的一端与动子上的开关霍尔传感器相连,另一端与信号处理板卡6相连,其定位方法描述如下:
1)通过测量所述的开关霍尔传感器阵列4中的每个开关霍尔传感器所在位置的磁感应强度的矢量方向,确定各开关霍尔传感器的输出状态值为1或0;
2)在平板型动子2a运动过程中,每隔一定时间Ts记录步骤1)中各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000061
其中Ts两次采样之间的时间间隔,k为信号采样次数,k=1,2,3,…,对于所述的各个开关霍尔传感器的输出状态值
Figure BDA0000396634830000062
需要进行以下处理:
设S(k)为各个开关霍尔传感器第k次输出状态值按实际安装顺序排列组成的5位二进制编码值 S ( k ) = S 1 ( k ) S 2 ( k ) S 3 ( k ) S 4 ( k ) S 5 ( k ) ;
3)通过对比步骤2)中各个开关霍尔传感器第k次输出状态值组成的5位二进制顺序编码与第k-1次输出状态值组成的5位二进制顺序编码S(k-1),得出在tk-1至tk时间段内直线电机动子相对于定子的运动方向及相对位移,其中tk表示第k次信号采样时间,tk=kTs,tk-1表示第k-1次信号采样时间,tk-1=(k-1)Ts
4)累加步骤3)中所述的从初始时刻t0=0至tk时间段内各时间段的平板型动子2a相对于U槽型定子1a的相对位移,可计算出从初始时刻t0=0至tk时间段内所述的直线电机的动子相对于定子运动的总相对位移为Δx=C(k)τ/10。
对于步骤3)中所述的在tk-1至tk时间段内平板型动子2a相对于U槽型定子1a的运动方向和相对位移的确定方法如下:
1)设C(k)为第k次测量时相对位移计数值,C(k-1)为第k-1次测量时相对位移计数值,Δx(k)为平板型动子2a相对于U槽型定子1a在tk-1至tk时间段内的相对位移;
2)对比第k次n位二进制顺序编码S(k)与第k-1次5位二进制顺序编码S(k-1),如果S(k)=S(k-1),则相对位移计数值不变C(k)=C(k-1),表示在tk-1至tk时间段内直线电机平板型动子2a相对于U槽型定子1a没有相对位移或者相对位移小于一个定位分辨率δ;
3)如果 S ( k ) = S 1 ( k - 1 ) S 2 ( k - 1 ) S 3 ( k - 1 ) S 4 ( k - 1 ) 0 , S ( k ) = S 1 ( k - 1 ) S 2 ( k - 1 ) S 3 ( k - 1 ) S 4 ( k - 1 ) 1 , 则第k次相对位移计数值C(k)=C(k-1)+1,表示直线电机平板型动子2a相对于U槽型定子1a沿正向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=τ/10;
4)如果 S ( k ) = 0 S 2 ( k - 1 ) S 3 ( k - 1 ) S 4 ( k - 1 ) S 5 ( k - 1 ) , S ( k ) = 1 S 2 ( k - 1 ) S 3 ( k - 1 ) S 4 ( k - 1 ) S 5 ( k - 1 ) , 则第k次相对位移计数值C(k)=C(k-1)-1,表示直线电机平板型动子2a相对于U槽型定子1a沿反向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=-τ/10。
本发明所使用的直线电机结构并不限于如图1所示的U槽型直线电机,对于任何能产生周期磁场的直线电机,均可采用上述的方法进行定位。图4所示为一种圆筒型直线电机结构示意图,包括圆筒型定子1b和圆柱型动子2b,在所述的圆筒型定子1b上布置一排N极和S极圆环型磁钢交替放置的直线磁钢阵列3b,所述的圆环型直线磁钢阵列3b形成正弦周期性的空间磁场,圆柱型动子2b位于圆筒型直线磁钢阵列3b产生的磁场中。
采用以上技术方案,利用电机本身的磁场信息以及多个开关霍尔传感器,无需特别转换算法,直接输出二进制编码信号,实现运动平台一维位移测量,为包含直线磁钢阵列的直线电机运动系统提供一种简单便捷、高精度、鲁棒性好的运动平台定位方法。

Claims (3)

1.一种基于开关霍尔传感器顺序编码的直线电机定位方法,所述的直线电机包括定子和相对于定子运动的动子,其特征在于所述方法包括如下步骤:
1)在定子上布置一排N极和S极磁钢交替放置的直线磁钢阵列,相邻N极和S极磁钢中心之间的距离为τ/2,其中τ是所述的直线磁钢阵列形成正弦周期性的空间磁场的极距,动子位于直线磁钢阵列产生的磁场中;
2)在所述的直线电机的动子上,沿动子运动方向布置开关霍尔传感器阵列(4),所述的开关霍尔传感器阵列的长度为s=τ/2,任意相邻的两个开关霍尔传感器之间距离为δ=τ/2n,δ亦为定位分辨率,其中n为所述的开关霍尔传感器阵列所包含的开关霍尔传感器的个数,n≥3;
3)通过测量所述的开关霍尔传感器阵列中的每个开关霍尔传感器所在位置的磁感应强度的矢量方向,确定各开关霍尔传感器的输出状态值为1或0;
4)在动子运动过程中,每隔时间Ts记录步骤3)中各个开关霍尔传感器的输出状态值
Figure FDA0000396634820000011
其中Ts为相邻两次信号采样之间的时间间隔,k为信号采样次数,k=1,2,…,i=1,2,…,n;对于所述的各个开关霍尔传感器的输出状态值
Figure FDA0000396634820000012
需要进行以下处理:
设S(k)为各个开关霍尔传感器第k次输出状态值
Figure FDA0000396634820000013
按实际安装顺序排列组成的n位二进制编码值 S ( k ) = S 1 ( k ) S 2 ( k ) . . . S i ( k ) . . . S n ( k ) ;
5)通过对比步骤4)中各个开关霍尔传感器第k次输出状态值组成的n位二进制顺序编码S(k)与第k-1次输出状态值组成的n位二进制顺序编码S(k-1),得出在tk-1至tk时间段内直线电机动子相对于定子的运动方向及相对位移,其中tk表示第k次信号采样时间,tk=kTs,tk-1表示第k-1次信号采样时间,tk-1=(k-1)Ts
6)累加步骤5)中从初始时刻至tk时间段内各时间段的动子相对于定子的相对位移,计算出从初始时刻t0=0至tk=kTs时间段内所述的直线电机的动子相对于定子运动的总相对位移为Δx=C(k)τ/2n。
2.根据权利要求1所述的一种基于开关霍尔传感器顺序编码的直线电机定位方法,其特征在于,对于步骤5)中在tk-1至tk时间段内动子的运动方向和相对运动位移的确定方法如下:
a)设C(k)为第k次测量时相对位移计数值,C(k-1)为第k-1次测量时相对位移计数值,Δx(k)为动子相对于定子在tk-1至tk时间段内的相对位移;
b)对比第k次n位二进制顺序编码S(k)与第k-1次n位二进制顺序编码S(k-1),如果S(k)=S(k-1),则相对位移计数值不变C(k)=C(k-1),表示在tk-1至tk时间段内直线电机动子相对于定子没有相对位移或者相对位移小于一个定位分辨率δ;
c)如果 S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 0 , S ( k ) = S 1 ( k - 1 ) . . . S i ( k - 1 ) . . . S n - 1 ( k - 1 ) 1 , 则第k次相对位移计数值C(k)=C(k-1)+1,表示直线电机动子相对于定子沿正向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=τ/2n;
d)如果 S ( k ) = 0 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , S ( k ) = 1 S 2 ( k - 1 ) . . . S i ( k - 1 ) . . . S n ( k - 1 ) , 则第k次相对位移计数值C(k)=C(k-1)-1,表示直线电机动子相对于定子沿反向运动,在tk-1至tk时间段内相对运动位移为Δx(k)=-τ/2n。
3.根据权利要求1所述的一种基于开关霍尔传感器顺序编码的直线电机定位方法,其特征在于,所述的直线电机的定子为U槽型定子、圆环形定子或平板型定子。
CN201310484970.9A 2013-10-16 2013-10-16 一种基于开关霍尔传感器顺序编码的直线电机定位方法 Active CN103557782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310484970.9A CN103557782B (zh) 2013-10-16 2013-10-16 一种基于开关霍尔传感器顺序编码的直线电机定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310484970.9A CN103557782B (zh) 2013-10-16 2013-10-16 一种基于开关霍尔传感器顺序编码的直线电机定位方法

Publications (2)

Publication Number Publication Date
CN103557782A true CN103557782A (zh) 2014-02-05
CN103557782B CN103557782B (zh) 2016-04-20

Family

ID=50012093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310484970.9A Active CN103557782B (zh) 2013-10-16 2013-10-16 一种基于开关霍尔传感器顺序编码的直线电机定位方法

Country Status (1)

Country Link
CN (1) CN103557782B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036519A (zh) * 2017-05-31 2017-08-11 中山市新益昌自动化设备有限公司 一种集成限位开关的磁栅尺
CN109708673A (zh) * 2019-01-17 2019-05-03 北京金钢科技有限公司 基于码型的分离式磁编码器
CN110120768A (zh) * 2019-05-29 2019-08-13 天津大学 基于传感器阵列编码的永磁球形转子区间姿态辨识方法
CN110579224A (zh) * 2019-11-11 2019-12-17 宁波韦尔德斯凯勒智能科技有限公司 一种利用霍尔传感器精确测量电机动子位移的方法及系统
CN112857405A (zh) * 2021-04-17 2021-05-28 哈尔滨工业大学 一种动磁式绝对位置检测装置和方法
CN113029211A (zh) * 2021-03-25 2021-06-25 浙江锐鹰传感技术有限公司 动子无线缆的高精度编码器实现方法
CN113311666A (zh) * 2020-02-27 2021-08-27 上海微电子装备(集团)股份有限公司 一种可移动刀口模块及可变狭缝系统
CN114323083A (zh) * 2021-12-17 2022-04-12 上海艾为电子技术股份有限公司 霍尔传感器件和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085558A1 (en) * 2007-10-01 2009-04-02 Paul David Hall-effect based linear motor controller
CN101589295A (zh) * 2007-02-07 2009-11-25 索尤若驱动有限及两合公司 用于测定电机部件位置的方法和系统
CN101769764A (zh) * 2010-01-19 2010-07-07 清华大学 一种基于直线磁钢阵列的运动平台一维定位方法
DE102010025753A1 (de) * 2009-08-27 2011-03-10 Eto Magnetic Gmbh Magnetischer Wegaufnehmer
CN102607388A (zh) * 2012-02-17 2012-07-25 清华大学 平面电机动子位移测量装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589295A (zh) * 2007-02-07 2009-11-25 索尤若驱动有限及两合公司 用于测定电机部件位置的方法和系统
US20090085558A1 (en) * 2007-10-01 2009-04-02 Paul David Hall-effect based linear motor controller
DE102010025753A1 (de) * 2009-08-27 2011-03-10 Eto Magnetic Gmbh Magnetischer Wegaufnehmer
CN101769764A (zh) * 2010-01-19 2010-07-07 清华大学 一种基于直线磁钢阵列的运动平台一维定位方法
CN102607388A (zh) * 2012-02-17 2012-07-25 清华大学 平面电机动子位移测量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郝双晖等: "新型绝对磁栅位移传感器的设计", 《高电压技术》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036519A (zh) * 2017-05-31 2017-08-11 中山市新益昌自动化设备有限公司 一种集成限位开关的磁栅尺
CN109708673A (zh) * 2019-01-17 2019-05-03 北京金钢科技有限公司 基于码型的分离式磁编码器
CN110120768A (zh) * 2019-05-29 2019-08-13 天津大学 基于传感器阵列编码的永磁球形转子区间姿态辨识方法
CN110120768B (zh) * 2019-05-29 2021-01-08 天津大学 基于传感器阵列编码的永磁球形转子区间姿态辨识方法
CN110579224A (zh) * 2019-11-11 2019-12-17 宁波韦尔德斯凯勒智能科技有限公司 一种利用霍尔传感器精确测量电机动子位移的方法及系统
CN110579224B (zh) * 2019-11-11 2020-03-31 宁波韦尔德斯凯勒智能科技有限公司 一种利用霍尔传感器精确测量电机动子位移的方法及系统
CN113311666A (zh) * 2020-02-27 2021-08-27 上海微电子装备(集团)股份有限公司 一种可移动刀口模块及可变狭缝系统
CN113311666B (zh) * 2020-02-27 2022-07-29 上海微电子装备(集团)股份有限公司 一种可移动刀口模块及可变狭缝系统
CN113029211A (zh) * 2021-03-25 2021-06-25 浙江锐鹰传感技术有限公司 动子无线缆的高精度编码器实现方法
CN113029211B (zh) * 2021-03-25 2021-11-19 浙江锐鹰传感技术有限公司 动子无线缆的高精度编码器实现方法
CN112857405A (zh) * 2021-04-17 2021-05-28 哈尔滨工业大学 一种动磁式绝对位置检测装置和方法
CN114323083A (zh) * 2021-12-17 2022-04-12 上海艾为电子技术股份有限公司 霍尔传感器件和电子设备

Also Published As

Publication number Publication date
CN103557782B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN103557782B (zh) 一种基于开关霍尔传感器顺序编码的直线电机定位方法
CN102589405B (zh) 一种电机动子位移测量方法
CN102607388B (zh) 平面电机动子位移测量装置及方法
CN102155914B (zh) 基于伪随机序列的绝对位置栅尺编码和测量方法及其装置
CN103512500B (zh) 一种高速绝对光栅尺的图像采集电路
CN101876557B (zh) 位置检测装置及其信号处理方法
CN103940332A (zh) 一种基于霍尔磁敏元件阵列的磁栅位移传感器
CN106441059B (zh) 一种单列双排式时栅直线位移传感器
CN112504305A (zh) 编码器、电机及编码器绝对位置的检测方法
CN101718516B (zh) 一种用于检测移动物体速度与位置的装置
CN101769764B (zh) 一种基于直线磁钢阵列的运动平台一维定位方法
KR20100043803A (ko) 선형 위치 검출용 자기 센서 및 이를 이용한 선형 전동기 위치 검출 방법
CN106338234B (zh) 一种双列式时栅直线位移传感器
CN105444659B (zh) 利用电磁感应原理进行长度测量的绝对式传感器
CN201503273U (zh) 位置检测装置及其信号处理装置
CN201561984U (zh) 检测移动物体速度与位置的设备
JP2019196969A (ja) 電磁誘導式エンコーダ
EP3193138B1 (en) Method for measuring displacements of object
CN107906077A (zh) 一种绝对式陶瓷活塞杆位移传感器及其测量方法
CN104677397B (zh) 一种光电编码器及其细分方法
CN208399786U (zh) 一种采用音圈马达控制的变焦镜头
CN111238357A (zh) 一种适用于重型设备的磁编码位移测量装置
JP2018531393A6 (ja) 物体の変位を計測する方法
CN116026376A (zh) 一种增量型电感式编码器及其零位信号实现方法
Peng et al. Length-Adaptive Linear Position Sensing System Based on De-Bruijn Sequence

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100084 Beijing, Haidian District, 100084 box office box office, Tsinghua University,

Applicant after: Tsinghua University

Applicant after: U-PRECISION TECH CO., LTD.

Address before: 100084 Beijing, Haidian District, 100084 box office box office, Tsinghua University,

Applicant before: Tsinghua University

Applicant before: U-Precision Tech Co., Ltd.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant