CN103536935A - 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用 - Google Patents

一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN103536935A
CN103536935A CN201310368539.8A CN201310368539A CN103536935A CN 103536935 A CN103536935 A CN 103536935A CN 201310368539 A CN201310368539 A CN 201310368539A CN 103536935 A CN103536935 A CN 103536935A
Authority
CN
China
Prior art keywords
photosensitizer
core
shell structure
modified
structure magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310368539.8A
Other languages
English (en)
Other versions
CN103536935B (zh
Inventor
吴惠霞
汤才志
杨昕仪
于超
杨仕平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201310368539.8A priority Critical patent/CN103536935B/zh
Publication of CN103536935A publication Critical patent/CN103536935A/zh
Application granted granted Critical
Publication of CN103536935B publication Critical patent/CN103536935B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于纳米复合材料领域,特别涉及一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用,本发明是通过溶剂热法制备油溶性的四氧化三锰纳米粒子,并对油溶性的四氧化三锰纳米粒子进行水溶性改性,再通过溶胶凝胶法包覆介孔二氧化硅,并对其进行氨基功能化,使其表面具有大量的氨基可以结合光敏剂分子Ce6。所述纳米材料的粒径均一,粒径在60nm左右,分散性好,具有优良的生物相容性、T1加权成像效果好,可应用于制备核磁共振造影剂;该复合材料可作为疏水药物载体,载药量大,而且其表面修饰的光敏剂分子Ce6,在632.8nm的激光激发下可以产生单线态氧,能有效杀死癌细胞,可用于光动力学治疗。

Description

一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用
技术领域
本发明属于纳米复合材料领域,特别涉及一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用。
背景技术
磁性纳米材料由于其在纳米尺度上的独特磁学性质,已经在磁记录、磁性探针等多个方面有了广阔的应用。近年来,磁性纳米粒子的应用已经扩展到医学领域,如磁共振成像、生物分离和磁热疗等方面。由于其无创性和多层面的断层功能,加上高空间分辨率,磁共振成像(MRI)技术是最重要的医疗诊断工具之一,在医学诊断方面具有很多的功用。MRI技术能够十分有效地显示出软组织的解剖学细节,而造影剂能够使图像更清楚,从而实现生理活动的实时观察。
介孔二氧化硅纳米材料是一种具有高比表面积、大孔容、形貌和尺寸可控的新型无机材料,近年来它在各领域的应用研究引起了广泛关注。介孔二氧化硅纳米材料自2001年首次报道作为药物载体以来,该材料由于其灵活的合成方法、独特的介孔结构、较高的比表面积、易于表面功能化、以及良好的生物相容性,在生物医学领域特别是作为多功能药物输送载体装载各种化学药物、生物大分子、基因,以及用于复合磁性、荧光等性能制备多功能诊疗平台等方面受到越来越多的关注。
光动力疗法(Photodynamic Therapy,PDT)是利用光动力效应进行疾病诊断和治疗的一种新技术。其作用基础是光动力效应。这是一种有氧分子参与的伴随生物效应的光敏化反应。其过程是,用特定波长的激光照射使组织吸收的光敏剂受到激发,激发态的光敏剂把能量传递给周围的氧,生成活性很强的单态氧,单态氧使相邻的生物大分子发生氧化反应,产生细胞毒性作用,从而导致细胞受损乃至死亡。到目前为止,已有多个医院在临床上采用光动力疗法对肿瘤进行诊断和治疗。
发明内容
本发明的目的是提供一种光敏剂修饰的核壳结构磁性纳米复合材料,该复合材料是在Mn3O4表面包覆介孔二氧化硅,并修饰光敏剂二氢卟吩e6(Ce6),该材料的粒径为60nm左右且粒径均匀,分散性好,具有优良的生物相容性,载药量大,T1加权成像效果好,可应用于制备核磁共振造影剂、药物载体及光动力治疗中。
本发明的另一个目的是提供上述光敏剂修饰的核壳结构磁性纳米复合材料的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种光敏剂修饰的核壳结构磁性纳米复合材料,其特征在于:所述复合材料以Mn3O4纳米粒子为核,核的粒径为13-17nm,以介孔二氧化硅为壳,壳的厚度为18-22nm,并在壳的表面修饰光敏剂Ce6。
上述光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其步骤包括:
(1)在油胺中滴加Mn(NO3)2溶液,边滴加边搅拌,然后在150℃-250℃条件下保持8-13小时,冷却、取沉淀物并洗涤,得到油溶性Mn3O4纳米粒子,并保存在有机溶剂中。优选的所述有机溶剂为氯仿。
(2)将步骤(1)中的油溶性Mn3O4纳米粒子滴加入十六烷基三甲基溴化铵水溶液中,搅拌2-3小时,加热至50℃-70℃,保持5-15分钟,蒸干有机溶剂。
(3)将步骤(2)中的含有水溶性Mn3O4纳米粒子的溶液在50-70℃条件下,pH值调节至8-9,分别加入正硅酸四乙酯和乙酸乙酯,然后再加入3-氨基丙基-三乙氧基硅烷,保持反应液温度至50℃-70℃,搅拌10-24小时,冷却、洗涤,分散于乙醇中,得到表面包覆有介孔二氧化硅的Mn3O4纳米粒子的乙醇分散液。
(4)将步骤(3)中的乙醇分散液中加入含有硝酸铵的乙醇溶液中,加热至55℃-65℃,搅拌1-3小时,冷却、离心洗涤,并重复2-3次;
(5)将EDC、N-羟基丁二酰亚胺溶于二甲基亚砜中,加入Ce6,0.5-1小时后再加入步骤(4)中的纳米粒子,避光反应10-24小时,离心洗涤即可。为了去除纳米材料吸附的物质,可将离心得到的纳米材料密封在透析袋中,放在PBS溶液中透析72小时。
所述步骤(1)中,油胺和Mn元素的用量比为1mL:0.1-0.6mmol。
所述步骤(2)中,Mn3O4与十六烷基三甲基溴化铵的加入配比为1mmol:2-4g。
所述步骤(3)中,Mn3O4、正硅酸四乙酯、乙酸乙酯及3-氨基丙基-三乙氧基硅烷的加入配比为1mmol:4-8mL:25-40mL:0.5-3mL;Mn3O4与乙醇的用量比为1mmol:120-170mL。
所述步骤(4)中,Mn3O4和硝酸铵的用量比为1mmol:200-250mg;所述含有硝酸铵的乙醇溶液中,硝酸铵与乙醇的用量比为0.3-0.8mg/mL。
所述步骤(5)中,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸、N-羟基丁二酰亚胺、Ce6与二甲基亚砜的用量比为1mg:0.5-3mg:0.01-0.2mg:0.1-0.5mL;Ce6与Mn3O4的加入配比为1mg:0.003-0.03mol。
上述光敏剂修饰的核壳结构磁性纳米复合材料可以应用在制备核磁共振造影剂中。
上述光敏剂修饰的核壳结构磁性纳米复合材料可以应用在药物载体中。优选的,该药物为疏水药物姜黄素。
上述光敏剂修饰的核壳结构磁性纳米复合材料可以应用在光动力疗法治疗肿瘤中的光敏剂的制备中。
本发明是通过溶剂热法制备油溶性的四氧化三锰纳米粒子,并对油溶性的四氧化三锰纳米粒子进行水溶性改性,再通过溶胶凝胶法包覆介孔二氧化硅,其表面有大量的氨基可以结合光敏剂分子Ce6,在介孔二氧化硅的孔道中可以负载疏水药物姜黄素,从而实现了核磁造影、光动力治疗、药物释放及其协同作用的多功能诊断与治疗的结合。
与现有技术相比,本发明的有益效果在于:
1、所述光敏剂修饰的核壳结构磁性纳米复合材料以Mn3O4纳米粒子为核、以介孔二氧化硅为壳,并在壳的表面修饰光敏剂Ce6,该纳米材料的粒径均一,粒径在60nm左右,分散性好,具有优良的生物相容性、T1加权成像效果好,可应用于制备核磁共振造影剂。
2、所述光敏剂修饰的核壳结构磁性纳米复合材料的介孔二氧化硅可作为药物载体,能荷载姜黄素,使得不溶于水而很难进入细胞的姜黄素,可以很容易进入细胞,载药量大,载药量最大可达到1mg/mg,即每毫克的材料可以荷载1mg的姜黄素。
3、所述光敏剂修饰的核壳结构磁性纳米复合材料的表面修饰光敏剂分子Ce6,在632.8nm的激光激发下可以产生单线态氧,能有效杀死癌细胞,可用于光动力学治疗。
4、本发明的制备工艺简单、反应温和、绿色环保。
附图说明
图1是实施例1中制得的Mn3O4纳米粒子、表面包覆介孔二氧化硅的Mn3O4纳米材料(简称Mn3O4mSiO2)和标准卡片的广角XRD对比图。
图2是实施例1中制得的Mn3O4mSiO2的TEM图。
图3是实施例1中制得的Mn3O4mSiO2的N2吸脱附曲线。
图4是实施例1中制得的Mn3O4mSiO2,Mn3O4mSiO2-NH2以及Mn3O4mSiO2-Ce6的Zeta电位的变化图。
图5是实施例1中制得的Mn3O4mSiO2-Ce6和Mn3O4mSiO2的紫外吸收光谱对比图。
图6是实施例1中制得的Mn3O4mSiO2-Ce6的荷载姜黄素前后的上清液紫外线吸收对比图。
图7是实施例1中制得的Mn3O4mSiO2-Ce6的荷载姜黄素的药物浓度和载药量的关系图。
图8是实施例1中制得的Mn3O4mSiO2-Ce6的单线态氧的检测对比图。
图9是实施例1中制得的Mn3O4mSiO2-Ce6的T1核磁成像图。
图10是HeLa细胞的光动力治疗效果对比图。
具体实施方式
下面结合实施例,对本发明作进一步说明:
实施例1
(1)在容量为10mL的聚四氟乙烯内村的反应釜中,加入9mL的油胺,取1mL的Mn(NO3)2水溶液(质量浓度为50%)逐滴加入油胺中,边滴加边搅拌,随后将反应釜密封置于200℃氛围中反应10h,冷却至室温后倒出上层液体,得到沉在反应釜底部的产物。用乙醇洗涤产物2~3次,制得油溶性Mn3O4纳米粒子并置于氯仿(CHCl3)中保存。
(2)称取400mg的十六烷基三甲基溴化铵(CTAB),溶于20mL H2O中,制得十六烷基三甲基溴化铵水溶液,将步骤(1)中的含有Mn3O4纳米粒子的CHCl3溶液1mL(浓度为30mg/mL),滴加至十六烷基三甲基溴化铵水溶液中,搅拌2-3小时,然后加热至60℃,维持10分钟,蒸干CHCl3,得到黄色透明溶液,即为水溶性Mn3O4纳米粒子溶液。
(3)在250mL三颈烧瓶中加入80mL水,再加入200μL2mol/L的NaOH溶液,搅拌均匀,加热至60℃;将步骤(2)中的水溶性Mn3O4纳米粒子溶液通过450nm的滤膜滴加到上述NaOH溶液中,将水溶性Mn3O4纳米粒子溶液的pH值调节至8-9;然后分别滴加0.8mL的正硅酸四乙酯、4.0mL的乙酸乙酯,10min后加0.2mL的3-氨基丙基-三乙氧基硅烷(APS),维持60℃,搅拌过夜。将其自然冷却至室温,通过离心洗涤数次,得到表面包覆有介孔二氧化硅的Mn3O4纳米材料,最后分散于20mL乙醇中,备用。
(4)称取30mg硝酸铵溶于50mL无水乙醇中,然后将步骤(3)中的乙醇分散液加入其中,加热至60℃,搅拌2h。自然冷却至室温,离心洗涤数次。重复2-3遍,更好地去除模板剂CTAB。
(5)称取38mg 1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸(EDC)、58mgN-羟基丁二酰亚胺(NHS)溶于10mL的二甲基亚砜(DMSO)中,然后加入3mg Ce6,半个小时后加入20mg步骤(4)中的纳米粒子(纳米粒子中的Mn3O4实际含量为5-6mg),避光反应12h。反应完成后,高速离心洗涤数次,转速为16000r/min。为了去除纳米材料表面吸附的物质,将产物密封在透析袋中,放在PBS溶液中透析72h即可。
通过图1和图2可以说明制备的纳米粒子为Mn3O4纳米粒子。从图1中可以看出制备的油溶性Mn3O4纳米粒子的XRD与标准卡片相吻合。表面包覆二氧化硅的Mn3O4纳米材料(简称Mn3O4mSiO2)的XRD图有无定形二氧化硅的峰出现。
从图2可以看到,合成的Mn3O4mSiO2纳米材料的粒径均匀,以Mn3O4为核,该核的尺寸是15±2nm,介孔氧化硅壳的厚度是20nm左右。
从图3可以看出Mn3O4mSiO2纳米材料所测得N2吸脱附曲线,其比表面积是467.5m2/g,孔径的大小为2.5nm。
从图4可以看到表面包覆二氧化硅的Mn3O4纳米材料(Mn3O4mSiO2),氨基功能化的表面包覆二氧化硅的Mn3O4纳米材料(简称Mn3O4mSiO2-NH2)以及介孔二氧化硅表面连接有光敏剂Ce6的Mn3O4纳米材料(简称Mn3O4mSiO2-Ce6)的Zeta电位的变化从-20mV、31mV、-35mV的变化,反映了纳米粒子表面基团的变化;图5是Mn3O4mSiO2-Ce6和Mn3O4mSiO2的紫外吸收光谱对比图,从图中可看出,接入Ce6后,紫外吸收强度显著增加。
实施例2
分别称取5mg实施例1中制得的光敏剂修饰的核壳结构磁性纳米复合材料,加入到浓度依次为50-2000μg/mL的姜黄素溶液中,搅拌24小时进行药物的装载,反应后用PBS洗涤离心,密封保存。
从图6中可看出,载完后的上清液的紫外吸收强度比载药前的上清液的紫外线吸收强度变小,说明药物被装载于材料中,从图7中可以看出,载药量最大可达到1mg/mg,每毫克的材料可以荷载1mg的姜黄素。
实施例3
将20μmol/L的9,10二甲基蒽(DMA),加入200μL的实施例1中制得的光敏剂修饰的核壳结构磁性纳米复合材料中,即Mn3O4mSiO2-Ce6纳米材料,在632.8nm激光照射,每10min检测一次荧光,荧光激发波长是360nm,发射波长是380-550nm,循环检测1h,检测单线态氧。
从图8可以看出DMA的荧光强度下降趋势呈现规律性变化,说明Ce6在632.8nm激发下可以产生单线态氧。
实施例4
将实施例1中制得的复合纳米材料配置成10组不同浓度的Mn3O4mSiO2-Ce6溶液,在0.5T的核磁共振仪检测,结果如图9所示,得到T1弛豫值为0.93mM-1s-1,通过ICP测得Mn的含量是0.0990-1.3095mmol/L。
实施例5
为了检测实施例1中制得的复合纳米材料的细胞治疗效果,对HeLa细胞的实验分为:空白组、空白组+激光25分钟、Mn3O4mSiO2-Ce6组、Mn3O4mSiO2-Ce6+激光15分钟、Mn3O4mSiO2-Ce6+姜黄素、Mn3O4mSiO2-Ce6+姜黄素+激光15分钟、Mn3O4mSiO2-Ce6+姜黄素+激光25分钟,实验中的激光为632.8nm的激光,结果发现细胞存活率依次为101%,98.5%,98%,70%,60%,35%,说明:光动力治疗中,复合纳米材料在激光的作用下,产生的单线态氧能够有效的杀死HeLa细胞,同时姜黄素作为一种抗癌药物,二者的协同作用能够更加有效地对癌细胞有治疗作用。

Claims (10)

1.一种光敏剂修饰的核壳结构磁性纳米复合材料,其特征在于:所述复合材料以Mn3O4纳米粒子为核,核的粒径为13-17nm,以介孔二氧化硅为壳,壳的厚度为18-22nm,并在壳的表面修饰光敏剂Ce6。
2.权利要求1所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其步骤包括:
(1)在油胺中滴加Mn(NO3)2溶液,边滴加边搅拌,然后在150℃-250℃条件下保持8-13小时,冷却、取沉淀物并洗涤,得到油溶性Mn3O4纳米粒子,并保存在有机溶剂中;
(2)将步骤(1)中的油溶性Mn3O4纳米粒子滴加入十六烷基三甲基溴化铵水溶液中,搅拌2-3小时,加热至50℃-70℃,保持5-15分钟,蒸干有机溶剂;
(3)将步骤(2)中的含有水溶性Mn3O4纳米粒子的溶液在50-70℃条件下,pH值调节至8-9,分别加入正硅酸四乙酯和乙酸乙酯,然后再加入3-氨基丙基-三乙氧基硅烷,保持反应液温度至50℃-70℃,搅拌10-24小时,冷却、洗涤,分散于乙醇中,得到表面包覆有介孔二氧化硅的Mn3O4纳米粒子的乙醇分散液;
(4)将步骤(3)中的乙醇分散液中加入含有硝酸铵的乙醇溶液中,加热至55℃-65℃,搅拌1-3小时,冷却、离心洗涤,并重复2-3次;
(5)将1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸、N-羟基丁二酰亚胺溶于二甲基亚砜中,加入Ce6,0.5-1小时后再加入步骤(4)中的纳米粒子,避光反应10-24小时,离心洗涤即可。
3.根据权利要求2所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其特征在于:所述步骤(1)中,油胺和Mn元素的用量比为1mL:0.1-0.6mmol。
4.根据权利要求2所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其特征在于:所述步骤(2)中,Mn3O4与十六烷基三甲基溴化铵的加入配比为1mmol:2-4g。
5.根据权利要求2所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其特征在于:所述步骤(3)中,Mn3O4、正硅酸四乙酯、乙酸乙酯及3-氨基丙基-三乙氧基硅烷的加入配比为1mmol:4-8mL:25-40mL:0.5-3mL;Mn3O4与乙醇的用量比为1mmol:120-170mL。
6.根据权利要求2所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其特征在于:所述步骤(4)中,Mn3O4和硝酸铵的用量比为1mmol:200-250mg;所述含有硝酸铵的乙醇溶液中,硝酸铵与乙醇的用量比为0.3-0.8mg/mL。
7.根据权利要求2所述的光敏剂修饰的核壳结构磁性纳米复合材料的制备方法,其特征在于:所述步骤(5)中,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸、N-羟基丁二酰亚胺、Ce6与二甲基亚砜的用量比为1mg:0.5-3mg:0.01-0.2mg:0.1-0.5mL;Ce6与Mn3O4的加入配比为1mg:0.003-0.03mol。
8.权利要求1所述的光敏剂修饰的核壳结构磁性纳米复合材料在制备核磁共振造影剂中的应用。
9.权利要求1所述的光敏剂修饰的核壳结构磁性纳米复合材料在药物载体中的应用。
10.权利要求1所述的光敏剂修饰的核壳结构磁性纳米复合材料在制备光动力疗法治疗肿瘤中的光敏剂中的应用。
CN201310368539.8A 2013-11-26 2013-11-26 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用 Expired - Fee Related CN103536935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310368539.8A CN103536935B (zh) 2013-11-26 2013-11-26 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310368539.8A CN103536935B (zh) 2013-11-26 2013-11-26 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103536935A true CN103536935A (zh) 2014-01-29
CN103536935B CN103536935B (zh) 2015-09-09

Family

ID=49961042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310368539.8A Expired - Fee Related CN103536935B (zh) 2013-11-26 2013-11-26 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103536935B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104027806A (zh) * 2014-06-04 2014-09-10 上海师范大学 一种修饰CuS纳米粒子的介孔二氧化硅包覆四氧化三锰的纳米材料及其制备方法和应用
CN105031669A (zh) * 2015-06-23 2015-11-11 上海师范大学 一种核壳结构纳米复合材料及其制备方法与应用
CN105833843A (zh) * 2016-06-07 2016-08-10 四川大学 一种基于光-磁双重响应纳米吸附剂的含铬制革废水的治理方法
CN106421821A (zh) * 2016-10-08 2017-02-22 上海师范大学 一种多功能Cu3BiS3‑PEG‑(Ce6‑Gd3+)‑FA纳米复合材料及其制备方法与应用
CN106924215A (zh) * 2016-11-03 2017-07-07 重庆医科大学 载姜黄素甘草次酸修饰介孔二氧化硅纳米粒及其制备方法
CN107442085A (zh) * 2017-08-15 2017-12-08 苏州科技大学 一种巯基改性二氧化硅钴铁氧体核壳结构磁性纳米复合材料及其制备方法和应用
CN107921181A (zh) * 2015-09-29 2018-04-17 上海氪励铵勤科技发展有限公司 磁性材料在结石取出中的应用
CN108042509A (zh) * 2018-02-09 2018-05-18 四川大学 可控热敏肽纳米阀修饰的核壳介孔二氧化硅纳米颗粒及其制备方法与应用
WO2018188136A1 (zh) * 2017-04-12 2018-10-18 刘东飞 一种序列沉淀络合凝聚法制备超高载药纳米粒子的方法
CN109395079A (zh) * 2018-10-17 2019-03-01 中国人民解放军南京军区南京总医院 一种多功能纳米探针及其制备方法和应用
CN109464667A (zh) * 2018-11-21 2019-03-15 深圳大学 药物载体及其制备方法和应用
CN110538331A (zh) * 2019-10-15 2019-12-06 南京晓庄学院 具有改善分散性及颗粒均匀度的磁性纳米颗粒制备方法
CN110559453A (zh) * 2019-10-15 2019-12-13 南京晓庄学院 一种用于显像指导的磁性纳米颗粒及其制备方法
CN111423880A (zh) * 2020-04-25 2020-07-17 华中科技大学 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法
CN111956817A (zh) * 2020-08-10 2020-11-20 武娟 室内环境光动力广谱杀菌消毒方法
CN115777911A (zh) * 2022-11-23 2023-03-14 浙江海洋大学 一种食品级二氧化硅负载生物活性分子的纳米杂化材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064175A1 (en) * 2005-12-02 2007-06-07 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
CN103007304A (zh) * 2013-01-15 2013-04-03 上海师范大学 一种CI/MRI双功能Mn3O4纳米粒子及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064175A1 (en) * 2005-12-02 2007-06-07 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
CN103007304A (zh) * 2013-01-15 2013-04-03 上海师范大学 一种CI/MRI双功能Mn3O4纳米粒子及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104027806B (zh) * 2014-06-04 2017-01-25 上海师范大学 一种修饰CuS纳米粒子的介孔二氧化硅包覆四氧化三锰的纳米材料及其制备方法和应用
CN104027806A (zh) * 2014-06-04 2014-09-10 上海师范大学 一种修饰CuS纳米粒子的介孔二氧化硅包覆四氧化三锰的纳米材料及其制备方法和应用
CN105031669A (zh) * 2015-06-23 2015-11-11 上海师范大学 一种核壳结构纳米复合材料及其制备方法与应用
CN105031669B (zh) * 2015-06-23 2018-10-16 上海师范大学 一种核壳结构纳米复合材料及其制备方法与应用
CN107921181A (zh) * 2015-09-29 2018-04-17 上海氪励铵勤科技发展有限公司 磁性材料在结石取出中的应用
CN105833843B (zh) * 2016-06-07 2018-05-15 四川大学 一种基于光-磁双重响应纳米吸附剂的含铬制革废水的治理方法
CN105833843A (zh) * 2016-06-07 2016-08-10 四川大学 一种基于光-磁双重响应纳米吸附剂的含铬制革废水的治理方法
CN106421821A (zh) * 2016-10-08 2017-02-22 上海师范大学 一种多功能Cu3BiS3‑PEG‑(Ce6‑Gd3+)‑FA纳米复合材料及其制备方法与应用
CN106924215A (zh) * 2016-11-03 2017-07-07 重庆医科大学 载姜黄素甘草次酸修饰介孔二氧化硅纳米粒及其制备方法
WO2018188136A1 (zh) * 2017-04-12 2018-10-18 刘东飞 一种序列沉淀络合凝聚法制备超高载药纳米粒子的方法
CN107442085A (zh) * 2017-08-15 2017-12-08 苏州科技大学 一种巯基改性二氧化硅钴铁氧体核壳结构磁性纳米复合材料及其制备方法和应用
CN108042509A (zh) * 2018-02-09 2018-05-18 四川大学 可控热敏肽纳米阀修饰的核壳介孔二氧化硅纳米颗粒及其制备方法与应用
CN109395079A (zh) * 2018-10-17 2019-03-01 中国人民解放军南京军区南京总医院 一种多功能纳米探针及其制备方法和应用
CN109464667A (zh) * 2018-11-21 2019-03-15 深圳大学 药物载体及其制备方法和应用
CN110538331A (zh) * 2019-10-15 2019-12-06 南京晓庄学院 具有改善分散性及颗粒均匀度的磁性纳米颗粒制备方法
CN110559453A (zh) * 2019-10-15 2019-12-13 南京晓庄学院 一种用于显像指导的磁性纳米颗粒及其制备方法
CN110538331B (zh) * 2019-10-15 2021-10-15 南京晓庄学院 具有改善分散性及颗粒均匀度的磁性纳米颗粒制备方法
CN111423880A (zh) * 2020-04-25 2020-07-17 华中科技大学 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法
CN111956817A (zh) * 2020-08-10 2020-11-20 武娟 室内环境光动力广谱杀菌消毒方法
CN115777911A (zh) * 2022-11-23 2023-03-14 浙江海洋大学 一种食品级二氧化硅负载生物活性分子的纳米杂化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN103536935B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN103536935B (zh) 一种光敏剂修饰的核壳结构磁性纳米复合材料及其制备方法和应用
Lu et al. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications
Bao et al. Multifunctional Hf/Mn-TCPP metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy
Wang et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy
Yang et al. A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles
Xu et al. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy
Yang et al. Multifunctional theranostics for dual-modal photodynamic synergistic therapy via stepwise water splitting
Cui et al. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light
Zhao et al. Multifunctional core–shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells
Wang et al. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
Chen et al. Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy
Petushkov et al. Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles
Zhu et al. An efficient tumor-inducible nanotheranostics for magnetic resonance imaging and enhanced photodynamic therapy
CN105031669B (zh) 一种核壳结构纳米复合材料及其制备方法与应用
CN103566381A (zh) 一种多功能磁性纳米颗粒及其制备方法
CN105251420A (zh) 一种多功能复合微球的制备方法
CN107469079B (zh) 一种t1-mri成像引导下的光动治疗剂制备方法
CN104027806B (zh) 一种修饰CuS纳米粒子的介孔二氧化硅包覆四氧化三锰的纳米材料及其制备方法和应用
Wang et al. Responsive nanoplatform for persistent luminescence “turn-on” imaging and “on-demand” synergistic therapy of bacterial infection
CN113751079B (zh) 一种生物材料负载的钙钛矿-二氧化钛纳米复合光催化剂及其构建方法和应用
Neumeier et al. Fluorescent Inorganic‐Organic Hybrid Nanoparticles
Yu et al. Reductant‐free synthesis of MnO2 nanosheet‐decorated hybrid nanoplatform for magnetic resonance imaging‐monitored tumor microenvironment‐responsive chemodynamic therapy and near‐infrared‐mediated photodynamic therapy
CN103638532B (zh) 一种氧化钆靶向磁共振造影剂
Zhang et al. Visible-light-sensitive titanium dioxide nanoplatform for tumor-responsive Fe2+ liberating and artemisinin delivery
Zhang et al. Dual modal imaging-guided drug delivery system for combined chemo-photothermal melanoma therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150909

Termination date: 20181126

CF01 Termination of patent right due to non-payment of annual fee