CN103532392A - Controller for a power converter and method of operating the same - Google Patents
Controller for a power converter and method of operating the same Download PDFInfo
- Publication number
- CN103532392A CN103532392A CN201310278566.6A CN201310278566A CN103532392A CN 103532392 A CN103532392 A CN 103532392A CN 201310278566 A CN201310278566 A CN 201310278566A CN 103532392 A CN103532392 A CN 103532392A
- Authority
- CN
- China
- Prior art keywords
- controller
- power converter
- stage
- llc
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
- H02M1/0035—Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明的各实施方式总体上涉及用于功率转换器的控制器以及对其进行操作的方法。具体地,涉及一种用于功率转换器的控制器以及对其进行操作的方法。在一个实施例中,该控制器包括电感器-电感器-电容器(LLC)控制器,其被配置为接收来自误差放大器的误差信号以控制功率转换器的LLC级的开关频率来对功率转换器的输出电压进行调整。该控制器还包括功率因数校正(PFC)控制器,其被配置为对由功率转换器的PFC级产生并且提供至LLC级的母线电压进行控制以使得LLC级的平均开关频率基本上被保持在期望的开关频率。
Embodiments of the invention generally relate to controllers for power converters and methods of operating the same. In particular, it relates to a controller for a power converter and a method of operating the same. In one embodiment, the controller includes an inductor-inductor-capacitor (LLC) controller configured to receive an error signal from an error amplifier to control the switching frequency of the LLC stage of the power converter to The output voltage is adjusted. The controller also includes a power factor correction (PFC) controller configured to control the bus voltage generated by the PFC stage of the power converter and provided to the LLC stage such that the average switching frequency of the LLC stage is maintained substantially at desired switching frequency.
Description
技术领域technical field
本发明总体上涉及功率电子器件,并且尤其涉及一种用于功率转换器的控制器以及对其进行操作的方法。The present invention relates generally to power electronics, and more particularly to a controller for a power converter and a method of operating the same.
背景技术Background technique
开关模式功率转换器(也被称作“功率转换器”或“调整器”)是将输入电压波形转换为指定输出电压或电流波形的电源或功率处理电路。功率因数校正(PFC)/谐振电感器-电感器-电容器(LLC)功率转换器包括具有后跟LLC级的PFC级的功率系。该功率转换器耦合至电力源(交流(ac)电源)并且提供直流(dc)输出电压。PFC级(从ac电源)接收ac输入电压的整流版本并且提供dc母线电压。LLC级采用母线电压向负载提供dc输出电压。包括PFC级和LLC级的功率转换器可以被用来构建“ac适配器”以从ac电源向笔记本计算机等提供dc输出电压。A switch-mode power converter (also called a "power converter" or "regulator") is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage or current waveform. A power factor correction (PFC)/resonant inductor-inductor-capacitor (LLC) power converter includes a power train with a PFC stage followed by an LLC stage. The power converter is coupled to a power source (an alternating current (ac) power source) and provides a direct current (dc) output voltage. The PFC stage (from the ac source) receives a rectified version of the ac input voltage and provides a dc bus voltage. The LLC stage uses the bus voltage to provide a dc output voltage to the load. A power converter including a PFC stage and an LLC stage can be used to build an "ac adapter" to provide a dc output voltage from an ac power source to a notebook computer or the like.
与功率转换器相关联的控制器通过控制其中所采用的功率开关的导通周期而对功率转换器的操作进行管理。通常,控制器以反馈回路结构(也被称作“控制回路”或“闭合控制回路”)而耦合在功率转换器的输入和输出之间。经常采用两种控制过程来控制利用后跟LLC级的PFC级形成的功率转换器的输出电压。一种过程控制PFC级的母线电压以对输出电压进行控制,而另一种过程则控制LLC级的开关频率来对输出电压进行控制。如将更为显而易见的,采用两种独立过程对具有PFC级和LLC级的功率转换器的输出电压进行控制会导致有损于该功率转换器的操作和效率的若干设计问题。A controller associated with the power converter manages the operation of the power converter by controlling the conduction period of the power switches employed therein. Typically, a controller is coupled between the input and output of the power converter in a feedback loop configuration (also referred to as a "control loop" or "closed control loop"). Two control procedures are often employed to control the output voltage of a power converter formed with a PFC stage followed by an LLC stage. One process controls the bus voltage of the PFC stage to control the output voltage, while the other process controls the switching frequency of the LLC stage to control the output voltage. As will be more apparent, employing two separate processes to control the output voltage of a power converter having a PFC stage and an LLC stage results in several design issues that detract from the operation and efficiency of the power converter.
关于功率转换器的另一个感兴趣领域通常是在轻载条件下对其进行的检测和操作。在这样的条件下,对于功率转换器而言,进入突发操作模式会是有利的。就突发操作模式而言,功率转换器的功率损失取决于功率开关的栅极驱动信号以及通常基本上不随负载变化的其它持续性功率损失。这些功率损失一般通过使用突发操作模式在非常低的功率水平得以解决,其中在一段时间内(例如,一秒)使得控制器无效,随后为短时间的高功率操作(例如,10毫秒(ms))以提供具有低损耗的低平均输出功率。如这里所描述的控制器可以采用突发操作模式的时间间隔来估计功率转换器的输出(或负载)功率。Another area of interest with power converters is generally their detection and operation under light load conditions. Under such conditions, it may be advantageous for the power converter to enter a burst mode of operation. For the burst mode of operation, the power loss of the power converter depends on the gate drive signal of the power switch and other continuous power losses that generally do not vary substantially with load. These power losses are generally addressed at very low power levels by using a burst mode of operation, in which the controller is disabled for a period of time (e.g., one second), followed by a short period of high power operation (e.g., 10 milliseconds (ms )) to provide low average output power with low losses. A controller as described herein may employ the time interval of the burst mode of operation to estimate the output (or load) power of the power converter.
因此,本领域需要一种控制器,其将混合方法结合到用于在其功率系中采用不同功率级的功率转换器的控制过程以避免现有技术中的缺陷。此外,本领域需要一种控制器,其能够检测并管理在轻载情况下的功率转换器,包括功率转换器进入突发操作模式的操作,以避免现有技术中的缺陷。Therefore, there is a need in the art for a controller that incorporates a hybrid approach to the control process for power converters employing different power levels in their power trains to avoid the deficiencies in the prior art. Furthermore, there is a need in the art for a controller capable of detecting and managing a power converter under light load conditions, including the operation of the power converter into a burst mode of operation, to avoid the deficiencies of the prior art.
发明内容Contents of the invention
技术优势总体上通过本发明的有益实施例得以实现,其包括一种用于功率转换器的控制器以及对其进行操作的方法。在一个实施例中,该控制器包括电感器-电感器-电容器(LLC)控制器,其被配置为从误差放大器接收误差信号以控制功率转换器的LLC级的开关频率来对功率转换器的输出电压进行调整。该控制器还包括功率因数校正(PFC)控制器,其被配置为对由功率转换器的PFC级产生并且提供至LLC级的母线电压进行控制以使得LLC级的平均开关频率基本上被保持在期望的开关频率。Technical advantages are generally achieved by advantageous embodiments of the present invention, including a controller for a power converter and methods of operating the same. In one embodiment, the controller includes an inductor-inductor-capacitor (LLC) controller configured to receive an error signal from an error amplifier to control the switching frequency of the LLC stage of the power converter to The output voltage is adjusted. The controller also includes a power factor correction (PFC) controller configured to control the bus voltage generated by the PFC stage of the power converter and provided to the LLC stage such that the average switching frequency of the LLC stage is maintained substantially at desired switching frequency.
在另一方面,一种用于功率转换器的突发模式控制器包括突发模式发起电路,其被配置为在表示功率转换器的输出电压的信号与第一突发阈值水平相交时发起突发操作模式。该突发模式控制器还包括电压提升电路,其被配置为在时间窗口在表示功率转换器的输出电压的信号与第二突发阈值水平相交之前过期的情况下提供电压提升信号以升高输出电压。In another aspect, a burst mode controller for a power converter includes a burst mode initiation circuit configured to initiate a burst when a signal representing an output voltage of the power converter crosses a first burst threshold level. send operation mode. The burst mode controller also includes a voltage boost circuit configured to provide a voltage boost signal to boost the output if a time window expires before the signal representative of the output voltage of the power converter crosses the second burst threshold level Voltage.
以上已经相当宽泛地对本发明的特征和技术优势进行了概括,以便可以更好地对随后对本发明的详细描述加以理解。下文将对本发明的附加特征和优势进行描述,它们形成了本发明权利要求的主题。本领域技术人员应当意识到的是,所公开的概念和具体实施例可以容易地被用作修改或设计其它结构或过程以实施本发明的相同目的的基础。本领域技术人员还应当意识到的是,这样的等同构造并不背离如所附权利要求中所给出的本发明的精神和范围。The foregoing has outlined rather broadly the features and technical advantages of the present invention so that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
附图说明Description of drawings
为了更为全面地理解本发明,现在参考以下结合附图所进行的描述,其中:For a more comprehensive understanding of the present invention, reference is now made to the following descriptions in conjunction with the accompanying drawings, wherein:
图1图示了根据本发明的原理而构造的包括控制器的功率转换器的实施例的框图;Figure 1 illustrates a block diagram of an embodiment of a power converter including a controller constructed in accordance with the principles of the present invention;
图2图示了根据本发明的原理而构造的包括采用升压拓扑的示例性功率系的功率转换器的一部分的示意图;2 illustrates a schematic diagram of a portion of a power converter including an exemplary power train employing a boost topology, constructed in accordance with the principles of the present invention;
图3图示了根据本发明的原理而构造的利用耦合至LLC级的PFC级而形成的功率转换器的实施例的电路图;3 illustrates a circuit diagram of an embodiment of a power converter formed using a PFC stage coupled to an LLC stage constructed in accordance with the principles of the present invention;
图4-图6图示了根据本发明的原理的功率转换器的示例性操作特性的图形表示;4-6 illustrate graphical representations of exemplary operating characteristics of a power converter in accordance with the principles of the present invention;
图7和图8图示了根据本发明的原理而构造的利用耦合至LLC级的PFC级而形成的功率转换器的实施例的示图;7 and 8 illustrate diagrams of embodiments of power converters formed using a PFC stage coupled to an LLC stage constructed in accordance with the principles of the present invention;
图9图示了依据本发明的原理的被配置为对功率转换器的突发操作模式进行管理的突发模式控制器的实施例的示意图;9 illustrates a schematic diagram of an embodiment of a burst mode controller configured to manage a burst mode of operation of a power converter in accordance with the principles of the present invention;
图10图示了在依据本发明的原理的功率转换器内产生的示例性波形的图形表示;Figure 10 illustrates a graphical representation of exemplary waveforms generated within a power converter in accordance with the principles of the present invention;
图11图示了根据本发明的原理而构造的耦合至功率转换器的输出电压的电阻分压器的实施例的示图;以及Figure 11 illustrates a diagram of an embodiment of a resistive divider coupled to an output voltage of a power converter constructed in accordance with the principles of the present invention; and
图12图示了根据本发明的原理而构造的电压提升电路中用于产生斜率信号的部分的实施例的示图,该斜率信号指示可在突发模式控制器中采用的功率转换器的输出电压的斜率。Figure 12 illustrates a diagram of an embodiment of a portion of a voltage boost circuit constructed in accordance with the principles of the present invention for generating a slope signal indicative of the output of a power converter that may be employed in a burst mode controller The slope of the voltage.
除非另外指出,不同示图中相对应的数字和符号通常指代相对应的部分,并且出于简明的目的可能在第一实例之后不再进行描述。附图被绘制用于对示例性实施例的相关方面进行图示。Corresponding numerals and symbols in the different drawings generally refer to corresponding parts unless otherwise indicated and may not be described after the first instance for the sake of brevity. The figures are drawn to illustrate relevant aspects of the exemplary embodiments.
具体实施方式Detailed ways
以下对该示例性实施例的制造和使用进行详细讨论。然而,应当意识到的是,本发明提供了能够在各种具体环境中得以体现的许多可应用的发明概念。所讨论的具体实施例仅是制造和使用本发明的具体方式的说明,而并不对本发明的范围进行限制。The making and using of the exemplary embodiment are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
将就具体上下文(即,用于功率转换器的控制器)中的示例性实施例对本发明进行描述。虽然将在用于功率因数校正(PFC)/谐振电感器-电感器-电容器(LLC)功率转换器的控制器的环境中对本发明的原理进行描述,但是可以从诸如功率放大器或电机控制器之类的控制器获益的任何应用同样处于本发明的宽泛范围之内。The present invention will be described with respect to exemplary embodiments in a specific context, ie, a controller for a power converter. Although the principles of the present invention will be described in the context of a controller for a power factor correction (PFC)/resonant inductor-inductor-capacitor (LLC) power converter, it can be obtained from, for example, a power amplifier or a motor controller. Any application in which a controller of this type would benefit is also within the broad scope of the present invention.
首先参考图1,其图示了根据本发明的原理而构造的包括控制器110的功率转换器的实施例的框图。功率转换器耦合至由提供输入电压Vin的ac电源所表示的ac干线。该功率转换器包括由控制器110所控制的功率系(power train)105。控制器110通常测量功率转换器的诸如其输出电压Vout的操作特性,并且响应于所测量的操作特性来控制其中的功率开关的占空比D以对该特性进行调整。功率系105可以包括多个功率级以向负载提供经调整的输出电压Vout或其它输出特性。功率转换器的功率系105包括耦合至磁性设备以提供功率转换功能的多个功率开关。Referring first to FIG. 1 , there is illustrated a block diagram of an embodiment of a power converter including a
现在转向图2,其图示了根据本发明的原理而构造的包括采用升压拓扑(例如,PFC升压级)的示例性功率系(例如,PFC级201)的功率转换器的一部分的示意图。功率转换器的PFC级210在其输入接收来自诸如ac干线之类的电力源的输入电压Vin(例如,未调整的ac输入电压)并且提供经调整的DC母线电压(也被称作母线电压)Vbus。与升压拓扑的原理相符,该母线电压Vbus通常高于输入电压Vin以使得其开关操作能够对母线电压Vbus进行调整。使得干线功率开关S1(例如,n沟道金属氧化物半导体(NMOS)“有源”开关)能够通过栅极驱动信号GD导通主要间隔并且将输入电压Vin通过桥式整流器203耦合至升压电感器Lboost。在开关周期的主要间隔D期间,电感器电流iin增大并且通过升压电感器Lboost流向局部电路接地端。升压电感器Lboost通常利用单层绕组来形成以减少接近效应而提高功率转换器的效率。Turning now to FIG. 2 , there is illustrated a schematic diagram of a portion of a power converter including an exemplary power train (eg, PFC stage 201 ) employing a boost topology (eg, PFC boost stage) constructed in accordance with the principles of the present invention. . The PFC stage 210 of the power converter receives at its input an input voltage Vin (eg, an unregulated ac input voltage) from a power source such as the ac mains and provides a regulated DC bus voltage (also referred to as the bus voltage) Vbus. Consistent with the principle of boost topology, the bus voltage Vbus is usually higher than the input voltage Vin so that its switching operation can adjust the bus voltage Vbus. The mains power switch S1 (e.g., an n-channel metal-oxide-semiconductor (NMOS) "active" switch) is enabled to conduct the main compartment via the gate drive signal GD and couple the input voltage Vin to the boost voltage via the
PFC级201的占空比在稳态下根据以下等式而取决于输入电压知母线电压(分别为Vin、Vbus)之比:The duty cycle of the
在互补间隔1-D期间,主功率开关S1被转变至非导通状态而辅助功率开关(例如,二极管D1)导通。在可替换的电路布置中,辅助功率开关可以包括第二有源开关,其被控制由互补栅极驱动信号导通。辅助功率开关D1提供了一种保持流过升压电感器Lboost的电感器电流iin连续性的途径。在互补间隔1-D期间,流过升压电感器Lboost的电感器电流iin降低,并且可以变为零,以及在一段时间保持为零,这导致操作的“非连续导通模式”。During complementary interval 1-D, the main power switch S1 is transitioned to a non-conducting state while the auxiliary power switch (eg, diode D1 ) is conducting. In an alternative circuit arrangement, the auxiliary power switch may comprise a second active switch controlled to be turned on by a complementary gate drive signal. Auxiliary power switch D1 provides a way to maintain continuity of inductor current i in through boost inductor L boost . During the complementary interval 1-D, the inductor current i in flowing through the boost inductor Lboost decreases and may become zero and remain zero for a period of time, which results in a "discontinuous conduction mode" of operation.
在互补间隔1-D期间,流过升压电感器Lboost的电感器电流iin通过二极管D1(即,辅助功率开关)流入滤波电容器C。通常,主功率开关S1的占空比(以及辅助功率开关D1的互补占空比)可以被调节以保持PFC级201的母线电压Vbus的调整。本领域技术人员所理解的是,通过使用“阻尼器(snubber)”电路元件(未示出)或者通过控制电路时序,主功率开关S1和辅助功率开关D1的导通周期可以通过小的时间间隔分隔开来以避免其间的交叉导通电流,并且有利地减少与功率转换器相关联的开关损失。用于避免主功率开关S1和辅助功率开关D1之间的交叉导通电流的电路和控制技术在本领域是公知的并且为了简要而将不对其进行进一步描述。升压电感器Lboost通常利用单层绕组来形成以减少与接近效应相关联的功率损失。During the complementary interval 1-D, the inductor current i in flowing through the boost inductor L boost flows into the filter capacitor C through the diode D1 (ie, the auxiliary power switch). In general, the duty cycle of the main power switch S 1 (and the complementary duty cycle of the auxiliary power switch D 1 ) can be adjusted to maintain regulation of the bus voltage Vbus of the
现在转向图3,图示了根据本发明的原理所构造的利用耦合至LLC级320(例如,半桥式LLC隔离谐振降压级)的PFC级(诸如图2的PFC级201)形成的功率转换器的实施例的电路图。PFC级201和LLC级320可以被用来构造“ac适配器”以从ac干线电源(由输入电压Vin表示)向笔记本计算机提供dc输出电压Vout(例如,19.5伏)。Turning now to FIG. 3, there is illustrated the power developed by a PFC stage, such as
如以上所提到的,经常采用两种控制过程来控制利用后跟LLC级320的PFC级201所形成的功率转换器的输出电压Vout。一种过程控制PFC级201的母线电压Vbus而对输出电压Vout进行控制,而另一种过程则控制LLC级320的开关频率(也被命名为开关频率fs)而对输出电压Vout进行控制。由PFC级201产生的母线电压Vbus在较慢的响应反馈回路中响应于耦合至LLC级320的输出的负载而受到控制。LLC级320以固定开关频率fs进行操作,该开关频率fs被选择以增加其功率转换效率。LLC级320在理想变压器状态中利用由PFC级201产生的母线电压Vbus而连续操作,该PFC级320被控制以对LLC级320中的IR(电流乘以电阻)下降进行补偿。通常,由PFC级201产生的母线电压Vbus的变化为数十伏的量级。As mentioned above, two control processes are often employed to control the output voltage Vout of a power converter formed with the
使用开关频率对LLC级320进行控制,PFC级201产生恒定的dc母线电压Vbus,但是LLC级320则利用开关频率进行操作,该开关频率响应于耦合至功率转换器输出的负载的变化而利用快速响应控制回路(即,具有高的交叉频率的控制回路)进行控制。改变LLC级320的开关频率通常使得LLC级320以低效的开关频率进行操作。The
提供了一种混合控制方法,其中由PFC级201产生的母线电压Vbus利用较慢响应控制回路(即,具有低交叉频率的控制回路)进行控制以处理平均负载功率。利用快速响应反馈回路对LLC级320的开关频率进行控制以处理负载瞬变和ac干线信号退出(dropout)的事件。控制PFC级201以对输出电压Vout进行控制导致了若干设计问题。首先,母线电压Vbus通常由于低的PFC控制回路交叉频率而表现出很差的瞬变响应。其次,在对LLC级320供电的母线电压Vbus上存在大量出现在其输出之上的纹波电压(例如,100-120赫兹的纹波电压)。A hybrid control approach is provided where the bus voltage Vbus produced by the
如这里所介绍的,LLC级320的开关频率利用快速响应控制回路进行控制以衰减通常出现在LLC级320的输出上的由PFC级201产生的纹波电压的影响。此外,LLC级320的变压器/级增益在1/(2π·sqrt((Lm+Lk)·Cr))和1/(2π·sqrt(Lk·Cr))之间的频率区域内被快速响应控制回路所采用以适应大的负载步幅变化以及ac干线输入电压Vin的信号退出的事件。PFC级201的母线电压Vbus响应于负载的缓慢变化而被控制以使得LLC级320能够理想地以其谐振频率或附近继续地操作,其功率转换效率在该点通常为最佳。通过令LLC级320大多数时间在其谐振频率或附近进行操作,但是允许开关频率响应于瞬变而变化,能够获得改善的负载步幅响应、减少的输出电压Vout的纹波以及更高的功率转换效率。As described herein, the switching frequency of the
变压器T1的初级电感是泄露电感Lk加上磁化电感Lm,两个电感都以变压器T1的初级绕组为参考。谐振电容器为Cr。谐振电容器Cr可以被划分为耦合在串行电路中的两个电容器,该串行电路的一端耦合至接地端而另一端则耦合至母线电压Vbus。串行电路布置可以被用来降低启动时的侵入电流。fs的理想开关频率是fo=1/(2π·sqrt(Lk·cr)),在正常情况下这是高效操作点(例如,50千赫(kHz))。在其开始低效电容开关的低开关频率为fmin=1/(2π·sqrt(Lp·Cr))。通常期望以大于最小开关频率fmin的开关频率进行操作,并且甚至避免接近最小开关频率fmin的开关频率。The primary inductance of the transformer T1 is the leakage inductance Lk plus the magnetizing inductance Lm, both inductances are referenced to the primary winding of the transformer T1. The resonant capacitor is Cr. The resonant capacitor Cr can be divided into two capacitors coupled in a series circuit with one end coupled to ground and the other end coupled to the bus voltage Vbus. A serial circuit arrangement can be used to reduce the inrush current at start-up. The ideal switching frequency for fs is fo=1/(2π·sqrt(Lk·cr)), which is the high-efficiency operating point under normal conditions (eg, 50 kilohertz (kHz)). The low switching frequency at which inefficient capacitive switching begins is fmin=1/(2π·sqrt(Lp·Cr)). It is generally desirable to operate at switching frequencies greater than the minimum switching frequency fmin, and to avoid even switching frequencies close to the minimum switching frequency fmin.
控制器325具有用于母线电压Vbus的输入以及来自反馈电路的用于功率转换器的输出电压Vout的输入,该反馈电路包括光耦合器350。如以下参考图7和图8所图示并描述的,压控振荡器(VCO)336对LLC级320的开关频率fs进行控制。因此,PFC级201和LLC级320在电压域和频率域中被联合控制。如以下进一步描述的,不时对控制器325的操作进行测试以使得能够在轻载的情况下进入突发模式。The
如图3所示,输入电压Vin耦合至电磁干扰滤波器(EMI)310,其输出耦合至桥式整流器203以产生整流电压Vrect。PFC级201产生母线电压Vbus,其耦合至LLC级320的输入以产生输出电压Vout,该输出电压Vout通过功率转换器的输出滤波电容器Cout进行滤波。在可替换实施例中,可以利用全桥式拓扑形成LLC级320。利用误差放大器340感测输出电压Vout,该误差放大器340耦合至利用第一电阻器Rsensel和第二电阻器Rsense2形成的电阻分压器。来自误差放大器340的输出信号耦合至光耦合器350,其产生输出电压误差信号(也被称作“误差信号”)δV。输出电压误差信号δV和母线电压Vbus耦合至控制器325的PFC控制器330和/或LLC控制器333(以下就图7在下文更为详细地进行描述)。控制器325对由PFC级201产生的母线电压Vbus和LLC级320的开关频率fs进行联合控制以对输出电压Vout进行调整,同时将开关频率fs(大多数时间)保持在LLC级320的高效操作点。As shown in FIG. 3 , the input voltage Vin is coupled to an electromagnetic interference filter (EMI) 310 , and its output is coupled to a
在操作中,耦合至输出电压Vout的负载的空载到满载(zero-to-full)的步幅变化例如会使母线电压Vbus由于控制器325的固有地低的交叉频率而从370伏下降至290伏。通过利用快速响应控制回路将LLC级320的开关频率fs从50kHz降至25kHz,可以为1.3至1或更高的LLC级320所增加的电压增益可以被用来对母线电压Vbus的下降进行实质性补偿。随着母线电压Vbus恢复至大约390伏以对LLC级320中的IR下降进行补偿,其开关频率fs返回至50kHz。In operation, a zero-to-full step change in the load coupled to the output voltage Vout, for example, would cause the bus voltage Vbus to drop from 370 volts to 290 volts. By reducing the switching frequency fs of the
相同原理可以在ac干线电压(输入电压Vin)信号退出时被应用于保持(holdup)事件。在母线电压Vbus从390伏下降至280伏的同时,存储于PFC级201的滤波电容器C中的剩余能量可以被用来保持对输出电压Vout的调整。同样,LLC级320的依赖于频率的电压增益响应于快速响应控制回路而被用来对功率转换器的输出电压Vout进行调整。LLC级320的响应因此可以被用来减小PFC级201的滤波电容器C的大小或者增加功率转换器用于ac输入电压(输入电压Vin)下降的运转(ride-through)时间。如以下进一步描述的,采用非线性反馈以进行控制回路补偿。The same principle can be applied to a holdup event when the ac mains voltage (input voltage Vin) signal exits. While the bus voltage Vbus drops from 390 volts to 280 volts, the remaining energy stored in the filter capacitor C of the
如以下更为详细描述的,由控制器325得出突发模式控制信号。当突发模式控制信号为高电平时,控制器325被使能进行操作。相反,当突发模式控制信号为低电平时,控制器325被无效。突发模式控制信号能够被用来使能功率转换器的突发操作模式。PFC控制器330在开关周期的主占空比D和互补占空比1-D期间为PFC级201的主功率开关S1提供栅极驱动信号,并且LLC控制器333在开关周期的主间隔D和互补间隔1-D期间为LLC级320的主功率开关M1和辅助功率开关M2提供栅极驱动信号。PFC控制器330还采用电压Vrect控制来自桥式整流器203的低频电流波形。命名为GDM2的栅极驱动信号表示图12所示的电路中将采用的LLC级320的互补间隔1-D期间至辅助功率开关M2的栅极驱动信号。The burst mode control signal is derived by
现在转向图4-6,图示了根据本发明的原理的功率转换器的示例性操作特性的图形表示。图4图示了功率转换器的LLC级的电压传输特性。在来自PFC级的特定母线电压Vbus(诸如400伏)处的LLC级(和功率转换器)的输出电压Vout以非线性的方式取决于LLC级的开关频率fs。随着母线电压Vbus减小,输出电压Vout在开关频率fs不变的情况下近似地成比例减小。其结果是开关频率fs能够在母线电压Vbus变化时进行变化以对输出电压Vout进行控制。然而,改变开关频率fs对于输出电压Vout的影响是非线性的。谐振频率fres表示LLC级的谐振频率。Turning now to FIGS. 4-6 , there are illustrated graphical representations of exemplary operating characteristics of a power converter in accordance with the principles of the invention. Fig. 4 illustrates the voltage transfer characteristics of the LLC stage of the power converter. The output voltage Vout of the LLC stage (and power converter) at a certain bus voltage Vbus (such as 400 volts) from the PFC stage depends in a non-linear manner on the switching frequency fs of the LLC stage. As the bus voltage Vbus decreases, the output voltage Vout decreases approximately proportionally while the switching frequency fs remains constant. As a result, the switching frequency fs can be varied to control the output voltage Vout when the bus voltage Vbus varies. However, the effect of changing the switching frequency fs on the output voltage Vout is non-linear. The resonance frequency fres represents the resonance frequency of the LLC stage.
现在转向图5,图示了作为图4所示的依赖于频率的曲线的反函数的校正因数G的图形表示。与该校正因数G相乘的如图4所示的依赖于频率的曲线产生LLC级的电压传输特性的依赖于频率的特性的直线。与校正因数G相乘的结果在图6中进行图示,诸如等于400伏的母线电压Vbus的直线610。在一个实施例中,校正因数G通过图5所示的折线校正因数(诸如五段折线校正因数)G′进行近似。Turning now to FIG. 5 , there is illustrated a graphical representation of the correction factor G as an inverse function of the frequency-dependent curve shown in FIG. 4 . The frequency-dependent curve shown in FIG. 4 multiplied by this correction factor G produces a straight line of the frequency-dependent characteristic of the voltage transfer characteristic of the LLC stage. The result of multiplying by the correction factor G is illustrated in FIG. 6 , such as a
现在转向图7,图示了根据本发明的原理而构造的利用耦合至LLC级(诸如图3的LLC级320)的PFC级(诸如图2的PFC级201)形成的功率转换器的实施例的示图。该功率转换器接收输入电压并(经由桥式整流器)提供整流电压Vrect,该整流电压Vrect被PFC级201和LLC级320转换为输出电压Vout。利用由第一电阻器Rsensel和第二电阻器Rsense2形成的电阻分压器来感测输出电压Vout,并且所感测的输出电压被耦合至误差放大器340的运算放大器345的反相输入。误差放大器340在其反馈路径中包括电阻器电容器网络360以产生输出电压误差信号(也被称作“误差信号”)δV。Turning now to FIG. 7 , illustrated is an embodiment of a power converter formed using a PFC stage (such as
通过在反馈回路中采用非线性函数子系统335来控制LLC级320的开关频率fs以对其依赖于频率的响应进行补偿而获得了更大的反馈回路稳定性。依据非线性子系统335,校正因数G以折线校正因数(例如,五段折线校正因数G′)的形式进行近似,其被应用于输出电压误差信号δV以产生经校正的误差信号δV_cor。应当理解的是,光耦合器(诸如图3所示的光耦合器350)可以与误差放大器340进行协作以产生输出电压误差信号δV。在一个实施例中,在非线性函数子系统335中采用五段折线校正因数G′来减少由LLC级320产生的非线性反馈效应。该五段折线校正因数G′可以更一般地被称作折线校正因数。经校正的误差信号δV_cor被耦合至对LLC级320的开关频率fs进行控制的压控振荡器(VCO)336的输入。非线性函数子系统335和压控振荡器336形成LLC控制器333的至少一部分(同样参见图3)。Greater feedback loop stability is obtained by employing
开关频率fs还耦合至PFC控制器330,其产生用于PFC级201的主功率开关S1的栅极驱动信号GD(见图3)。PFC控制器330感测PFC级201的母线电压Vbus。PFC控制器330在较慢响应控制回路中对母线电压Vbus进行控制以将开关频率fs的平均值保持在理想开关频率fo=1/(2π·sqrt(Lk·Cr))附近以保持LLC级320高的功率转换效率。The switching frequency fs is also coupled to the
在又一方面,PFC控制器330简单地不时提升母线电压Vbus(例如,20毫秒内提升了6伏或7伏)以在误差信号δV中生成误差,或者相应地在经校正的误差信号δV_cor中生成误差,以检测轻载操作从而使得能够进入突发操作模式。如以下更为详细地描述的,在轻载情况下的突发模式的操作依据突发模式控制器370而产生功率转换效率的明显改进。PFC控制器330能够通过简单地提升其中结合误差放大器用来对母线电压Vbus进行调整的参考电压来提升母线电压Vbus。如以下参考图8所描述的,耦合至误差放大器332的输入的母线电压参考Vbus_ref被简单地提升以使得能够检测轻载操作。当误差信号δV或经校正的误差信号δV_cor与阈值水平相交时进入突发模式。In yet another aspect, the
在轻载情况下的操作中,母线电压Vbus由于LLC级320的降低损失而被降低至低值。当母线电压Vbus在短的时间段内被提升时,误差信号δV中所引起的变化(例如,减小)被用来确定是否进入突发模式。较高的母线电压Vbus降低LLC级320的开关频率。增加的母线电压Vbus和轻载使得误差信号δV充分下降,这被检测到进入突发模式。当输出电压Vout向下漂移至如由误差信号δV的提升所指示的阈值水平时退出突发模式。在突发操作模式中,PFC级201和LLC级320的开关动作均被关闭(例如,终止用来控制相应功率开关的栅极驱动信号的占空比D的交变特性)。In operation at light load conditions, the bus voltage Vbus is reduced to a low value due to the reduction loss of the
现在转向图8,图示了根据本发明的原理而构造的利用耦合至LLC级(诸如图3的LLC级320)的PFC级(诸如图2的PFC级201)以及控制器(包括图7的控制器325的各部分)形成的功率转换器的实施例的示图。PFC控制器330包括误差放大器(E/A)331,其具有耦合至由压控振荡器(VCO)336产生的开关频率fs的一个输入,优选地为反相输入。误差放大器331的另一个输入(优选地为非反相输入)耦合至频率参考fs_ref,这是LLC级320的期望的开关频率。在一个实施例中,期望的开关频率(类似于理想开关频率)为fo=1/(2π·sqrt(Lk·Cr))。误差放大器331产生母线电压参考Vbus_ref,其被误差放大器(E/A)332在较慢响应控制回路中用来对由PFC级201产生的母线电压Vbus进行调整。母线电压参考Vbus_ref表示向功率转换器提供高功率转换效率的母线电压Vbus的期望电压电平。以这种方式,控制器325对由PFC级201产生的母线电压Vbus进行调整以产生LLC级320的平均开关频率fs,其导致LLC级320的高功率转换效率。误差放大器340被保持以利用快速响应控制回路对功率转换器的输出电压Vout进行调整以使得功率转换器能够利用降低的纹波电压电平对输出电压Vout进行紧凑调整,该纹波电压将以其它方式由PFC级201的母线电压Vbus上的纹波电压产生。Turning now to FIG. 8 , there is illustrated a diagram utilizing a PFC stage (such as
因此,已经在此对用于功率转换器的控制器进行了介绍。在一个实施例中,该控制器包括LLC控制器,其被配置为接收来自误差放大器的误差信号以控制该功率转换器的LLC级(例如,LLC谐振降压级)的开关频率而对其输出电压进行调整。该控制器还包括PFC控制器,其被配置为对母线电压进行控制,该母线电压由该功率转换器的PFC级(例如,PFC升压级)产生并且被提供至LLC级以使得其平均开关频率基本上被保持在期望的开关频率(例如,基本上等于LLC级的谐振频率)。与LLC级相关联的控制回路可以具有比与PFC级相关联的控制回路更快的响应。LLC控制器可以包括非线性函数子系统,其被配置为向误差信号应用校正因数(例如,由折线校正因数近似的)以产生经校正的误差信号。LLC控制器可以包括压控振荡器,其被配置为接收经校正的误差信号以对LLC级的开关频率进行控制。Accordingly, a controller for a power converter has been described herein. In one embodiment, the controller includes an LLC controller configured to receive an error signal from an error amplifier to control the switching frequency of an LLC stage (eg, LLC resonant buck stage) of the power converter to output voltage is adjusted. The controller also includes a PFC controller configured to control a bus voltage generated by a PFC stage (eg, a PFC boost stage) of the power converter and provided to the LLC stage so that it switches on average The frequency is maintained substantially at the desired switching frequency (eg, substantially equal to the resonant frequency of the LLC stage). The control loop associated with the LLC stage may have a faster response than the control loop associated with the PFC stage. The LLC controller may include a nonlinear function subsystem configured to apply a correction factor (eg, approximated by a broken line correction factor) to the error signal to produce a corrected error signal. The LLC controller may include a voltage controlled oscillator configured to receive the corrected error signal to control the switching frequency of the LLC stage.
PFC控制器被配置为提升母线电压以在误差信号中生成误差来检测功率转换器的轻载操作。误差放大器耦合至电阻分压器,该电阻分压器被配置为感测输出电压并且将所感测的输出电压提供至误差放大器的运算放大器以产生误差信号。PFC级可以包括至少一个误差放大器,其被配置为对作为LLC级的开关频率和期望的开关频率的函数的母线电压进行控制。该控制器还可以包括突发模式控制器,其被配置为使得该功率转换器在轻载情况下和/或在误差信号与突发阈值水平相交时进入突发操作模式。该控制器还可以耦合至被配置为感测输出电压的电阻分压器,以及耦合至该电阻分压器的第一感测开关和第二感测开关,其被配置为在该功率转换器进入突发操作模式时减少功率损耗。The PFC controller is configured to boost the bus voltage to generate an error in the error signal to detect light load operation of the power converter. The error amplifier is coupled to a resistive voltage divider configured to sense the output voltage and provide the sensed output voltage to an operational amplifier of the error amplifier to generate an error signal. The PFC stage may include at least one error amplifier configured to control the bus voltage as a function of the switching frequency of the LLC stage and the desired switching frequency. The controller may also include a burst mode controller configured to cause the power converter to enter a burst mode of operation under light load conditions and/or when the error signal crosses a burst threshold level. The controller may also be coupled to a resistive voltage divider configured to sense an output voltage, and a first sensing switch and a second sensing switch coupled to the resistive voltage divider configured to sense the output voltage in the power converter. Reduce power loss when entering burst mode of operation.
现在转向图9,图示了依据本发明的原理的被配置为对功率转换器的突发操作模式进行管理的突发模式控制器(诸如图7和图8的突发模式控制器370)的实施例的示意图。控制器325的操作在其间被无效(例如,控制器不输出PFC级或LLC级的栅极驱动信号)的时间长度(或者时间间隔或窗口)可以被用作用于确定输出功率的相当准确的指示器。该时间间隔可以被用来确定突发模式的出口以准备随后可能的瞬变负载步骤。使用跨斜坡电压定时电容器Cramp所产生的电压来测量控制器325的关断时间。Turning now to FIG. 9 , there is illustrated a burst mode controller, such as
突发模式控制器370耦合至由误差放大器340产生的误差信号δV以设置突发模式控制信号Fon和电压提升信号Fves。误差信号δV与功率转换器的输出电压Vout相关并且提供其指示器。当突发模式控制信号Fon被设置为高电平时,功率转换器的PFC级201和LLC级320的开关动作被使能。相反,当突发模式控制信号Fon为低电平时,功率转换器的PFC级201和LLC级320的开关动作被无效。电压提升信号Fves被用来简单升高功率转换器的经过调整的输出电压Vout从而能够检测到低负载功率以使得能够进入突发操作模式。The
利用第一比较器920和第二比较器930来形成突发模式控制器370,该第一比较器920具有耦合至误差信号δV的非反相输入和耦合至高突发阈值水平Vburst_high(第二突发阈值水平)的反相输入,而该第二比较器930具有耦合至误差信号δV的反相输入和耦合至低突发阈值水平Vburst_low(第一突发阈值水平)的非反相输入。比较器920、930的输出耦合至第一置位-复位触发器940和第二置位-复位触发器970的“置位”输入和“复位”输入之一。第一置位-复位触发器940的“Q”输出设置突发模式控制信号Fon。比较器920、930以及第一置位-复位触发器940形成突发模式控制器370的突发模式发起电路的至少一部分。The
电流源950产生电流以对斜坡电压定时电容器Cramp充电,其电容器电压Vcap耦合至第三比较器960的非反相输入。第三比较器960的反相输入耦合至电容器电压阈值V_cap_thresh。由第一置位-复位触发器940产生的突发模式控制信号Fon还耦合至斜坡开关(例如,n沟道MOSFET)Qramp的栅极。当突发模式控制信号Fon为高电平时,斜坡开关Qramp对斜坡电压定时电容器Cramp放电。第三比较器960的输出信号990耦合至第二置位-复位触发器970的置位输入。第二置位-复位触发器970的置位输入还通过与(AND)门995耦合至定时器980。定时器980周期性地将电压提升信号Fves设置为高电平(例如,每40毫秒)。当电压提升信号Fves为高电平时,误差放大器340(见图3、图7和图8)的运算放大器345的参考电压Vref被少量升高(例如,升高了足以将输出电压Vout升高几伏的量),从而第二比较器930能够检测输出电压Vout的高电压电平。电流源950、第三比较器960、第二置位-复位触发器970、斜坡电压定时电容器Cramp和斜坡开关Qramp形成突发模式控制器370的电压提升电路的至少一部分。如以下更为详细描述的,电流源950、斜坡电压定时电容器Cramp和比较器960检测突发操作模式的时间窗口是否过期。The
突发模式控制器370利用以下逻辑进行操作。如果误差信号δv大于高突发阈值水平Vburst_high,则突发模式控制信号Fon被设置为高电平。误差信号δV随后在输出电压Vout降低时升高至高电平。如果误差信号δV小于低突发阈值水平Vburst_low,则突发模式控制信号Fon被设置为低电平以进入突发操作模式。相反,误差信号δV在输出电压Vout增加至高电平时降低至低电平,这将第二比较器930的输出设置为高电平。因此,误差信号在通常形成于功率转换器的初级侧和次级侧之间的隔离势垒(见图3的变压器T1)的初级侧提供了输出电压Vout的指示器,并且误差信号δV相应地对突发模式控制信号Fon进行控制。如果误差信号δV小于低突发阈值水平Vburst_low,则电压提升信号Fves也被设置为低电平。The
电压提升信号Fves在跨斜坡电压定时电容器Cramp的电容器电压Vcap大于电容器电压阈值V_cap_thresh的情况下被设置为高电平。跨斜坡电压定时电容器Cramp的高电压被认为是耦合至功率转换器的输出的低功率负载的指示,由此使得能够进入突发操作模式。电压提升信号Fves还响应于来自定时器980的信号而被设置为高电平,这提供了一种用于对耦合至功率转换器的输出的负载进行测试的机制。The voltage boost signal Fves is set to a high level if the capacitor voltage Vcap across the ramp voltage timing capacitor Cramp is greater than the capacitor voltage threshold V_cap_thresh. A high voltage across the ramp voltage timing capacitor Cramp is considered an indication of a low power load coupled to the output of the power converter, thereby enabling entry into the burst mode of operation. Voltage boost signal Fves is also set high in response to the signal from
现在转向图10,图示了在依据本发明的原理的功率转换器内所产生的示例性波形的图形表示。继续参考之前的附图,如由用于该功率转换器的功率系的开关的栅极驱动信号的占空比D的周期性开关所指示的,最初假设功率转换器向耦合至其输出的负载提供实质性功率。该功率转换器的开关的周期性开关由突发模式控制信号Fon使能。误差信号δV假设为高突发阈值水平Vburst_high和低突发阈值水平Vburst_low之间的数值以指示输出电压Vout处于可接受的电压调整范围内。电容器电压Vcap由于突发模式控制信号Fon为高电平而保持为零伏,这导通斜坡开关Qramp,使斜坡电压定时电容器Cramp短路。Turning now to FIG. 10 , there is illustrated a graphical representation of exemplary waveforms generated within a power converter in accordance with the principles of the invention. Continuing to refer to the previous figures, it is initially assumed that the power converter supplies a load coupled to its output as indicated by the periodic switching of the duty cycle D of the gate drive signal for the switches of the power converter's power train. Provides substantial power. Periodic switching of the switches of the power converter is enabled by the burst mode control signal Fon. The error signal δV assumes a value between the high burst threshold level Vburst_high and the low burst threshold level Vburst_low to indicate that the output voltage Vout is within an acceptable voltage regulation range. The capacitor voltage Vcap remains at zero volts due to the high level of the burst mode control signal Fon, which turns on the ramp switch Qramp, shorting the ramp voltage timing capacitor Cramp.
在时间T0,定时器980将第二置位-复位触发器970的输出设置为高电平,这将电压提升信号Fves设置为高电平并且升高误差放大器340(见图7、图8和图11)的运算放大器345的参考电压Vref。电压提升信号Fves发起对耦合至功率转换器的输出的轻载的测试。作为其响应,升高功率转换器的输出电压Vout,其最终在时间T1将误差信号δV降低至低突发阈值水平Vburst_low。这使得突发模式控制信号Fon被重置为低电平(以进入突发操作模式),并且电压提升信号Fves也被设置为低电平。如由占空比D的缺失所指示的,停止功率转换器的开关动作。电容器电压Vcap斜坡上升并且如果功率转换器上的负载充分低,则其在时间T2与电容器电压阈值V_cap_thresh相交,这使得电压提升信号Fves和突发模式控制信号Fon被设置为高电平。因此,突发操作模式的时间窗口处于时间T1和时间T2之间。因此,电压提升信号Fves由于时间窗口在误差信号δV与高突发阈值水平Vburst_high相交之前过期而被设置为高电平以升高功率转换器的输出电压Vout。可替换地,定时器980能够使得电压提升信号Fves被设置为高电平,并且相应地设置要提升的参考电压Vref。因此,使用误差信号δV对功率转换器的输出电压Vout进行间接感测并且采用由用于控制突发操作模式的时间间隔所测量的输出信号Vout的斜率来估计功率转换器的输出功率。At time T0,
输出电压Vout的斜率的指示器由图9所示的第三比较器960所感测的时间间隔(时间窗口)来确定。如果电容器电压Vcap在时间T1和时间T2之间(例如,当突发模式控制信号Fon为低电平而指示输出电压Vout处于可接受的电压调整范围之内时)并不与电容器电压阈值v_cap_thresh相交,则输出电压Vout的斜率充分小而发信号通知进入突发操作模式。因此,功率转换器上的负载被估计为小于预定的低阈值水平。例如,如果功率转换器额定提供60瓦的负载,则预定的低阈值水平可以为5瓦并且突发模式控制器370通过以上所描述的操作来确定输出功率小于5瓦。换句话说,突发模式控制器370结合输出电压Vout的斜率来估计输出功率。The indicator of the slope of the output voltage Vout is determined by the time interval (time window) sensed by the
相反地,如果电容器电压Vcap在时间T2之前(例如,当突发模式控制信号Fon为低电平而指示输出电压Vout低于可接受的电压调整范围时)与电容器电压阈值V_cap_thresh相交,则输出电压Vout的斜率充分高而发信号通知从突发操作模式退出(即,使能功率转换器的开关动作)。因此,功率转换器上的负载被估计大于预定的低阈值水平。例如,如果功率转换器额定提供60瓦的负载,则预定的低阈值水平可以为5瓦并且突发模式控制器370通过以上所描述的操作来确定输出功率大于5瓦。换句话说,突发模式控制器370结合输出电压Vout的斜率来估计输出功率。Conversely, if the capacitor voltage Vcap crosses the capacitor voltage threshold V_cap_thresh before time T2 (for example, when the burst mode control signal Fon is low indicating that the output voltage Vout is below the acceptable voltage regulation range), the output voltage The slope of Vout is sufficiently high to signal an exit from the burst mode of operation (ie, enable switching of the power converter). Accordingly, the load on the power converter is estimated to be greater than a predetermined low threshold level. For example, if the power converter is rated to supply a load of 60 watts, the predetermined low threshold level may be 5 watts and the
结果是充分高的输出电压Vout将突发模式控制信号Fon设置为低电平,并且低输出电压Vout将突发模式控制信号Fon设置为高电平。定时器980周期性地将电压提升信号Fves设置为高电平,并且跨斜坡电压定时电容器Cramp所产生的充分高的电容器电压Vcap也将电压提升信号Fves设置为高电平。因此,功率转换器的突发操作模式的时间间隔被用来确定输出电压Vout的斜率以对该功率转换器的输出功率进行估计。耦合至功率转换器的输出的低功率负载被检测而使得该功率转换器能够进入突发操作模式。与电容器电压阈值V_cap_thresh相交的电容器电压Vcap被用作功率转换器的输出电压Vout的低斜率的指示器,并且相应地用作低功率负载的指示器。The result is that a sufficiently high output voltage Vout sets the burst mode control signal Fon low and a low output voltage Vout sets the burst mode control signal Fon high. The
现在转向图11,图示了根据本发明的原理而构造的利用耦合至功率转换器(例如,见图3、图7和图8的功率转换器)的输出电压Vout的第一电阻器Rsensel和第二电阻器Rsense2形成的电阻分压器的实施例的示图。该电阻分压器现在通过第一感测开关(例如,n沟道MOSFET)Qsense2耦合至运算放大器345的非反相输入,并且通过第二感测开关(例如,n沟道MOSFET)Qsensel耦合至接地端。突发模式控制信号Fon在功率转换器如突发模式控制信号Fon为低电平所指示的处于突发操作模式时打开第一感测开关Qsensel和第二感测开关Qsense2以减少功率损耗。Turning now to FIG. 11 , there is illustrated a first resistor Rsensel constructed in accordance with the principles of the present invention utilizing an output voltage Vout coupled to a power converter (see, for example, the power converters of FIGS. 3 , 7 and 8 ) and Diagram of an embodiment of a resistive voltage divider formed by the second resistor Rsense2. This resistive divider is now coupled to the non-inverting input of
用来对功率转换器的输出电压Vout进行调整的参考电压Vref通过电阻器R1耦合至电压源V1,并且通过另一电阻器R2耦合至电压提升信号Fves。以这种方式,电压提升信号Fves在电压提升信号Fves被设置为高电平时提升参考电压Vref。A reference voltage Vref used to regulate the output voltage Vout of the power converter is coupled to a voltage source V1 through a resistor R1 and coupled to a voltage boost signal Fves through another resistor R2. In this way, the voltage boost signal Fves boosts the reference voltage Vref when the voltage boost signal Fves is set to a high level.
现在转向图12,图示了根据本发明的原理而构造的可在突发模式控制器370中采用的电压提升电路的一部分的实施例的示图,其用于产生指示功率转换器(例如,见图3、图7和图8的功率转换器)的输出电压Vout的斜率的斜率信号Vslope。图12的电压提升电路的该部分是图9所示的突发模式控制器370的电流源950、第三比较器960、斜坡开关Qramp和斜坡电压定时电容器Cramp的替换形式。图12的电压提升电路的该部分替代图9所示的误差信号δv来感测输出电压Vout。电阻器Rrip通过电容器Crip耦合至输出电压Vout以感测输出电压Vout的导数。利用低通滤波器对该导数进行滤波以产生经滤波的斜率信号Vslope,利用耦合至滤波电容器Cfilter的滤波电阻器Rfilter来形成该低通滤波器。在一个实施例中,利用耦合至电容器Crip的电阻器Rrip形成的电路的时间常数是功率转换器的开关周期的倍数(例如,开关周期的10倍)。在一个实施例中,利用耦合至滤波电容器Cfilter的滤波电阻器Rfilter形成的低通滤波器的时间常数是功率转换器的开关周期的约数(例如,开关周期的0.01倍)。Turning now to FIG. 12 , illustrated is a diagram of an embodiment of a portion of a voltage boost circuit that may be employed in a
在互补间隔1-D期间,斜率信号Vslope可以被用来估计耦合至功率转换器的输出的输出或负载功率。该斜率信号Vslope耦合至比较器1220的非反相输入,并且比较器1220的反相输入耦合至斜率参考电压Vrefl。比较器1220的输出信号1230耦合至与(AND)门1240的输入,并且与(AND)门1240的另一输入耦合至栅极驱动信号GDM2,其表示在LLC级320(见图3)的互补间隔1-D期间至辅助功率开关M2的栅极驱动信号。与(AND)门1240的输出对应于输出信号990,其被用于参考图9图示并描述的第二置位-复位触发器970来设置电压提升信号Fves。During the complementary interval 1-D, the slope signal Vslope can be used to estimate the output or load power coupled to the output of the power converter. The slope signal Vslope is coupled to a non-inverting input of
输出电压Vout的电压斜率dVout/dt通过以下等式与负载功率相关:The voltage slope dVout/dt of the output voltage Vout is related to the load power by the following equation:
其中Cout是如图3所示的功率转换器的输出滤波电容器。Where Cout is the output filter capacitor of the power converter shown in Figure 3 .
输出信号1230可以被用来估计耦合至功率转换器的输出的负载功率,并且如果负载功率充分轻,则输出信号1230可以被用作另一种机制而使得能够进入突发操作模式(例如,通过设置电压提升信号Fves为高电平)。输出信号1230可以被用于其它开关模式的功率转换器来估计负载功率,并且不限于使得利用PFC级201和LLC级320形成的功率转换器能够进入突发操作模式。The
如以上就突发操作模式所提到的,功率转换器的功率损失取决于用于功率开关的栅极驱动信号以及通常基本上不随负载变化的其它持续功率损失。这些功率损失一般通过使用突发操作模式在非常低的功率水平处得以解决,其中在一段时间内(例如,一秒)使得控制器(诸如之前附图中的控制器325)无效随后为短时间(例如,10毫秒(ms))的高功率操作以提供具有低损耗的低平均输出功率。如这里所描述的控制器可以采用突发操作模式的时间间隔来估计功率转换器的输出(或负载)功率。As mentioned above with respect to the burst mode of operation, the power loss of the power converter depends on the gate drive signals for the power switches and other continuous power losses that generally do not vary substantially with load. These power losses are typically addressed at very low power levels by using a burst mode of operation in which a controller (such as
因此,这里已经对用于随功率转换器使用的突发模式控制器进行了介绍。在一个实施例中,该突发模式控制器包括突发模式发起电路,其被配置为在表示功率转换器的输出电压的信号与第一突发阈值水平相交时发起突发操作模式。该突发模式控制器还包括电压提升电路,其被配置为在时间窗口在表示功率转换器的输出电压的信号与第二突发阈值水平相交之前过期的情况下提供电压提升信号以升高输出电压。该突发模式发起电路还被配置为在表示功率转换器的输出电压的信号与第二突发阈值水平相交时终止突发操作模式。Therefore, a burst mode controller for use with a power converter has been described here. In one embodiment, the burst mode controller includes a burst mode initiating circuit configured to initiate a burst mode of operation when a signal representative of an output voltage of the power converter crosses a first burst threshold level. The burst mode controller also includes a voltage boost circuit configured to provide a voltage boost signal to boost the output if a time window expires before the signal representative of the output voltage of the power converter crosses the second burst threshold level Voltage. The burst mode initiating circuit is also configured to terminate the burst mode of operation when the signal representative of the output voltage of the power converter crosses a second burst threshold level.
该突发模式发起电路可以包括比较器,其被配置为将表示功率转换器的输出电压的信号与第一突发阈值水平进行比较。该突发模式发起电路还可以包括触发器,其被配置为在表示功率转换器的输出电压的信号与第一突发阈值水平相交时设置突发模式控制信号以发起突发操作模式。该电压提升电路可以包括电流源、斜坡电压定时电容器以及被配置为检测时间窗口是否过期的比较器。该电压提升电路还可以包括触发器,其被配置为设置电压提升信号以升高输出电压。该电压提升信号被配置为升高误差放大器的参考电压,该误差放大器被配置为对功率转换器的输出电压进行控制。该突发模式发起电路被配置为在表示功率转换器的输出电压的信号与第一突发阈值水平相交时使得电压提升信号无效。该突发模式控制器还可以包括定时器,其被配置为发起(和/或周期性地发起)电压提升信号以升高输出电压。The burst mode initiating circuit may include a comparator configured to compare a signal representative of the output voltage of the power converter to a first burst threshold level. The burst mode initiating circuit may also include a flip-flop configured to set the burst mode control signal to initiate the burst mode of operation when the signal representative of the output voltage of the power converter crosses the first burst threshold level. The voltage boost circuit may include a current source, a ramp voltage timing capacitor, and a comparator configured to detect expiration of a time window. The voltage boost circuit may also include a flip-flop configured to set a voltage boost signal to boost the output voltage. The voltage boost signal is configured to boost a reference voltage of an error amplifier configured to control the output voltage of the power converter. The burst mode initiating circuit is configured to deassert the voltage boost signal when the signal representative of the output voltage of the power converter crosses a first burst threshold level. The burst mode controller may also include a timer configured to initiate (and/or periodically initiate) a voltage boost signal to boost the output voltage.
该控制器和相关方法可以被实施为硬件(包含在包括诸如专用集成电路之类的集成电路的一个或多个芯片中),或者可以被实施为用于由处理器(例如,数字信号处理器)依据存储器来执行的软件或固件。特别地,在固件或软件的情况下,示例性实施例可以被提供为包括计算机可读介质的计算机程序产品,该计算机可读介质在其上包含计算机程序代码(即,软件或固件)以供处理器执行。The controller and associated methods may be implemented as hardware (contained in one or more chips including an integrated circuit such as an application specific integrated circuit), or may be implemented as a ) software or firmware executed from memory. In particular, in the case of firmware or software, exemplary embodiments may be provided as a computer program product comprising a computer-readable medium having computer program code (i.e., software or firmware) embodied thereon for providing Processor executes.
构成各个实施例的程序或代码段可以被存储在计算机可读介质中。例如,包括存储在计算机可读介质(例如,非瞬时计算机可读介质)中的程序代码的计算机程序产品可以形成各个实施例。“计算机可读介质”可以包括能够存储或传输信息的任意介质。计算机可读介质的示例包括电子电路、半导体存储器设备、只读存储器(ROM)、闪存、可擦除ROM(EROM)、软盘、光盘(CD)-ROM等。Programs or code segments constituting the various embodiments can be stored in computer-readable media. For example, a computer program product comprising program code stored on a computer-readable medium (eg, a non-transitory computer-readable medium) may form various embodiments. "Computer-readable medium" may include any medium that can store or transmit information. Examples of computer readable media include electronic circuits, semiconductor memory devices, read only memory (ROM), flash memory, erasable ROM (EROM), floppy disks, compact disk (CD)-ROMs, and the like.
本领域技术人员应当理解的是,之前所描述的包括包含位于直线核心体上的U形核心体的磁性结构的功率转换器以及形成该功率转换器的相关方法的实施例仅出于说明性的目的而被提交。虽然已经在功率转换器的环境中对磁性结构进行了描述,但是该磁性结构还可以被应用于其它系统,诸如但不限于功率放大器或电机控制器。Those skilled in the art will understand that the previously described embodiments of a power converter including a magnetic structure comprising a U-shaped core on a rectilinear core and associated methods of forming the power converter are for illustrative purposes only. submitted for the purpose. Although the magnetic structure has been described in the context of a power converter, the magnetic structure may also be applied to other systems such as, but not limited to, power amplifiers or motor controllers.
为了更好地理解功率转换器,参见Rudolph P.Severns和GordonBloom的“Modern DC-to-DC Power Switch-mode Power ConverterCircuits”(纽约州纽约市Van Nostrand Reinhold公司,1985),以及J.G.Kassakian、M.F.Schlecht和G.C.Verghese的“Principles of PowerElectronics”(Addison-Wesley,1991)。上述参考文献通过引用全文结合于此。For a better understanding of power converters, see "Modern DC-to-DC Power Switch-mode Power Converter Circuits" by Rudolph P. Severns and Gordon Bloom (Van Nostrand Reinhold Company, New York, NY, 1985), and J.G. Kassakian, M.F. Schlecht and "Principles of Power Electronics" by G.C. Verghese (Addison-Wesley, 1991). The above references are hereby incorporated by reference in their entirety.
而且,虽然已经对本发明及其优势进行了详细描述,但是应当理解的是,可以在其中进行各种改变、替换和变化而并不背离如由所附权利要求限定的本发明的精神和范围。例如,以上所讨论的许多过程可以以不同方法来实施以及被其它过程或其组合所替代。Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different ways and replaced by other processes or combinations thereof.
此外,本申请的范围并非意在被局限于说明书中所描述的过程、机器、制造品、物质组合、手段、方法和步骤的特定实施例。正如本领域技术人员将从本发明的公开内容容易意识到的,可以根据本发明对现有的或以后将要开发的与本文所描述的对应实施例执行基本上相同的功能或者获得基本上相同的结果的过程、机器、制造品、物质组合、手段、方法或步骤加以利用。因此,所附权利要求意在将这样的过程、机器、制造品、物质组合、手段、方法或步骤包括在其范围之内。Furthermore, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As those skilled in the art will readily appreciate from the disclosure of the present invention, it is possible to perform substantially the same functions or obtain substantially the same functions according to the present invention to existing or later developed corresponding embodiments as described herein. process, machine, manufacture, composition of matter, means, method or steps resulting in the utilization of Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/543,503 | 2012-07-06 | ||
US13/543,503 US9190898B2 (en) | 2012-07-06 | 2012-07-06 | Controller for a power converter and method of operating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103532392A true CN103532392A (en) | 2014-01-22 |
CN103532392B CN103532392B (en) | 2016-10-26 |
Family
ID=49780773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310278566.6A Active CN103532392B (en) | 2012-07-06 | 2013-06-28 | For the controller of power converter and the method that operates on it |
Country Status (3)
Country | Link |
---|---|
US (1) | US9190898B2 (en) |
CN (1) | CN103532392B (en) |
DE (1) | DE102013105485A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104079152A (en) * | 2014-07-17 | 2014-10-01 | 深圳威迈斯电源有限公司 | Power frequency ripple suppression method and device for LLC converter |
CN104578844A (en) * | 2014-12-22 | 2015-04-29 | 广州金升阳科技有限公司 | Switching mode power supply circuit |
CN105846659A (en) * | 2015-02-03 | 2016-08-10 | 通用电气公司 | Methods and systems for improving load transient response in isolated power converters |
CN104129714B (en) * | 2014-06-25 | 2016-08-31 | 苏州汇川技术有限公司 | Converter and control method for frequency thereof and crane |
CN106208753A (en) * | 2015-05-08 | 2016-12-07 | 光宝电子(广州)有限公司 | Intelligent pulse control circuit |
CN107147293A (en) * | 2017-06-01 | 2017-09-08 | 东莞市港奇电子有限公司 | A linkage voltage regulation control method, device and power supply for pre-stage pre-stabilization |
CN107370352A (en) * | 2016-05-13 | 2017-11-21 | 立锜科技股份有限公司 | Power supply with power factor correction function and control circuit and method thereof |
CN107852007A (en) * | 2015-07-21 | 2018-03-27 | 戴森技术有限公司 | Battery charger |
CN109004810A (en) * | 2017-06-06 | 2018-12-14 | 英飞凌科技奥地利有限公司 | For the method for operation power, power supply and for the controller of power supply |
CN109149733A (en) * | 2017-06-26 | 2019-01-04 | 现代自动车株式会社 | The control system and method for vehicle-mounted battery charger for vehicle |
CN110521101A (en) * | 2017-04-04 | 2019-11-29 | 雷诺股份公司 | Method for controlling charging equipment vehicle-mounted on electric or hybrid vehicle |
CN111835214A (en) * | 2019-04-23 | 2020-10-27 | 通嘉科技股份有限公司 | Method for sending and receiving commands between a master controller and a slave controller for a power converter |
CN112019017A (en) * | 2019-05-31 | 2020-12-01 | 广东美的制冷设备有限公司 | Drive control method, device, household appliance and computer readable storage medium |
CN112018997A (en) * | 2020-09-15 | 2020-12-01 | 矽力杰半导体技术(杭州)有限公司 | Switching power supply and intermittent power-saving mode control circuit and control method thereof |
CN113169677A (en) * | 2018-12-13 | 2021-07-23 | 电力集成公司 | Apparatus and method for a controllable network for varying power transfer between stages in a multi-stage power conversion system |
CN114051688A (en) * | 2021-02-07 | 2022-02-15 | 深圳欣锐科技股份有限公司 | Ripple current control method, system and equipment |
US11263959B2 (en) * | 2018-03-05 | 2022-03-01 | Samsung Electronics Co., Ltd. | Display apparatus for controlling output voltage of a display device to normally display image |
CN115021582A (en) * | 2022-08-04 | 2022-09-06 | 深圳市高斯宝电气技术有限公司 | Closed-loop control method of LLC switching power supply |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6168746B2 (en) * | 2012-10-10 | 2017-07-26 | キヤノン株式会社 | Switching power supply and image forming apparatus provided with switching power supply |
KR101422939B1 (en) * | 2012-12-05 | 2014-07-23 | 삼성전기주식회사 | Deriver device for power factor correction circuit |
US9335780B1 (en) * | 2013-01-07 | 2016-05-10 | Lockheed Martin Corporation | Input range expander for power supplies |
US9755534B2 (en) | 2013-02-14 | 2017-09-05 | Nuvolta Technologies, Inc. | High efficiency high frequency resonant power conversion |
CN204068706U (en) * | 2013-04-11 | 2014-12-31 | 雅达电子国际有限公司 | Multi-stage power converter |
TWI499167B (en) * | 2013-09-06 | 2015-09-01 | Delta Electronics Inc | Power supply conversion system and method of controlling the same |
CN104795984B (en) * | 2014-01-21 | 2017-09-26 | 华为技术有限公司 | Power supply changeover device |
US10141848B2 (en) * | 2014-07-11 | 2018-11-27 | Midea Group Co., Ltd. | Interleaved power factor corrector |
US9960686B2 (en) * | 2014-11-17 | 2018-05-01 | Infineon Technologies Austria Ag | System and method for detecting a loss of AC power in a switched-mode power supply |
GB2540750B (en) * | 2015-07-21 | 2019-04-17 | Dyson Technology Ltd | Power supply |
GB2540752B (en) * | 2015-07-21 | 2019-07-10 | Dyson Technology Ltd | Battery charger |
US10185295B2 (en) * | 2015-09-30 | 2019-01-22 | Osram Sylvania Inc. | Dynamic control of switching frequency in a switch mode power converter |
US9735690B2 (en) * | 2015-10-09 | 2017-08-15 | Dell Products, L.P. | Line frequency ripple reduction in a resonant converter |
JP6631277B2 (en) * | 2016-01-28 | 2020-01-15 | 富士電機株式会社 | Switching power supply |
TWM529194U (en) * | 2016-04-21 | 2016-09-21 | 群光電能科技股份有限公司 | Power adapter |
US10630167B2 (en) * | 2018-02-06 | 2020-04-21 | Infineon Technologies Austria Ag | Adaptive loading techniques to avoid negative voltage slope and output overshoot during system start-up |
TWM561825U (en) | 2018-02-12 | 2018-06-11 | Chicony Power Tech Co Ltd | Power conversion control circuit |
US10763756B2 (en) | 2018-12-13 | 2020-09-01 | Power Integrations, Inc. | Apparatus and methods for sensing resonant circuit signals to enhance control in a resonant converter |
US10797606B2 (en) * | 2018-12-13 | 2020-10-06 | Power Integrations, Inc. | Controller with limit control to change switching period or switching frequency of power converter and methods thereof |
CN112003455B (en) * | 2019-05-27 | 2022-04-29 | 台达电子工业股份有限公司 | Power supply and control method thereof |
US10985664B1 (en) | 2019-10-18 | 2021-04-20 | Raytheon Company | Controlling operation of a voltage converter based on transistor drain voltages |
US10938309B1 (en) | 2019-10-18 | 2021-03-02 | Raytheon Company | Controlling operation of a voltage converter based on inductor current |
US11424684B2 (en) * | 2020-06-10 | 2022-08-23 | Apple Inc. | High performance two stage power converter with enhanced light load management |
US11552563B2 (en) * | 2020-11-18 | 2023-01-10 | Apple Inc. | Voltage regulator with dv/dt detection |
TWI771882B (en) * | 2021-01-27 | 2022-07-21 | 群光電能科技股份有限公司 | Power converter device and driving method |
US11742808B1 (en) | 2022-09-15 | 2023-08-29 | University Of Houston System | Compact pulsed power supplies |
TWI837944B (en) * | 2022-11-15 | 2024-04-01 | 宏碁股份有限公司 | Power supply device with high output stability |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050099827A1 (en) * | 2003-11-11 | 2005-05-12 | Hitachi Ltd. | Resonant converter and control method thereof |
JP2005348560A (en) * | 2004-06-04 | 2005-12-15 | Sanken Electric Co Ltd | Switching power supply apparatus and power factor improving circuit |
CN101123395A (en) * | 2006-08-04 | 2008-02-13 | 凌特公司 | Circuit and method for adjustable peak inductor current and hysteresis in burst mode in switching regulator |
US20090072626A1 (en) * | 2005-05-26 | 2009-03-19 | Rohm Co., Ltd. | Power supply apparatus having switchable switching regulator and linear regulator |
US20100020578A1 (en) * | 2008-07-25 | 2010-01-28 | Samsung Electro-Mechanics Co., Ltd. | Adapter power supply |
Family Cites Families (411)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1376978A (en) | 1917-11-24 | 1921-05-03 | Cutler Hammer Mfg Co | Regulator for alternating currents |
US2387943A (en) | 1943-03-25 | 1945-10-30 | Westinghouse Electric Corp | Magnetic core structure |
US2473662A (en) | 1944-08-02 | 1949-06-21 | Lorain Prod Corp | Rectifying arrangement |
US3007060A (en) | 1959-03-23 | 1961-10-31 | Gen Dynamics Corp | Circuitry for independently delaying the leading and trailing edges of an input pulse |
US3346798A (en) | 1963-08-08 | 1967-10-10 | Gen Electric | Regulator for inverter |
US3358210A (en) | 1964-06-25 | 1967-12-12 | Gen Electric | Voltage regulator |
US3433998A (en) | 1965-04-24 | 1969-03-18 | Philips Corp | Circuit arrangement for frame correction |
US3484562A (en) | 1966-09-21 | 1969-12-16 | Nortronics Co | Magnetic transducer with clamped body sections to hold core pieces |
FR96147E (en) | 1967-09-14 | 1972-05-19 | Ibm | Converter improves direct current to direct current with constant power to the load. |
US3622868A (en) | 1970-02-06 | 1971-11-23 | Joachim H Todt | Regulating power transformer with magnetic shunt |
US3681679A (en) | 1971-05-07 | 1972-08-01 | Kheemoy Chung | Constant voltage transformer three-phase ferro resonant |
US3708742A (en) | 1971-06-30 | 1973-01-02 | Ibm | High dc to low dc voltage converter |
US3708744A (en) | 1971-08-18 | 1973-01-02 | Westinghouse Electric Corp | Regulating and filtering transformer |
US4019122A (en) | 1974-08-14 | 1977-04-19 | Telcon-Magnetic Cores Limited | Stabilized power supplies |
US4011498A (en) | 1975-06-26 | 1977-03-08 | General Electric Company | Controlling circuit |
US4075547A (en) | 1975-07-23 | 1978-02-21 | Frequency Technology, Inc. | Voltage regulating transformer |
US4327348A (en) | 1977-05-20 | 1982-04-27 | Tdk Electronics Co., Ltd. | Variable leakage transformer |
US4202031A (en) | 1978-11-01 | 1980-05-06 | General Electric Company | Static inverter employing an assymetrically energized inductor |
US4257087A (en) | 1979-04-02 | 1981-03-17 | California Institute Of Technology | DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits |
US4274071A (en) | 1979-11-16 | 1981-06-16 | Bell Telephone Laboratories, Incorporated | Three-phase ferroresonant transformer structure embodied in one unitary transformer construction |
JPS5797361U (en) | 1980-12-05 | 1982-06-15 | ||
US4570174A (en) | 1981-08-21 | 1986-02-11 | The United States Of America As Represented By The Secretary Of The Army | Vertical MESFET with air spaced gate electrode |
US4471423A (en) | 1982-02-17 | 1984-09-11 | Hase A M | Multi-voltage DC output with single reactor voltage control |
WO1984002365A1 (en) | 1982-12-07 | 1984-06-21 | Commw Scient Ind Res Org | Use of substituted 2-(2'-hydroxyaryl)-2h-benzotriazolesulfonates as photostabilising agents for natural and synthetic fibres |
US4577268A (en) | 1982-12-20 | 1986-03-18 | Rca Corporation | Switching dc-to-dc converters |
US4499481A (en) | 1983-09-14 | 1985-02-12 | The United States Of America As Represented By The Secretary Of The Navy | Heterojunction Schottky gate MESFET with lower channel ridge barrier |
US4613841A (en) | 1983-11-30 | 1986-09-23 | General Electric Company | Integrated transformer and inductor |
US4581691A (en) | 1984-04-23 | 1986-04-08 | At&T Bell Laboratories | Balanced constant current sensing circuit inherently immune to longitudinal currents |
US4636823A (en) | 1984-06-05 | 1987-01-13 | California Institute Of Technology | Vertical Schottky barrier gate field-effect transistor in GaAs/GaAlAs |
JPS61107813A (en) | 1984-10-30 | 1986-05-26 | Mitsubishi Electric Corp | Semiconductor device |
DE3575055D1 (en) | 1985-01-24 | 1990-02-01 | Bull Hn Information Syst | SIMPLY CONTROLLED POWER SUPPLY WITH LOAD COMPENSATION FROM Auxiliary Voltage Output. |
FR2586146A1 (en) | 1985-08-09 | 1987-02-13 | Pham Dang Tam | HIGH POWER ELECTRONIC VOLTAGE CONVERTER |
US4803609A (en) | 1985-10-31 | 1989-02-07 | International Business Machines Corporation | D. C. to D. C. converter |
US4785387A (en) | 1986-04-28 | 1988-11-15 | Virginia Tech Intellectual Properties, Inc. | Resonant converters with secondary-side resonance |
DE3632746C2 (en) | 1986-09-26 | 1995-04-13 | Kommunikations Elektronik | Circuit arrangement for generating an AC voltage |
US4780653A (en) | 1987-03-05 | 1988-10-25 | Pulse Electronics, Inc. | Anti-stall motor drive |
US4823249A (en) | 1987-04-27 | 1989-04-18 | American Telephone And Telegraph Company At&T Bell Laboratories | High-frequency resonant power converter |
DK382687A (en) | 1987-07-22 | 1989-04-14 | Scanpower | POWER SUPPLY CIRCUIT |
JPH01108917U (en) | 1988-01-18 | 1989-07-24 | ||
US4770668A (en) | 1988-01-19 | 1988-09-13 | National Starch And Chemical Corporation | Ethylene urea compositions useful as permanent press promoting chemicals |
US4903089A (en) | 1988-02-02 | 1990-02-20 | Massachusetts Institute Of Technology | Vertical transistor device fabricated with semiconductor regrowth |
US5106778A (en) | 1988-02-02 | 1992-04-21 | Massachusetts Institute Of Technology | Vertical transistor device fabricated with semiconductor regrowth |
US4876638A (en) | 1988-02-10 | 1989-10-24 | Electronic Research Group, Inc. | Low-noise switching power supply having variable reluctance transformer |
US4837496A (en) | 1988-03-28 | 1989-06-06 | Linear Technology Corporation | Low voltage current source/start-up circuit |
US4866367A (en) | 1988-04-11 | 1989-09-12 | Virginia Tech Intellectual Properties, Inc. | Multi-loop control for quasi-resonant converters |
JPH0779063B2 (en) | 1988-08-15 | 1995-08-23 | 三菱電機株式会社 | Phase adjustment transformer |
US5223449A (en) | 1989-02-16 | 1993-06-29 | Morris Francis J | Method of making an integrated circuit composed of group III-V compound field effect and bipolar semiconductors |
US5068756A (en) | 1989-02-16 | 1991-11-26 | Texas Instruments Incorporated | Integrated circuit composed of group III-V compound field effect and bipolar semiconductors |
US4962354A (en) | 1989-07-25 | 1990-10-09 | Superconductivity, Inc. | Superconductive voltage stabilizer |
US4922400A (en) | 1989-08-03 | 1990-05-01 | Sundstrand Corporation | Neutral forming circuit |
IT1231052B (en) | 1989-09-27 | 1991-11-12 | Bull Hn Information Syst | SWITCHING POWER SUPPLY WITH MULTIPLE OUTPUTS, ADJUSTING AN OUTPUT VOLTAGE AND LOAD COMPENSATION. |
US5027264A (en) | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
US4964028A (en) | 1989-10-26 | 1990-10-16 | Plessey Electronic Systems Corp. | Current limited quasi-resonant voltage converting power supply |
US5182535A (en) | 1989-12-19 | 1993-01-26 | Dhyanchand P John | Summing transformer core for star-delta inverter having a separate secondary winding for each primary winding |
US5177460A (en) | 1990-01-04 | 1993-01-05 | Dhyanchand P John | Summing transformer for star-delta inverter having a single secondary winding for each group of primary windings |
US5014178A (en) | 1990-05-14 | 1991-05-07 | Power Integrations, Inc. | Self powering technique for integrated switched mode power supply |
US5206621A (en) | 1990-07-02 | 1993-04-27 | General Electric Company | Barrel-wound conductive film transformer |
US5055991A (en) | 1990-10-12 | 1991-10-08 | Compaq Computer Corporation | Lossless snubber |
DK173534B1 (en) | 1990-11-14 | 2001-02-05 | Scanpower | Power supply circuit with integrated magnetic components |
US5126714A (en) | 1990-12-20 | 1992-06-30 | The United States Of America As Represented By The Secretary Of The Navy | Integrated circuit transformer |
US5132888A (en) | 1991-01-07 | 1992-07-21 | Unisys Corporation | Interleaved bridge converter |
GB2252208B (en) | 1991-01-24 | 1995-05-03 | Burr Brown Corp | Hybrid integrated circuit planar transformer |
US5291382A (en) | 1991-04-10 | 1994-03-01 | Lambda Electronics Inc. | Pulse width modulated DC/DC converter with reduced ripple current coponent stress and zero voltage switching capability |
US5134771A (en) | 1991-07-05 | 1992-08-04 | General Electric Company | Method for manufacturing and amorphous metal core for a transformer that includes steps for reducing core loss |
US5172309A (en) | 1991-08-07 | 1992-12-15 | General Electric Company | Auxiliary quasi-resonant dc link converter |
EP0529180B1 (en) | 1991-08-30 | 1996-03-20 | Alcatel Bell-Sdt S.A. | AC current detector and power supply circuit |
JP3311391B2 (en) | 1991-09-13 | 2002-08-05 | ヴィエルティー コーポレーション | Leakage inductance reducing transformer, high frequency circuit and power converter using the same, and method of reducing leakage inductance in transformer |
US5651667A (en) | 1991-10-11 | 1997-07-29 | Helix Technology Corporation | Cryopump synchronous motor load monitor |
US5208739A (en) | 1992-01-07 | 1993-05-04 | Powercube Corporation | Integrated magnetic power converter |
US5225971A (en) | 1992-01-08 | 1993-07-06 | International Business Machines Corporation | Three coil bridge transformer |
WO1993015396A1 (en) | 1992-01-31 | 1993-08-05 | Northrop Corporation | Arrayed eddy current probe system |
US5204809A (en) | 1992-04-03 | 1993-04-20 | International Business Machines Corporation | H-driver DC-to-DC converter utilizing mutual inductance |
US5305191A (en) | 1992-04-20 | 1994-04-19 | At&T Bell Laboratories | Drive circuit for zero-voltage switching power converter with controlled power switch turn-on |
US5468661A (en) | 1993-06-17 | 1995-11-21 | Texas Instruments Incorporated | Method of making power VFET device |
US5342795A (en) | 1992-04-30 | 1994-08-30 | Texas Instruments Incorporated | Method of fabricating power VFET gate-refill |
US5231037A (en) | 1992-04-30 | 1993-07-27 | Texas Instruments Incorporated | Method of making a power VFET device using a p+ carbon doped gate layer |
US5262930A (en) | 1992-06-12 | 1993-11-16 | The Center For Innovative Technology | Zero-voltage transition PWM converters |
US5244829A (en) | 1992-07-09 | 1993-09-14 | Texas Instruments Incorporated | Organometallic vapor-phase epitaxy process using (CH3)3 As and CCl4 for improving stability of carbon-doped GaAs |
US5336985A (en) | 1992-11-09 | 1994-08-09 | Compaq Computer Corp. | Tapped inductor slave regulating circuit |
US5343140A (en) | 1992-12-02 | 1994-08-30 | Motorola, Inc. | Zero-voltage-switching quasi-resonant converters with multi-resonant bipolar switch |
US5369042A (en) | 1993-03-05 | 1994-11-29 | Texas Instruments Incorporated | Enhanced performance bipolar transistor process |
US5303138A (en) | 1993-04-29 | 1994-04-12 | At&T Bell Laboratories | Low loss synchronous rectifier for application to clamped-mode power converters |
US6097046A (en) | 1993-04-30 | 2000-08-01 | Texas Instruments Incorporated | Vertical field effect transistor and diode |
US6229197B1 (en) | 1993-04-30 | 2001-05-08 | Texas Instruments Incorporated | Epitaxial overgrowth method and devices |
US5712189A (en) | 1993-04-30 | 1998-01-27 | Texas Instruments Incorporated | Epitaxial overgrowth method |
US5889298A (en) | 1993-04-30 | 1999-03-30 | Texas Instruments Incorporated | Vertical JFET field effect transistor |
US5554561A (en) | 1993-04-30 | 1996-09-10 | Texas Instruments Incorporated | Epitaxial overgrowth method |
WO1995002918A1 (en) | 1993-07-14 | 1995-01-26 | Melcher Ag | Synchronous rectifier resistant to feedback |
US5555494A (en) | 1993-09-13 | 1996-09-10 | Morris; George Q. | Magnetically integrated full wave DC to DC converter |
US5477175A (en) | 1993-10-25 | 1995-12-19 | Motorola | Off-line bootstrap startup circuit |
US5374887A (en) | 1993-11-12 | 1994-12-20 | Northern Telecom Limited | Inrush current limiting circuit |
US5539630A (en) | 1993-11-15 | 1996-07-23 | California Institute Of Technology | Soft-switching converter DC-to-DC isolated with voltage bidirectional switches on the secondary side of an isolation transformer |
US5610085A (en) | 1993-11-29 | 1997-03-11 | Texas Instruments Incorporated | Method of making a vertical FET using epitaxial overgrowth |
US5459652A (en) | 1994-01-28 | 1995-10-17 | Compaq Computer Corp. | Boot strap circuit for power up control of power supplies |
ATE153196T1 (en) | 1994-01-31 | 1997-05-15 | Siemens Ag | CIRCUIT ARRANGEMENT WITH A FIELD EFFECT TRANSISTOR |
US5523673A (en) | 1994-03-04 | 1996-06-04 | Marelco Power Systems, Inc. | Electrically controllable inductor |
JP3317045B2 (en) | 1994-10-14 | 2002-08-19 | 株式会社村田製作所 | Common mode choke coil |
US6208535B1 (en) | 1994-10-31 | 2001-03-27 | Texas Instruments Incorporated | Resonant gate driver |
JP3097485B2 (en) | 1995-02-03 | 2000-10-10 | 株式会社村田製作所 | choke coil |
JP3450929B2 (en) | 1995-03-23 | 2003-09-29 | 株式会社リコー | Switching power supply |
US5508903A (en) | 1995-04-21 | 1996-04-16 | Alexndrov; Felix | Interleaved DC to DC flyback converters with reduced current and voltage stresses |
EP0741447A3 (en) | 1995-05-04 | 1997-04-16 | At & T Corp | Circuit and method for controlling a synchronous recifier converter |
US5804943A (en) | 1995-05-12 | 1998-09-08 | Texas Instruments Incorporated | Resonant bilateral charging and discharging circuit |
US5756375A (en) | 1995-06-14 | 1998-05-26 | Texas Instruments Incorporated | Semiconductor growth method with thickness control |
US5783984A (en) | 1995-06-16 | 1998-07-21 | Hughes Electronics | Method and means for combining a transformer and inductor on a single core structure |
US5742491A (en) | 1995-08-09 | 1998-04-21 | Lucent Technologies Inc. | Power converter adaptively driven |
US5671131A (en) | 1995-08-25 | 1997-09-23 | Dell U.S.A. L.P. | Method and apparatus for detecting an isolated power switch |
US5760671A (en) | 1995-09-15 | 1998-06-02 | Celestica Inc. | Transformer with dual flux path |
US5663876A (en) | 1995-09-25 | 1997-09-02 | Lucent Technologies Inc. | Circuit and method for achieving zero ripple current in the output of a converter |
US5910665A (en) | 1995-12-29 | 1999-06-08 | Texas Instruments Incorporated | Low capacitance power VFET method and device |
US5784266A (en) | 1996-06-14 | 1998-07-21 | Virginia Power Technologies, Inc | Single magnetic low loss high frequency converter |
US5736842A (en) | 1996-07-11 | 1998-04-07 | Delta Electronics, Inc. | Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters |
US5734564A (en) | 1996-07-26 | 1998-03-31 | Lucent Technologies Inc. | High-efficiency switching power converter |
US5700703A (en) | 1996-08-06 | 1997-12-23 | Motorola | Method of fabricating buried control elements in semiconductor devices |
TW340280B (en) | 1996-09-06 | 1998-09-11 | Toko Inc | Interface module |
US5801522A (en) | 1996-09-26 | 1998-09-01 | Compaq Computer Corporation | Power limit circuit for computer system |
JP3215911B2 (en) | 1996-11-01 | 2001-10-09 | 株式会社呉竹精昇堂 | Multi-color ink for Japanese paper written with a brush |
JP3162639B2 (en) | 1996-11-22 | 2001-05-08 | 株式会社三社電機製作所 | Power supply |
US6008519A (en) | 1996-12-16 | 1999-12-28 | Texas Instruments Incorporated | Vertical transistor and method |
US5909110A (en) | 1996-12-17 | 1999-06-01 | Texas Insturments Incorporated | Integrated voltage regulator circuit with vertical transistor |
US5889660A (en) | 1997-03-06 | 1999-03-30 | Eaton Corporation | Isolated power supply for indicator light |
CA2232199C (en) | 1997-04-22 | 2000-02-22 | Kabushiki Kaisha Toshiba | Power converter with voltage drive switching element |
US5956578A (en) | 1997-04-23 | 1999-09-21 | Motorola, Inc. | Method of fabricating vertical FET with Schottky diode |
US6069799A (en) | 1997-05-14 | 2000-05-30 | Lucent Technologies Inc. | Self-synchronized drive circuit for a synchronous rectifier in a clamped-mode power converter |
US5870299A (en) | 1997-05-28 | 1999-02-09 | Lucent Technologies Inc. | Method and apparatus for damping ringing in self-driven synchronous rectifiers |
US6118351A (en) | 1997-06-10 | 2000-09-12 | Lucent Technologies Inc. | Micromagnetic device for power processing applications and method of manufacture therefor |
US5815386A (en) | 1997-06-19 | 1998-09-29 | Factor One, Inc. | Snubber for zero current switched networks |
US6011703A (en) | 1997-07-30 | 2000-01-04 | Lucent Technologies Inc. | Self-synchronized gate drive for power converter employing self-driven synchronous rectifier and method of operation thereof |
KR20000068693A (en) | 1997-08-04 | 2000-11-25 | 요트.게.아. 롤페즈 | Power supply using synchronous rectification |
FR2767612B1 (en) | 1997-08-21 | 2002-06-14 | Gec Alsthom Transport Sa | DIRECT CURRENT ENERGY CONVERSION DEVICE |
US5886508A (en) | 1997-08-29 | 1999-03-23 | Computer Products, Inc. | Multiple output voltages from a cascaded buck converter topology |
US5933338A (en) | 1997-10-14 | 1999-08-03 | Peco Ii, Inc. | Dual coupled current doubler rectification circuit |
US5870296A (en) | 1997-10-14 | 1999-02-09 | Maxim Integrated Products, Inc. | Dual interleaved DC to DC switching circuits realized in an integrated circuit |
US5907481A (en) | 1997-10-31 | 1999-05-25 | Telefonaktiebolaget Lm Ericsson | Double ended isolated D.C.--D.C. converter |
KR100297340B1 (en) | 1997-11-18 | 2001-10-26 | 이형도 | Asymmetry flyback converter |
US5999429A (en) | 1997-12-19 | 1999-12-07 | Dell Usa, L.P. | Bulk filter capacitor discharge in a switching power supply |
US5982640A (en) | 1998-02-03 | 1999-11-09 | Philips Electronics North America Corporation | Arrangement for reducing the effects of capacitive coupling in a control circuit for a switched-mode power supply |
US6046664A (en) | 1998-03-05 | 2000-04-04 | Century Manufacturing Company | Welding power supply transformer apparatus and method |
US6181231B1 (en) | 1998-04-06 | 2001-01-30 | Silicon Graphics, Inc. | Diamond-based transformers and power convertors |
US6060943A (en) | 1998-04-14 | 2000-05-09 | Nmb (Usa) Inc. | Circuit simulating a diode |
US6469564B1 (en) | 1998-04-14 | 2002-10-22 | Minebea Co., Ltd. | Circuit simulating a diode |
US6317021B1 (en) | 1998-05-18 | 2001-11-13 | Nmb (Usa) Inc. | Variable inductor |
US5940287A (en) | 1998-07-14 | 1999-08-17 | Lucent Technologies Inc. | Controller for a synchronous rectifier and power converter employing the same |
US6156611A (en) | 1998-07-20 | 2000-12-05 | Motorola, Inc. | Method of fabricating vertical FET with sidewall gate electrode |
US6084792A (en) | 1998-08-21 | 2000-07-04 | Vpt, Inc. | Power converter with circuits for providing gate driving |
JP2000068132A (en) | 1998-08-26 | 2000-03-03 | Toko Inc | Inverter transformer |
US6309918B1 (en) | 1998-09-21 | 2001-10-30 | Motorola, Inc. | Manufacturable GaAs VFET process |
DE69814073T2 (en) | 1998-09-23 | 2004-01-22 | Stmicroelectronics S.R.L., Agrate Brianza | Fully integrated turn-on control loop of a high-voltage power transistor of a quasi-resonant flyback converter |
US6091616A (en) | 1998-10-21 | 2000-07-18 | Lucent Technologies Inc. | Drive compensation circuit for synchronous rectifier and method of operating the same |
JP2000152617A (en) | 1998-11-10 | 2000-05-30 | Sony Corp | Switching power supply |
KR100293979B1 (en) | 1998-11-10 | 2001-09-17 | 김덕중 | Switching Mode Power Supply |
US6144187A (en) | 1998-11-12 | 2000-11-07 | Fairchild Semiconductor Corporation | Power measurement for adaptive battery charger |
US6963178B1 (en) | 1998-12-07 | 2005-11-08 | Systel Development And Industries Ltd. | Apparatus for controlling operation of gas discharge devices |
US6069798A (en) | 1999-01-14 | 2000-05-30 | Lucent Technologies Inc. | Asymmetrical power converter and method of operation thereof |
JP2000260639A (en) | 1999-03-11 | 2000-09-22 | Murata Mfg Co Ltd | Coil device and switching power supply device |
US6295217B1 (en) | 1999-03-26 | 2001-09-25 | Sarnoff Corporation | Low power dissipation power supply and controller |
US6498367B1 (en) | 1999-04-01 | 2002-12-24 | Apd Semiconductor, Inc. | Discrete integrated circuit rectifier device |
US6147886A (en) | 1999-05-15 | 2000-11-14 | Technical Witts, Inc. | Dual opposed interleaved coupled inductor soft switching converters |
US6212084B1 (en) | 1999-05-17 | 2001-04-03 | Page Aerospace Limited | Active rectifier |
JP3829534B2 (en) | 1999-05-26 | 2006-10-04 | 松下電工株式会社 | Discharge lamp lighting device |
US6323090B1 (en) | 1999-06-09 | 2001-11-27 | Ixys Corporation | Semiconductor device with trenched substrate and method |
US6094038A (en) | 1999-06-28 | 2000-07-25 | Semtech Corporation | Buck converter with inductive turn ratio optimization |
US6160374A (en) | 1999-08-02 | 2000-12-12 | General Motors Corporation | Power-factor-corrected single-stage inductive charger |
US7393247B1 (en) | 2005-03-08 | 2008-07-01 | Super Talent Electronics, Inc. | Architectures for external SATA-based flash memory devices |
US7021971B2 (en) | 2003-09-11 | 2006-04-04 | Super Talent Electronics, Inc. | Dual-personality extended-USB plug and receptacle with PCI-Express or Serial-At-Attachment extensions |
US6320490B1 (en) | 1999-08-13 | 2001-11-20 | Space Systems/Loral, Inc. | Integrated planar transformer and inductor assembly |
US6163466A (en) | 1999-09-16 | 2000-12-19 | Lucent Technologies, Inc. | Asymmetrical DC/DC converter having output current doubler |
US6325035B1 (en) | 1999-09-30 | 2001-12-04 | Caterpillar Inc. | Method and apparatus for starting an engine using capacitor supplied voltage |
US6215290B1 (en) | 1999-11-15 | 2001-04-10 | Semtech Corporation | Multi-phase and multi-module power supplies with balanced current between phases and modules |
EP1152518B1 (en) | 1999-12-09 | 2005-05-25 | Sanken Electric Co., Ltd. | Dc-dc converter |
US6539299B2 (en) | 2000-02-18 | 2003-03-25 | Optimum Power Technology | Apparatus and method for calibrating an engine management system |
US6351396B1 (en) | 2000-03-04 | 2002-02-26 | Mark Elliott Jacobs | Method and apparatus for dynamically altering operation of a converter device to improve conversion efficiency |
SE0000759L (en) | 2000-03-10 | 2001-11-12 | Ericsson Telefon Ab L M | Synchronous rectification in a flyback converter |
US6400579B2 (en) | 2000-03-24 | 2002-06-04 | Slobodan Cuk | Lossless switching DC to DC converter with DC transformer |
SE517685C2 (en) | 2000-03-24 | 2002-07-02 | Ericsson Telefon Ab L M | Method and apparatus for controlling a synchronous rectifier in a DC converter |
DE60035100T2 (en) | 2000-04-10 | 2008-01-31 | Stmicroelectronics S.R.L., Agrate Brianza | Method and device for digitally controlling the turn-off time of synchronous rectifiers for switching power supplies with isolated topologies |
WO2001082460A1 (en) | 2000-04-21 | 2001-11-01 | Fujitsu Limited | Switching dc-dc converter |
US6188586B1 (en) | 2000-04-21 | 2001-02-13 | Lucent Technologies Inc. | Asymmetrical half-bridge power converter having reduced input ripple and method of manufacturing the same |
US6348848B1 (en) | 2000-05-04 | 2002-02-19 | Edward Herbert | Transformer having fractional turn windings |
US6304460B1 (en) | 2000-05-05 | 2001-10-16 | Slobodan Cuk | Switching DC-to-DC converter utilizing a soft switching technique |
TR200200038T1 (en) | 2000-05-10 | 2002-08-21 | Sony Corporation | Dual voltage output resonance switching power supply circuit. |
US20020057080A1 (en) | 2000-06-02 | 2002-05-16 | Iwatt | Optimized digital regulation of switching power supply |
US6344986B1 (en) | 2000-06-15 | 2002-02-05 | Astec International Limited | Topology and control method for power factor correction |
US6668296B1 (en) | 2000-06-30 | 2003-12-23 | Hewlett-Packard Development Company, L.P. | Powering a notebook across a USB interface |
US6218891B1 (en) | 2000-07-28 | 2001-04-17 | Lucent Technologies Inc. | Integrated circuit including a driver for a metal-semiconductor field-effect transistor |
US6392902B1 (en) | 2000-08-31 | 2002-05-21 | Delta Electronics, Inc. | Soft-switched full-bridge converter |
JP4395881B2 (en) | 2000-09-06 | 2010-01-13 | Tdkラムダ株式会社 | Synchronous rectifier circuit for switching power supply |
US6373734B1 (en) | 2000-09-15 | 2002-04-16 | Artesyn Technologies, Inc. | Power factor correction control circuit and power supply including same |
US6559689B1 (en) | 2000-10-02 | 2003-05-06 | Allegro Microsystems, Inc. | Circuit providing a control voltage to a switch and including a capacitor |
JP2004514389A (en) | 2000-11-01 | 2004-05-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Switch mode power supply |
US6262564B1 (en) | 2000-11-10 | 2001-07-17 | Lucent Technologies Inc. | Driver for a controllable switch in a power converter |
US6831847B2 (en) | 2000-11-20 | 2004-12-14 | Artesyn Technologies, Inc. | Synchronous rectifier drive circuit and power supply including same |
US6570268B1 (en) | 2000-11-20 | 2003-05-27 | Artesyn Technologies, Inc. | Synchronous rectifier drive circuit and power supply including same |
US6414578B1 (en) | 2000-12-18 | 2002-07-02 | Ascom Energy Systems Ag | Method and apparatus for transmitting a signal through a power magnetic structure |
US6396718B1 (en) | 2000-12-19 | 2002-05-28 | Semiconductor Components Industries Llc | Switch mode power supply using transformer flux sensing for duty cycle control |
JP2002199718A (en) | 2000-12-22 | 2002-07-12 | Sony Corp | Resonance-type switching power supply device |
US6525603B1 (en) | 2001-01-05 | 2003-02-25 | Remec, Inc. | Feedforward amplifier linearization adapting off modulation |
US6388898B1 (en) | 2001-01-22 | 2002-05-14 | Delta Electronics, Inc. | Dc/dc power processor with distributed rectifier stage |
US6580627B2 (en) | 2001-01-29 | 2003-06-17 | International Rectifier Corporation | Voltage sensing with high and low side signals for deadtime compensation and shutdown for short circuit protection |
US6804125B2 (en) | 2001-02-01 | 2004-10-12 | Di/Dt Inc. | Isolated drive circuitry used in switch-mode power converters |
US6504321B2 (en) | 2001-02-06 | 2003-01-07 | Koninklijke Philips Electronics N.V. | Universal hardware/software feedback control for high-frequency signals |
US6466461B2 (en) | 2001-02-09 | 2002-10-15 | Netpower Technologies, Inc. | Method and circuit for reducing voltage level variation in a bias voltage in a power converter |
US6674658B2 (en) | 2001-02-09 | 2004-01-06 | Netpower Technologies, Inc. | Power converter including circuits for improved operational control of synchronous rectifiers therein |
JP2002244069A (en) | 2001-02-19 | 2002-08-28 | Nec Corp | Laser scanning optical device and laser scanning method using this optical device |
WO2002069068A1 (en) | 2001-02-22 | 2002-09-06 | Virginia Tech Intellectual Properties, Inc. | Multiphase clamp coupled-buck converter and magnetic integration |
JP3872331B2 (en) | 2001-03-07 | 2007-01-24 | 富士通株式会社 | DC-DC converter and power supply circuit |
DE10112820A1 (en) | 2001-03-16 | 2002-10-02 | Bosch Gmbh Robert | Measuring currents in multi-phase converters involves performing a current or voltage measurements on pairs of half bridges combined to form current measurement units |
US6362986B1 (en) | 2001-03-22 | 2002-03-26 | Volterra, Inc. | Voltage converter with coupled inductive windings, and associated methods |
US6545453B2 (en) | 2001-04-03 | 2003-04-08 | Abb Inc. | Systems and methods for providing voltage regulation externally to a power transformer |
JP4122721B2 (en) | 2001-04-09 | 2008-07-23 | サンケン電気株式会社 | Switching power supply |
DE10119106A1 (en) | 2001-04-19 | 2002-10-24 | Philips Corp Intellectual Pty | Transformer for switch-mode power supply, has three cores formed as separate components and with air gaps between |
US6512352B2 (en) | 2001-06-07 | 2003-01-28 | Koninklijke Philips Electronics N.V. | Active clamp step-down converter with power switch voltage clamping function |
US6696910B2 (en) | 2001-07-12 | 2004-02-24 | Custom One Design, Inc. | Planar inductors and method of manufacturing thereof |
FI118026B (en) | 2001-08-07 | 2007-05-31 | Salcomp Oy | Use of a rectified image voltage to control the switch on the primary side of a switching type power source |
JP3661666B2 (en) | 2001-08-10 | 2005-06-15 | 株式会社村田製作所 | Isolated switching power supply |
JP3571012B2 (en) | 2001-08-17 | 2004-09-29 | Tdk株式会社 | Switching power supply |
US6501193B1 (en) | 2001-09-07 | 2002-12-31 | Power-One, Inc. | Power converter having regulated dual outputs |
US6563725B2 (en) | 2001-10-03 | 2003-05-13 | Bruce W. Carsten | Apparatus and method for control and driving BJT used as synchronous rectifier |
US6597592B2 (en) | 2001-10-03 | 2003-07-22 | Bruce W. Carsten | Apparatus and method for turning off BJT used as controlled rectifier |
WO2003032477A2 (en) | 2001-10-12 | 2003-04-17 | Northeastern University | Integrated magnetics for a dc-dc converter with flexible output inductor |
US6548992B1 (en) | 2001-10-18 | 2003-04-15 | Innoveta Technologies, Inc. | Integrated power supply protection circuit |
US6552917B1 (en) | 2001-11-05 | 2003-04-22 | Koninklijke Philips Electronics N.V. | System and method for regulating multiple outputs in a DC-DC converter |
US20040148047A1 (en) | 2001-12-18 | 2004-07-29 | Dismukes John P | Hierarchical methodology for productivity measurement and improvement of productions systems |
US6731486B2 (en) | 2001-12-19 | 2004-05-04 | Fairchild Semiconductor Corporation | Output-powered over-voltage protection circuit |
US6636025B1 (en) * | 2002-01-09 | 2003-10-21 | Asic Advantage, Inc. | Controller for switch mode power supply |
JP3789364B2 (en) | 2002-01-24 | 2006-06-21 | Tdk株式会社 | Two-stage DC-DC converter |
US6975098B2 (en) * | 2002-01-31 | 2005-12-13 | Vlt, Inc. | Factorized power architecture with point of load sine amplitude converters |
US6483724B1 (en) | 2002-02-15 | 2002-11-19 | Valere Power, Inc. | DC/DC ZVS full bridge converter power supply method and apparatus |
US6549436B1 (en) | 2002-02-21 | 2003-04-15 | Innovative Technology Licensing Llc | Integrated magnetic converter circuit and method with improved filtering |
US20040034555A1 (en) | 2002-03-18 | 2004-02-19 | Dismukes John P. | Hierarchical methodology for productivity measurement and improvement of complex production systems |
US7558082B2 (en) | 2002-03-29 | 2009-07-07 | Det International Holding Limited | Method and apparatus for controlling a synchronous rectifier |
TW595077B (en) | 2002-04-03 | 2004-06-21 | Int Rectifier Corp | Synchronous buck converter improvements |
EP1495475B1 (en) | 2002-04-12 | 2008-05-07 | DET International Holding Limited | Low profile magnetic element |
CN1452308A (en) | 2002-04-18 | 2003-10-29 | 姜涛 | Environment protection switch power supply |
US7280026B2 (en) | 2002-04-18 | 2007-10-09 | Coldwatt, Inc. | Extended E matrix integrated magnetics (MIM) core |
US6873237B2 (en) | 2002-04-18 | 2005-03-29 | Innovative Technology Licensing, Llc | Core structure |
US7046523B2 (en) | 2002-04-18 | 2006-05-16 | Coldwatt, Inc. | Core structure and interleaved DC—DC converter topology |
SE0201432D0 (en) | 2002-04-29 | 2002-05-13 | Emerson Energy Systems Ab | A Power supply system and apparatus |
US6614206B1 (en) | 2002-05-23 | 2003-09-02 | Palm, Inc. | Universal USB charging accessory |
US6751106B2 (en) | 2002-07-25 | 2004-06-15 | General Electric Company | Cross current control for power converter systems and integrated magnetic choke assembly |
US6661276B1 (en) | 2002-07-29 | 2003-12-09 | Lovoltech Inc. | MOSFET driver matching circuit for an enhancement mode JFET |
US6765810B2 (en) | 2002-08-02 | 2004-07-20 | Artesyn Technologies, Inc. | Full-wave coupled inductor power converter having synchronous rectifiers and two input switches that are simultaneously off for a time period of each switching cycle |
US6813170B2 (en) | 2002-08-19 | 2004-11-02 | Semtech Corporation | Multiple output power supply having soft start protection for load over-current or short circuit conditions |
DE10238824A1 (en) | 2002-08-23 | 2004-03-11 | Forschungszentrum Jülich GmbH | Method and device for the rapid tomographic measurement of the electrical conductivity distribution in a sample |
US6944033B1 (en) | 2002-11-08 | 2005-09-13 | Va Tech Intellectual Properties | Multi-phase interleaving isolated DC/DC converter |
KR100525393B1 (en) | 2002-11-26 | 2005-11-02 | 엘지전자 주식회사 | A Power Supply |
US6867678B2 (en) | 2003-01-28 | 2005-03-15 | Entrust Power Co., Ltd. | Transformer structure |
DE60308135T2 (en) | 2003-01-31 | 2006-12-21 | Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto | Sensor device, measuring system and method for calibration |
US6741099B1 (en) | 2003-01-31 | 2004-05-25 | Power-One Limited | Transistor driver circuit |
JP3705495B2 (en) | 2003-02-03 | 2005-10-12 | Smk株式会社 | Constant current output control method and constant current output control device for switching power supply circuit |
US6882548B1 (en) | 2003-02-24 | 2005-04-19 | Tyco Electronics Power Systems, Inc. | Auxiliary active clamp circuit, a method of clamping a voltage of a rectifier switch and a power converter employing the circuit or method |
JP4289904B2 (en) | 2003-02-27 | 2009-07-01 | キヤノン株式会社 | AC-DC converter |
DE10310361B4 (en) | 2003-03-10 | 2005-04-28 | Friwo Mobile Power Gmbh | Control circuit for switching power supply |
TW200421103A (en) | 2003-04-10 | 2004-10-16 | Benq Corp | Connecting wire for universal serial bus interface |
US7583555B2 (en) | 2003-04-11 | 2009-09-01 | Qualcomm Incorporated | Robust and Efficient dynamic voltage scaling for portable devices |
US20040217794A1 (en) | 2003-04-30 | 2004-11-04 | Mark Strysko | Propagation delay adjustment circuit |
US6862194B2 (en) | 2003-06-18 | 2005-03-01 | System General Corp. | Flyback power converter having a constant voltage and a constant current output under primary-side PWM control |
US6856149B2 (en) | 2003-06-19 | 2005-02-15 | Niko Semiconductor Co., Ltd. | Current detecting circuit AC/DC flyback switching power supply |
US6839247B1 (en) | 2003-07-10 | 2005-01-04 | System General Corp. | PFC-PWM controller having a power saving means |
US7095638B2 (en) | 2003-09-03 | 2006-08-22 | Tyco Electronics Power Systems, Inc. | Controller for complementary switches of a power converter and method of operation thereof |
US6906934B2 (en) | 2003-09-04 | 2005-06-14 | System General Corp. | Integrated start-up circuit with reduced power consumption |
US6992524B2 (en) | 2003-09-08 | 2006-01-31 | Skyworks Solutions, Inc. | Quiescent current control circuit for high-power amplifiers |
US7009486B1 (en) | 2003-09-18 | 2006-03-07 | Keithley Instruments, Inc. | Low noise power transformer |
AT501424B1 (en) | 2003-10-31 | 2008-08-15 | Fronius Int Gmbh | METHOD FOR AN INVERTER AND INVERTER, ESPECIALLY SOLAR CHANGEARK |
DE10352509A1 (en) | 2003-11-11 | 2005-06-02 | Robert Bosch Gmbh | Method for operating a pulse width modulation controlled electric motor |
US7489225B2 (en) | 2003-11-17 | 2009-02-10 | Pulse Engineering, Inc. | Precision inductive devices and methods |
US7148669B2 (en) | 2004-02-02 | 2006-12-12 | The Regents Of The University Of Colorado, A Body Corporate | Predictive digital current controllers for switching power converters |
US7034586B2 (en) | 2004-03-05 | 2006-04-25 | Intersil Americas Inc. | Startup circuit for converter with pre-biased load |
US6982887B2 (en) | 2004-04-26 | 2006-01-03 | Astec International Limited | DC-DC converter with coupled-inductors current-doubler |
TWI278875B (en) | 2004-04-30 | 2007-04-11 | Hon Hai Prec Ind Co Ltd | DC transformer with output inductor integrated on the magnetic core thereof and a DC/DC converter employing the same |
US7431862B2 (en) | 2004-04-30 | 2008-10-07 | Coldwatt, Inc. | Synthesis of magnetic, dielectric or phosphorescent NANO composites |
WO2005109618A1 (en) | 2004-05-07 | 2005-11-17 | Matsushita Electric Industrial Co., Ltd. | Resonant switching power supply device |
FR2870403B1 (en) | 2004-05-11 | 2007-09-14 | Thales Sa | AC / DC CONVERTER WITH LOW ANHARMONIC CURRENTS |
US20050281058A1 (en) | 2004-06-21 | 2005-12-22 | Issa Batarseh | Dynamic optimization of efficiency using dead time and FET drive control |
US7136293B2 (en) | 2004-06-24 | 2006-11-14 | Petkov Roumen D | Full wave series resonant type DC to DC power converter with integrated magnetics |
US7098640B2 (en) | 2004-07-06 | 2006-08-29 | International Rectifier Corporation | Method and apparatus for intelligently setting dead time |
CA2484957A1 (en) | 2004-07-07 | 2006-01-07 | Veris Industries, Llc | Split core sensing transformer |
JP4064377B2 (en) | 2004-07-20 | 2008-03-19 | 松下電器産業株式会社 | Switching power supply device and semiconductor device for switching power supply |
US6977824B1 (en) | 2004-08-09 | 2005-12-20 | System General Corp. | Control circuit for controlling output current at the primary side of a power converter |
US7170268B2 (en) | 2004-08-09 | 2007-01-30 | Lite-On Technology Corporation | DC to DC converter with high frequency zigzag transformer |
US7016204B2 (en) | 2004-08-12 | 2006-03-21 | System General Corp. | Close-loop PWM controller for primary-side controlled power converters |
US6980077B1 (en) | 2004-08-19 | 2005-12-27 | Coldwatt, Inc. | Composite magnetic core for switch-mode power converters |
US7012414B1 (en) | 2004-08-19 | 2006-03-14 | Coldwatt, Inc. | Vertically packaged switched-mode power converter |
US7427910B2 (en) | 2004-08-19 | 2008-09-23 | Coldwatt, Inc. | Winding structure for efficient switch-mode power converters |
US7321283B2 (en) | 2004-08-19 | 2008-01-22 | Coldwatt, Inc. | Vertical winding structures for planar magnetic switched-mode power converters |
US7362593B2 (en) | 2004-09-16 | 2008-04-22 | System General Corp. | Switching control circuit having off-time modulation to improve efficiency of primary-side controlled power supply |
US7362592B2 (en) | 2004-09-16 | 2008-04-22 | System General Corp. | Switching control circuit for primary-side controlled power converters |
US7348612B2 (en) | 2004-10-29 | 2008-03-25 | Cree, Inc. | Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same |
US7075799B2 (en) | 2004-11-23 | 2006-07-11 | Power-One, Inc. | Self-driven synchronous rectifier circuit |
GB0500183D0 (en) | 2005-01-07 | 2005-02-16 | Koninkl Philips Electronics Nv | Switched mode power supply |
JP2006211744A (en) | 2005-01-25 | 2006-08-10 | Sony Corp | Switching power supply circuit |
US7417875B2 (en) | 2005-02-08 | 2008-08-26 | Coldwatt, Inc. | Power converter employing integrated magnetics with a current multiplier rectifier and method of operating the same |
US7176662B2 (en) | 2005-02-23 | 2007-02-13 | Coldwatt, Inc. | Power converter employing a tapped inductor and integrated magnetics and method of operating the same |
US7385375B2 (en) | 2005-02-23 | 2008-06-10 | Coldwatt, Inc. | Control circuit for a depletion mode switch and method of operating the same |
US7876191B2 (en) | 2005-02-23 | 2011-01-25 | Flextronics International Usa, Inc. | Power converter employing a tapped inductor and integrated magnetics and method of operating the same |
US7076360B1 (en) | 2005-03-15 | 2006-07-11 | Thomas Tsoi Hei Ma | Auto-ignition timing control and calibration method |
US20070241721A1 (en) | 2005-03-21 | 2007-10-18 | Eveready Battery Company, Inc. | Direct current power supply |
US7439556B2 (en) | 2005-03-29 | 2008-10-21 | Coldwatt, Inc. | Substrate driven field-effect transistor |
US7439557B2 (en) | 2005-03-29 | 2008-10-21 | Coldwatt, Inc. | Semiconductor device having a lateral channel and contacts on opposing surfaces thereof |
WO2006104268A1 (en) | 2005-03-31 | 2006-10-05 | Toyota Jidosha Kabushiki Kaisha | Voltage converting apparatus and vehicle |
JP4219909B2 (en) | 2005-03-31 | 2009-02-04 | Tdk株式会社 | Filter circuit and power supply device |
EP1710900A2 (en) | 2005-04-08 | 2006-10-11 | Sony Corporation | Switching power supply including a resonant converter |
US20060237968A1 (en) | 2005-04-20 | 2006-10-26 | Rockwell Scientific Licensing, Llc | High efficiency power converter for energy harvesting devices |
US7339208B2 (en) | 2005-05-13 | 2008-03-04 | Coldwatt, Inc. | Semiconductor device having multiple lateral channels and method of forming the same |
US7386404B2 (en) | 2005-05-27 | 2008-06-10 | Savi Technology, Inc. | Method and apparatus for monitoring battery discharge state |
FR2888396B1 (en) | 2005-07-05 | 2007-09-21 | Centre Nat Rech Scient | METHOD AND DEVICE FOR SUPPLYING A MAGNETIC COUPLER |
WO2007003967A2 (en) | 2005-07-06 | 2007-01-11 | Cambridge Semiconductor Limited | Switch mode power supply control systems |
US20070007942A1 (en) | 2005-07-08 | 2007-01-11 | Microchip Technology Incorporated | Automatic non-linear phase response calibration and compensation for a power measurement device |
US7453709B2 (en) | 2005-07-08 | 2008-11-18 | Power Integrations, Inc. | Method and apparatus for increasing the power capability of a power supply |
TWM280051U (en) | 2005-07-08 | 2005-11-01 | Pchome Online Inc | Internet protocol phone having female stereo connector |
JP4573197B2 (en) | 2005-07-21 | 2010-11-04 | Smc株式会社 | Solenoid valve drive control device |
US7285807B2 (en) | 2005-08-25 | 2007-10-23 | Coldwatt, Inc. | Semiconductor device having substrate-driven field-effect transistor and Schottky diode and method of forming the same |
US7269038B2 (en) | 2005-09-12 | 2007-09-11 | Fairchild Semiconductor Corporation | Vrms and rectified current sense full-bridge synchronous-rectification integrated with PFC |
US7061358B1 (en) | 2005-09-12 | 2006-06-13 | Sen-Tai Yang | Structure of inductance core and wire frame |
JP4849972B2 (en) | 2005-09-15 | 2012-01-11 | パナソニック株式会社 | Communication device, communication system, image acquisition device, moving image acquisition device, and setting method thereof |
US7462891B2 (en) | 2005-09-27 | 2008-12-09 | Coldwatt, Inc. | Semiconductor device having an interconnect with sloped walls and method of forming the same |
US7558539B2 (en) | 2005-09-30 | 2009-07-07 | Freescale Semiconductor, Inc. | Power control feedback loop for adjusting a magnitude of an output signal |
US7375994B2 (en) * | 2005-10-11 | 2008-05-20 | Texas Instruments Incorporated | Highly efficient isolated AC/DC power conversion technique |
US7099163B1 (en) | 2005-11-14 | 2006-08-29 | Bcd Semiconductor Manufacturing Limited | PWM controller with constant output power limit for a power supply |
CN100525044C (en) | 2005-11-28 | 2009-08-05 | 伊博电源(杭州)有限公司 | Self driving circuit for three winding reverse exciting converter synchronous rectifier |
WO2007069481A1 (en) | 2005-12-14 | 2007-06-21 | Sharp Kabushiki Kaisha | Discharge lamp ignition device |
US20070139984A1 (en) * | 2005-12-20 | 2007-06-21 | Yu-Kang Lo | Resonant conversion control method and device with a very low standby power consumption |
KR101017017B1 (en) | 2006-01-10 | 2011-02-23 | 삼성전자주식회사 | DC-DC Converters |
CN2904469Y (en) | 2006-01-13 | 2007-05-23 | 北京动力源科技股份有限公司 | Driving circuit for synchronous rectifying |
TW200740089A (en) | 2006-03-07 | 2007-10-16 | Rohm Co Ltd | Capacitor charging apparatus |
US20070222463A1 (en) | 2006-03-23 | 2007-09-27 | Qahouq Jaber A | Power conversion efficiency management |
JP2007281224A (en) | 2006-04-07 | 2007-10-25 | Sony Corp | Transformer |
GB2438465B (en) | 2006-05-23 | 2008-05-21 | Cambridge Semiconductor Ltd | Switch mode power supply controllers |
WO2007135453A2 (en) | 2006-05-23 | 2007-11-29 | Cambridge Semiconductor Limited | Switch mode power supply controllers |
GB2438464A (en) | 2006-05-23 | 2007-11-28 | Cambridge Semiconductor Ltd | Regulating the output of a switch mode power supply |
US7663183B2 (en) | 2006-06-21 | 2010-02-16 | Flextronics International Usa, Inc. | Vertical field-effect transistor and method of forming the same |
US7541640B2 (en) | 2006-06-21 | 2009-06-02 | Flextronics International Usa, Inc. | Vertical field-effect transistor and method of forming the same |
US8415737B2 (en) | 2006-06-21 | 2013-04-09 | Flextronics International Usa, Inc. | Semiconductor device with a pillar region and method of forming the same |
US7746041B2 (en) | 2006-06-27 | 2010-06-29 | Virginia Tech Intellectual Properties, Inc. | Non-isolated bus converters with voltage divider topology |
CN101106850A (en) | 2006-07-12 | 2008-01-16 | 鸿富锦精密工业(深圳)有限公司 | LED driver circuit |
US20080012423A1 (en) | 2006-07-13 | 2008-01-17 | Emile Mimran | USB connector devices for charging |
US7471523B2 (en) | 2006-08-15 | 2008-12-30 | System General Corp. | Method and apparatus for detecting demagnetizing time of magnetic device |
US8125205B2 (en) | 2006-08-31 | 2012-02-28 | Flextronics International Usa, Inc. | Power converter employing regulators with a coupled inductor |
JP2008092635A (en) | 2006-09-29 | 2008-04-17 | Ricoh Co Ltd | Synchronous rectifying type switching regulator, control circuit of synchronous rectifying type switching regulator, and operation control method of synchronous rectifying type switching regulator |
JP4934403B2 (en) | 2006-10-31 | 2012-05-16 | ローム株式会社 | Power control circuit |
US7667986B2 (en) | 2006-12-01 | 2010-02-23 | Flextronics International Usa, Inc. | Power system with power converters having an adaptive controller |
US7675759B2 (en) | 2006-12-01 | 2010-03-09 | Flextronics International Usa, Inc. | Power system with power converters having an adaptive controller |
US7889517B2 (en) | 2006-12-01 | 2011-02-15 | Flextronics International Usa, Inc. | Power system with power converters having an adaptive controller |
US7675758B2 (en) | 2006-12-01 | 2010-03-09 | Flextronics International Usa, Inc. | Power converter with an adaptive controller and method of operating the same |
US20080137381A1 (en) | 2006-12-12 | 2008-06-12 | Matthew Beasley | Generation of auxiliary voltages in a ballast |
US7940035B2 (en) | 2007-01-19 | 2011-05-10 | System General Corp. | Control circuit having an impedance modulation controlling power converter for saving power |
US7848117B2 (en) * | 2007-01-22 | 2010-12-07 | Power Integrations, Inc. | Control arrangement for a resonant mode power converter |
US7778051B2 (en) | 2007-03-14 | 2010-08-17 | System General Corp. | Output current control circuit for power converter with a changeable switching frequency |
US7468649B2 (en) | 2007-03-14 | 2008-12-23 | Flextronics International Usa, Inc. | Isolated power converter |
JP4608519B2 (en) * | 2007-05-11 | 2011-01-12 | 株式会社ナナオ | Switching power supply |
US8278889B2 (en) | 2007-05-30 | 2012-10-02 | Texas Instruments Incorporated | Adaptive rectifier architecture and method for switching regulators |
US7906941B2 (en) | 2007-06-19 | 2011-03-15 | Flextronics International Usa, Inc. | System and method for estimating input power for a power processing circuit |
JP5138287B2 (en) | 2007-06-27 | 2013-02-06 | 三菱電機株式会社 | Gate drive device |
US7787264B2 (en) | 2007-07-25 | 2010-08-31 | System General Corp. | Apparatus to provide synchronous rectifying circuit for flyback power converters |
US7788531B2 (en) | 2007-07-31 | 2010-08-31 | Cove Distribution, Inc. | Generation of backing electric current on the basis of a combination of components |
TWI358187B (en) | 2007-08-16 | 2012-02-11 | Delta Electronics Inc | Magnetic integrated circuit for multiphase interle |
US7626370B1 (en) | 2007-09-21 | 2009-12-01 | National Semiconductor Corporation | Apparatus and method for hysteretic boost DC-DC converter |
US8576586B2 (en) | 2007-09-28 | 2013-11-05 | Iwatt Inc. | Dynamic drive of switching transistor of switching power converter |
CN101816119B (en) | 2007-10-02 | 2013-04-03 | 三菱电机株式会社 | Gate driving circuit |
CN100511949C (en) | 2007-10-17 | 2009-07-08 | 上海优昌电源科技有限公司 | Capacitance decompression AC-DC switch power source |
TWI380565B (en) | 2007-10-26 | 2012-12-21 | Niko Semiconductor Co Ltd | Three terminal integrated synchronous rectifier and flyback synchronous rectifying circuit |
JP5230181B2 (en) | 2007-12-07 | 2013-07-10 | パナソニック株式会社 | Energy transfer device and semiconductor device for energy transfer control |
CN101489335B (en) | 2008-01-18 | 2012-12-19 | 尼克森微电子股份有限公司 | Light-emitting diode driving circuit and its secondary side controller |
US20090257250A1 (en) | 2008-04-15 | 2009-10-15 | Green Mark Technology Inc. | Synchronous rectifier dc/dc converters using a controlled-coupling sense winding |
US8749209B2 (en) | 2008-05-05 | 2014-06-10 | Infineon Technologies Austria Ag | System and method for providing adaptive dead times |
TWI390378B (en) | 2008-05-14 | 2013-03-21 | Richtek Technology Corp | Control circuit and method of Chi - back power converter |
US8693213B2 (en) | 2008-05-21 | 2014-04-08 | Flextronics Ap, Llc | Resonant power factor correction converter |
US7965528B2 (en) | 2008-06-13 | 2011-06-21 | System General Corporation | Method and apparatus for measuring the switching current of power converter operated at continuous current mode |
US20090315530A1 (en) | 2008-06-18 | 2009-12-24 | Shailendra Kumar Baranwal | Pulse controlled soft start scheme for buck converter |
CN201252294Y (en) | 2008-07-29 | 2009-06-03 | 黄金富 | SUPER-USB connecting device provided with load power supply terminal |
US8184456B1 (en) * | 2008-08-26 | 2012-05-22 | International Rectifier Corporation | Adaptive power converter and related circuitry |
US7817447B2 (en) * | 2008-08-30 | 2010-10-19 | Active-Semi, Inc. | Accurate voltage regulation of a primary-side regulation power supply in continuous conduction mode operation |
CN102217181B (en) | 2008-11-14 | 2014-09-03 | 伟创力国际美国公司 | Driver for a synchronous rectifier and power converter employing the same |
US8330389B2 (en) * | 2008-12-31 | 2012-12-11 | Stmicroelectronics S.R.L. | Switching power supply system for optical sources or a load requiring a controlled supply current |
US8179699B2 (en) | 2008-12-31 | 2012-05-15 | Stmicroelectronics S.R.L. | Method for controlling a switching regulator and related switching regulator |
US8644041B2 (en) | 2009-01-14 | 2014-02-04 | Nxp B.V. | PFC with high efficiency at low load |
WO2010083514A1 (en) | 2009-01-19 | 2010-07-22 | Flextronics International Usa, Inc. | Controller for a power converter |
WO2010083511A1 (en) | 2009-01-19 | 2010-07-22 | Flextronics International Usa, Inc. | Controller for a power converter |
CN101826796B (en) | 2009-03-02 | 2015-10-21 | 昂宝电子(上海)有限公司 | Utilize quasi resonator system and the method for Multi-model control |
US9019061B2 (en) | 2009-03-31 | 2015-04-28 | Power Systems Technologies, Ltd. | Magnetic device formed with U-shaped core pieces and power converter employing the same |
US8643222B2 (en) | 2009-06-17 | 2014-02-04 | Power Systems Technologies Ltd | Power adapter employing a power reducer |
US8514593B2 (en) | 2009-06-17 | 2013-08-20 | Power Systems Technologies, Ltd. | Power converter employing a variable switching frequency and a magnetic device with a non-uniform gap |
US9077248B2 (en) | 2009-06-17 | 2015-07-07 | Power Systems Technologies Ltd | Start-up circuit for a power adapter |
TWI393337B (en) * | 2009-07-31 | 2013-04-11 | Delta Electronics Inc | Two stage switching power conversion circuit |
US8638578B2 (en) | 2009-08-14 | 2014-01-28 | Power System Technologies, Ltd. | Power converter including a charge pump employable in a power adapter |
US8373400B2 (en) | 2009-09-15 | 2013-02-12 | Intersil Americas Inc. | System and method for smoothing mode transitions in a voltage supply |
CN101668369A (en) * | 2009-10-01 | 2010-03-10 | 英飞特电子(杭州)有限公司 | High-efficiency constant-current LED driver |
TWI411212B (en) | 2009-10-20 | 2013-10-01 | Alpha & Omega Semiconductor | High efficiency energy control method in single inductor converter |
KR101031217B1 (en) * | 2009-10-21 | 2011-04-27 | 주식회사 오리엔트전자 | Two-stage isolated bidirectional DC / DC power converter using LLC resonant converter operating at fixed rate |
US8976549B2 (en) | 2009-12-03 | 2015-03-10 | Power Systems Technologies, Ltd. | Startup circuit including first and second Schmitt triggers and power converter employing the same |
US8520420B2 (en) | 2009-12-18 | 2013-08-27 | Power Systems Technologies, Ltd. | Controller for modifying dead time between switches in a power converter |
US8059429B2 (en) | 2009-12-31 | 2011-11-15 | Active-Semi, Inc. | Using output drop detection pulses to achieve fast transient response from a low-power mode |
US8787043B2 (en) | 2010-01-22 | 2014-07-22 | Power Systems Technologies, Ltd. | Controller for a power converter and method of operating the same |
CN102870320B (en) | 2010-03-17 | 2016-11-02 | 电力系统技术有限公司 | The control system of power converter and operational approach thereof |
US20110239008A1 (en) | 2010-03-26 | 2011-09-29 | Lam Kean W | Power Adapter Having a Universal Serial Bus Hub |
JP2011211836A (en) | 2010-03-30 | 2011-10-20 | Panasonic Corp | Switching device driving unit and semiconductor apparatus |
TWI445440B (en) | 2011-03-22 | 2014-07-11 | Green Solution Tech Co Ltd | Driving circuit |
US8502461B2 (en) | 2010-05-25 | 2013-08-06 | Green Solution Technology Co., Ltd. | Driving circuit and control circuit |
CN101834541B (en) | 2010-06-02 | 2013-03-13 | 英飞特电子(杭州)股份有限公司 | Constant current circuit with high power factor |
CN102340251B (en) | 2010-07-20 | 2014-06-04 | 台达电子工业股份有限公司 | AC-DC converter and its control circuit |
US8792257B2 (en) | 2011-03-25 | 2014-07-29 | Power Systems Technologies, Ltd. | Power converter with reduced power dissipation |
US9735673B2 (en) | 2011-03-30 | 2017-08-15 | Infineon Technologies Ag | Burst-mode operation of a switching converter |
US8681513B2 (en) * | 2011-06-28 | 2014-03-25 | General Electric Company | Optimization of a power converter employing an LLC converter |
US20140254215A1 (en) | 2011-08-29 | 2014-09-11 | Power Systems Technologies Ltd. | Controller for a power converter and method of operating the same |
CN102412727B (en) | 2011-11-25 | 2014-02-19 | 成都芯源系统有限公司 | Switching power supply, control circuit thereof and dimming method |
US9143043B2 (en) | 2012-03-01 | 2015-09-22 | Infineon Technologies Ag | Multi-mode operation and control of a resonant converter |
US9602018B2 (en) | 2012-03-20 | 2017-03-21 | Infineon Technologies Austria Ag | Power converter with reduced power consumption in standby mode |
US20140091720A1 (en) * | 2012-09-28 | 2014-04-03 | Power Systems Technologies, Ltd. | Controller for Use with a Power Converter and Method of Operating the Same |
US20140091718A1 (en) | 2012-09-28 | 2014-04-03 | Power Systems Technologies, Ltd. | Power Converter with an Inductor-Inductor-Capacitor Stage and Method of Operating the Same |
US20150098254A1 (en) | 2013-10-09 | 2015-04-09 | Power Systems Technologies Ltd. | Controller for use with a power converter and method of operating the same |
US9300206B2 (en) | 2013-11-15 | 2016-03-29 | Power Systems Technologies Ltd. | Method for estimating power of a power converter |
-
2012
- 2012-07-06 US US13/543,503 patent/US9190898B2/en active Active
-
2013
- 2013-05-28 DE DE102013105485.4A patent/DE102013105485A1/en not_active Ceased
- 2013-06-28 CN CN201310278566.6A patent/CN103532392B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050099827A1 (en) * | 2003-11-11 | 2005-05-12 | Hitachi Ltd. | Resonant converter and control method thereof |
JP2005348560A (en) * | 2004-06-04 | 2005-12-15 | Sanken Electric Co Ltd | Switching power supply apparatus and power factor improving circuit |
US20090072626A1 (en) * | 2005-05-26 | 2009-03-19 | Rohm Co., Ltd. | Power supply apparatus having switchable switching regulator and linear regulator |
CN101123395A (en) * | 2006-08-04 | 2008-02-13 | 凌特公司 | Circuit and method for adjustable peak inductor current and hysteresis in burst mode in switching regulator |
US20100020578A1 (en) * | 2008-07-25 | 2010-01-28 | Samsung Electro-Mechanics Co., Ltd. | Adapter power supply |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104129714B (en) * | 2014-06-25 | 2016-08-31 | 苏州汇川技术有限公司 | Converter and control method for frequency thereof and crane |
CN104079152B (en) * | 2014-07-17 | 2016-07-06 | 深圳威迈斯电源有限公司 | Working frequency ripple wave suppressing method and device thereof for LLC changer |
CN104079152A (en) * | 2014-07-17 | 2014-10-01 | 深圳威迈斯电源有限公司 | Power frequency ripple suppression method and device for LLC converter |
CN104578844B (en) * | 2014-12-22 | 2017-04-19 | 广州金升阳科技有限公司 | Switching mode power supply circuit |
CN104578844A (en) * | 2014-12-22 | 2015-04-29 | 广州金升阳科技有限公司 | Switching mode power supply circuit |
CN105846659A (en) * | 2015-02-03 | 2016-08-10 | 通用电气公司 | Methods and systems for improving load transient response in isolated power converters |
CN105846659B (en) * | 2015-02-03 | 2020-08-18 | Abb瑞士股份有限公司 | Method and system for improving load transient response in power conversion systems |
CN106208753A (en) * | 2015-05-08 | 2016-12-07 | 光宝电子(广州)有限公司 | Intelligent pulse control circuit |
CN106208753B (en) * | 2015-05-08 | 2019-05-10 | 光宝电子(广州)有限公司 | Intelligent pulse control circuit |
CN107852007A (en) * | 2015-07-21 | 2018-03-27 | 戴森技术有限公司 | Battery charger |
CN107370352A (en) * | 2016-05-13 | 2017-11-21 | 立锜科技股份有限公司 | Power supply with power factor correction function and control circuit and method thereof |
CN107370352B (en) * | 2016-05-13 | 2019-07-02 | 立锜科技股份有限公司 | Power supply with power factor correction function and control circuit and method thereof |
CN110521101A (en) * | 2017-04-04 | 2019-11-29 | 雷诺股份公司 | Method for controlling charging equipment vehicle-mounted on electric or hybrid vehicle |
CN110521101B (en) * | 2017-04-04 | 2023-05-30 | 雷诺股份公司 | Method for controlling an on-board charging device on an electric or hybrid vehicle |
CN107147293A (en) * | 2017-06-01 | 2017-09-08 | 东莞市港奇电子有限公司 | A linkage voltage regulation control method, device and power supply for pre-stage pre-stabilization |
CN109004810B (en) * | 2017-06-06 | 2020-09-08 | 英飞凌科技奥地利有限公司 | Method for operating a power supply, power supply and controller for a power supply |
CN109004810A (en) * | 2017-06-06 | 2018-12-14 | 英飞凌科技奥地利有限公司 | For the method for operation power, power supply and for the controller of power supply |
CN109149733A (en) * | 2017-06-26 | 2019-01-04 | 现代自动车株式会社 | The control system and method for vehicle-mounted battery charger for vehicle |
CN109149733B (en) * | 2017-06-26 | 2023-09-01 | 现代自动车株式会社 | Control system and method for an on-board battery charger of a vehicle |
US11263959B2 (en) * | 2018-03-05 | 2022-03-01 | Samsung Electronics Co., Ltd. | Display apparatus for controlling output voltage of a display device to normally display image |
CN113169677A (en) * | 2018-12-13 | 2021-07-23 | 电力集成公司 | Apparatus and method for a controllable network for varying power transfer between stages in a multi-stage power conversion system |
US12119743B2 (en) | 2018-12-13 | 2024-10-15 | Power Integrations, Inc. | Apparatus and methods for controllable networks to vary inter-stage power transfer in a multi-stage power conversion system |
CN111835214A (en) * | 2019-04-23 | 2020-10-27 | 通嘉科技股份有限公司 | Method for sending and receiving commands between a master controller and a slave controller for a power converter |
CN112019017A (en) * | 2019-05-31 | 2020-12-01 | 广东美的制冷设备有限公司 | Drive control method, device, household appliance and computer readable storage medium |
CN112018997B (en) * | 2020-09-15 | 2022-02-22 | 矽力杰半导体技术(杭州)有限公司 | Switching power supply and intermittent power-saving mode control circuit and control method thereof |
CN112018997A (en) * | 2020-09-15 | 2020-12-01 | 矽力杰半导体技术(杭州)有限公司 | Switching power supply and intermittent power-saving mode control circuit and control method thereof |
US11909301B2 (en) | 2020-09-15 | 2024-02-20 | Silergy Semiconductor Technology (Hangzhou) Co., Ltd. | Switching power supply and intermittent power saving mode control circuit and method thereof |
CN114051688A (en) * | 2021-02-07 | 2022-02-15 | 深圳欣锐科技股份有限公司 | Ripple current control method, system and equipment |
CN114051688B (en) * | 2021-02-07 | 2022-07-12 | 深圳欣锐科技股份有限公司 | Ripple current control method, system, circuit, charging device and vehicle |
CN115021582A (en) * | 2022-08-04 | 2022-09-06 | 深圳市高斯宝电气技术有限公司 | Closed-loop control method of LLC switching power supply |
CN115021582B (en) * | 2022-08-04 | 2023-01-10 | 深圳市高斯宝电气技术有限公司 | Closed-loop control method of LLC switching power supply |
Also Published As
Publication number | Publication date |
---|---|
DE102013105485A1 (en) | 2014-01-09 |
US9190898B2 (en) | 2015-11-17 |
CN103532392B (en) | 2016-10-26 |
US20140009978A1 (en) | 2014-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103532392B (en) | For the controller of power converter and the method that operates on it | |
US20140009970A1 (en) | Controller for a Power Converter and Method of Operating the Same | |
US20140091720A1 (en) | Controller for Use with a Power Converter and Method of Operating the Same | |
US20150198634A1 (en) | Controller for use with a power converter and method of operating the same | |
CN212323991U (en) | Control circuit and power factor correction preconditioner | |
TWI423569B (en) | Isolated flyback converter with efficient light load operation | |
EP2639951B1 (en) | Flyback converter | |
US8520420B2 (en) | Controller for modifying dead time between switches in a power converter | |
US20150098254A1 (en) | Controller for use with a power converter and method of operating the same | |
JP6255577B2 (en) | DC power supply circuit | |
US20140254215A1 (en) | Controller for a power converter and method of operating the same | |
US20140097813A1 (en) | Current parking response to transient load demands | |
US9515545B2 (en) | Power conversion with external parameter detection | |
JP2012085523A (en) | Controller with punctuated switching control circuit | |
CN103312200A (en) | Power converter, current limiting unit, control circuit and related control method | |
JP2010063327A (en) | Switching power supply unit | |
JP2017060385A (en) | Hybrid boost-bypass function in two-stage converter | |
JP2014099948A (en) | Switching power supply device | |
US20160087534A1 (en) | Methods and power controllers for primary side control | |
JP2006094696A (en) | Power factor correcting circuit and its output voltage control method | |
JP2016052207A (en) | High efficiency power factor correction circuit and switching power supply | |
CN116250377A (en) | System and method for determining mains voltage of a power supply | |
TWI407668B (en) | Power supply and method for suppressing voltage ripple on output voltage source of a power supply | |
US20240396473A1 (en) | Dynamic control of ac-dc power converter pfc front end during load transients | |
Martin et al. | A very simple analog control for QSW-ZVS source/sink buck converter with seamless mode transition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |