CN103518138A - 一种惯性传感器的制造方法 - Google Patents

一种惯性传感器的制造方法 Download PDF

Info

Publication number
CN103518138A
CN103518138A CN201280010090.1A CN201280010090A CN103518138A CN 103518138 A CN103518138 A CN 103518138A CN 201280010090 A CN201280010090 A CN 201280010090A CN 103518138 A CN103518138 A CN 103518138A
Authority
CN
China
Prior art keywords
substrate
active layer
thickness
active
measurement beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280010090.1A
Other languages
English (en)
Inventor
史蒂法纳·雷纳德
安托万·菲利佩
若埃尔·科莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tronics Microsystems SA
Original Assignee
Tronics Microsystems SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tronics Microsystems SA filed Critical Tronics Microsystems SA
Publication of CN103518138A publication Critical patent/CN103518138A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/096Feed-through, via through the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/088Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system for providing wafer-level encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种制造惯性传感器的方法。惯性传感器包括至少一个测量梁(23)和一个由标准质量块(13)以及可变形板(14)构成的活性体,所述活性体通过板(14)被保持悬浮在一个密闭腔内,测量梁(23)将与标准质量块(13)的一部分连接至前述密闭腔的内壁,所述测量梁(23)的厚度比标准质量块(13)小。

Description

一种惯性传感器的制造方法
技术领域
本发明涉及惯性传感器领域,例如加速度计或者速率陀螺仪,其形成于MEMS(“微机电系统”)或NEMS(“纳机电系统”)技术中。
本发明尤其涉及一种制造谐振式或者具有例如为压阻式的变阻器的惯性梁测量传感器的方法。
背景技术
一个惯性传感器,例如加速度计,尤其能够测量载有加速度计的物体的加速度。这样的传感器特别地包括一个标准质量块(也称为检测质量块),该质量块接合至一个或若干测量梁。当传感器移动时,标准质量块受到惯性力作用,引起梁的张力。
对于谐振式测量梁,标准质量块的质量引起的张力导致谐振器频率的改变。对于可变阻力式测量梁,如压阻式,标准质量块的质量引起的张力导致电阻的改变。通过这样的性能可以计算加速度。
通常,用一个大质量的标准质量块来最大化移动中的惯性力是比较好的方法,这样可以对测量梁产生足够的张力。除此之外,用厚度尽可能小的测量梁去最大化由标准质量块作用于测量梁上的张力也是比较好的。
文献EP2211185公开了一种传感器,该传感器的标准质量块的厚度大于梁,同时该文献还公开了两种基于SOI(“绝缘体上硅结构”)技术制造该传感器的方法。
根据上述文献中描述的第一种制造方法,首先将应变计蚀刻于SOI基片的表层,然后覆盖上保护层。接着硅外延被应用于该表层上以便获得用于形成标准质量块的具有理想厚度的层。然而,外延生长技术实施起来很繁重而且昂贵并且不能生成大厚度的硅层。由于这些限制,很难使得所述标准质量块取得优化尺寸及质量,以最大化应变计上的张力
根据上述文献中描述的第二种制造方法,首先将标准质量块蚀刻于SOI基片。纳米厚度的多晶硅层淀积形成应变计。然而,小厚度多晶硅层还是难以控制,而且他们的机械和电子特性并不像单晶硅层那么好。另外,像这么薄的淀积物可能受张力影响,例如会产生影响应变计性能的形变。因此,用此方法是很难得到一个拥有最优化传感器灵敏度的机械和电子特性的应变计。
因此这样的解决方案是不能够让人满意的,因为我们必须要在低厚度应变计但会损害标准质量块质量的方案和大质量标准质量块却会损害应变计灵敏性的方案之间做出选择。
发明内容
在这样的背景下,本发明的目的特别地在于提供一种新的惯性传感器制造方法,该方法突破了前述方法的限制。本发明特别在于提供一种制造方法能够优化标准质量块的尺寸和应变计的尺寸,以提升传感器的性能。本发明特别地提供一种有更好性能的传感器,该传感器包括一个更低厚度的单晶硅应变计和一个更大质量的标准质量块。
因此本发明的目的在于一种惯性传感器的制造方法,包括至少:
形成至少一个由标准质量块和可变形板(例如,线性弹簧或者扭转轴)构成的活性体,该活性体蚀刻于第一基片的第一活性层,所述活性层有第一厚度。
形成至少一个测量梁,蚀刻于第二基片的第二活性层,所述第二活性层有低于第一厚度的第二厚度。
密封第一活性层与第二活性层。
移除第一基片的非活性层,通过蚀刻第三基片形成第一空腔。
密封第三基片与第一基片的活性层,活性体被置于第一空腔中。
移除第二基片的非活性层。
蚀刻第四基片形成第二空腔。
密封第四基片与第二基片的活性层。
该方法特别地提供了对梁和活性体的尺寸更好的控制,因此能优化活性体和梁的厚度。该方法特别地能够获得非常低厚度的测量梁和更大质量的标准质量块。此外,可能对测量臂性能造成恶化的张力被全程控制。因此,测量梁的灵敏度被提升了,不受标准质量块质量的局限。换言之,大质量的标准质量块和低厚度的测量梁的组合提供了更好的惯性测量检测的灵敏度。
作为优选,该方法进一步包括形成处于活性体和测量梁之间的电接触。例如,这样的电接触可以在密封第一活性层与第二活性层时形成,这样的密封能够形成梁和活性体之间的机械接触和电接触。
根据一个实施例,测量梁由压阻材料制成的应变计构成,该压阻材料的电阻根据质量块上受到的张力改变。
根据另一个实施例,测量梁是一种机械谐振器,该谐振频率随质量块上的张力改变。例如,谐振器包括振动板,激励装置,检测振动装置。
例如,第一厚度和第二厚度的比值大于或等于5.
该制造方法进一步包括:
形成至少一个凹处,所述凹处穿过所述第三基片的厚度直至露出第一基片;以及
在所述凹处沉淀出电接触点。
优选的,包围测量梁和活性体的介质为真空,以限制传感器分辨率的退化。
优选的,所有制造方法中的密封过程都在真空或者在可控气体下进行。真空优选于形成谐振式惯性传感器,可控气体优选于形成压阻应变计式惯性传感器。
例如,测量梁由单晶硅制成,适量掺杂以助于提高压阻梁的灵敏度。
标准质量块也由单晶硅制成。
有利的,第一和第二基片都是SOI型。
该发明的目的还在于一个惯性传感器,包含至少一个测量梁和一个由标准质量块和可变形板构成的活性体,所述活性体通过板悬浮放置在一个密闭腔中,测量梁与标准质量块在前述密闭腔的内壁上部分相连,所述测量梁比标准质量块厚度小。
附图说明
本发明的上述和其它特征及优点将在下面的非限制性的描述中结合附
图详细讨论,图1至图15为简化视图,阐明了根据本发明的一个实施例的制造惯性传感器的方法的步骤。
具体实施方式
参阅附图15,根据一个发明实施例,一个压阻式或者谐振式惯性传感器,特别地包括压阻式或者谐振式测量梁23和一个由可移动标准质量块13和可变形板14构成的活性体。标准质量块13被悬浮放置于一个密闭腔30,40中,测量梁23与可变形板在腔内壁部分相连。特别地,测量梁23的厚度小于标准质量块13.因此,对于谐振式测量梁23,标准质量块13的偏转产生谐振器频率的变化。对于压阻应变计式测量臂23,标准质量块13的偏转引起应变计电阻的变化,该变化可以通过凹处内的电接触片恢复。
制造这样一个传感器的方法将在下面依据图1至15进行描述。
从第一基片1开始(图1),该基片可以是SOI圆片材质,包含一个第一活性层10,具有第一厚度e1,例如,约在10μm到100μm之间,以及一个由绝缘层11(例如,氧化层)制成的非活性层和一个支持层12(或,体),在第一活性层10上进行蚀刻。该蚀刻(图2),例如,DRIE(“深反应离子蚀刻”)式,包括在第一活性层10上形成标准质量块13和可变形板14。换言之,第一活性层包含标准质量块13,可变形板14,和一个框架15.
从第二基片2开始(图3),该基片也可以是SOI圆片材质,包含一个第二活性层20,具有第二厚度e2,例如,约100nm至1μm之间,以及一个由绝缘层21制成的非活性层和一个支持层22,在第一活性层20上进行蚀刻。该蚀刻(图4),例如,光刻,在第二活性层20上形成测量梁23.
然后对第一和第二活性层10,20进行密封,达到机械密封的同时可变形板和测量梁电接触(图5,6)。对于另一个配置(附图中未显示),测量梁可以放置在标准质量块13和框架15之间。当然也可以在两活性层10,20之间独立于机械接触形成电接触。
为了脱离活性体并将其封装,非活性层,即第一基片的绝缘层11和支持层12要被移除。换言之,悬浮的标准质量块13通过测量梁23连接于第二基片2。
从第三基片3(图8),特别地包括一个绝缘层31(例如,氧化层)和一个支持层32(或,体),形成一个能够含有活性体的第一空腔30,例如,通过DRIE式蚀刻。例如,第一空腔30处于绝缘层中并深入部分支持层中,如图8所示。
然后密封第三基片(图9,10)与第一基片的活性层,以使活性体内含于第一空腔30.换言之,密封第三基片绝缘层31的自由表面与第一活性层的框架15的自由表面。
类似的,移除非活性层,即移除第二基片2的绝缘层21和支持层22。
从第四基片4(图12)开始,特别地包括绝缘层41(例如,氧化层)和一个支持层42(或,体),形成第二空腔40,例如,通过DRIE式蚀刻。例如,第二空腔30处于绝缘层中并深入部分支持层,如图12所示。
然后密封第四基片(图12,13)以使活性体和测量梁被封装于第一和第二空腔30,40形成的密闭腔。
形成穿过第三基片厚度至第一基片框架15的凹处(图14)。在凹处内沉淀出电接触点6,以恢复标准质量块13偏转时产生的电信号。
因此,本发明的制造方法特别地能够形成一个惯性传感器,特别地包含大质量的标准质量块结合一个低厚度的应变计的或谐振式的测量梁,而不需要改变组件的灵敏度。换言之,该发明方案能够优化标准质量块以及测量臂的尺寸,以提高传感器的性能。因此,有可能同时获得具有大质量的标准质量块以引起测量梁的大张力,和低厚度的测量臂以达到更好的检测灵敏度。

Claims (12)

1.一种惯性传感器的制造方法,其特征在于,它至少包括:
通过蚀刻第一基片(1)的第一活性层(10),形成至少一个活性体,所述活性体由一个标准质量块(13)和可变形板(14)构成,所述第一活性层(10)具有第一厚度(e1);
通过蚀刻第二基片(2)的第二活性层(20),形成至少一个测量梁(23),所述第二活性层(20)具有比所述第一厚度(e1)小的第二厚度(e2);密封第一活性层(10)与第二活性层(20);
移除所述第一基片(1)的非活性层(11,12);
通过蚀刻第三基片(30)形成第一空腔(30);
密封所述第三基片(3)与所述第一基片(1)的活性层,所述活性体被置于所述第一空腔(30)内;
移除所述第二基片(2)的非活性层(21,22)
通过蚀刻第四基片(4)形成第二空腔(40);以及
密封所述第四基片(4)与所述第二基片(2)的活性层。
2.根据权利要求1所述的方法,其特征是进一步包括在所述活性体和所述测量梁之间形成电接触。
3.根据权利要求2所述的方法,其特征是所述电接触在密封所述第一活性层与第二活性层时形成,这样的密封使得所述梁和活性体之间既有机械接触又有电接触。
4.根据权利要求1至3中任意一项所述的方法,其特征在于所述测量梁(23)由形成应变计的压阻材料制成。
5.根据权利要求1至3中任意一项所述的方法,其特征在于所述测量梁(23)是机械谐振器。
6.根据权利要求1至5中任意一项所述的方法,其特征在于所述第一厚度(e1)和第二厚度(e2)的比值大于或等于5.
7.根据权利要求1至6中任意一项所述的方法,其特征在于进一步包括:
形成至少一个凹处(5),所述凹处(5)穿过所述第三基片(3)的厚度直至露出第一基片(1);以及
在所述凹处(5)内沉积出电接触点(6)。
8.根据权利要求1至7中任意一项所述的方法,其特征在于包围所述测量梁和活性体的介质为真空。
9.根据权利要求1至8中任意一项所述的方法,其特征在于所述制造方法中的所有密封过程都在真空或者受控气体下进行。
10.根据权利要求1至9中任意一项所述的方法,其特征在于所述测量梁和标准质量块由单晶硅构成。
11.根据权利要求10所述方法,其特征在于所述测量梁由掺杂的单晶硅构成。
12.根据权利要求1至11中任意一项所述的方法,其特征在于所述第一和第二基片(1,2)都是SOI型。
CN201280010090.1A 2011-03-03 2012-02-02 一种惯性传感器的制造方法 Pending CN103518138A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1151746 2011-03-03
FR1151746A FR2972263B1 (fr) 2011-03-03 2011-03-03 Capteur inertiel et procede de fabrication correspondant
PCT/FR2012/050236 WO2012117177A1 (fr) 2011-03-03 2012-02-02 Procede de fabrication d'un capteur inertiel

Publications (1)

Publication Number Publication Date
CN103518138A true CN103518138A (zh) 2014-01-15

Family

ID=45811559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280010090.1A Pending CN103518138A (zh) 2011-03-03 2012-02-02 一种惯性传感器的制造方法

Country Status (7)

Country Link
US (1) US20140024161A1 (zh)
EP (1) EP2681568A1 (zh)
JP (1) JP2014512518A (zh)
KR (1) KR20140074865A (zh)
CN (1) CN103518138A (zh)
FR (1) FR2972263B1 (zh)
WO (1) WO2012117177A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355285A (zh) * 2014-10-13 2015-02-18 华东光电集成器件研究所 一种mems器件的真空封装结构及其制造方法
CN105399047A (zh) * 2015-11-10 2016-03-16 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法
CN105628973A (zh) * 2014-11-14 2016-06-01 精工爱普生株式会社 惯性传感器的制造方法以及惯性传感器
CN110182753A (zh) * 2019-04-19 2019-08-30 中国科学院上海微系统与信息技术研究所 高灵敏度加速度传感器结构的制作方法
CN110806496A (zh) * 2019-10-10 2020-02-18 上海应用技术大学 一种全金属微惯性系统器件及其加工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000050B1 (fr) 2012-12-20 2016-03-04 Tronic S Microsystems Dispositif micro-electromecanique possedant au moins deux elements deformables de dimensions differentes
JP5939168B2 (ja) * 2013-01-11 2016-06-22 株式会社デンソー 半導体装置
FR3013442B1 (fr) * 2013-11-20 2015-12-18 Sagem Defense Securite Capteur comprenant des masses mobiles et des moyens de detection des mouvements relatifs des masses
DE102014205326A1 (de) * 2014-03-20 2015-09-24 Robert Bosch Gmbh Mikromechanische Sensoranordnung und entsprechendes Herstellungsverfahren
FR3028257A1 (fr) * 2014-11-10 2016-05-13 Tronic's Microsystems Procede de fabrication d'un dispositif electromecanique et dispositif correspondant
FR3045028B1 (fr) * 2015-12-11 2018-01-05 Tronic's Microsystems Procede de fabrication d'un dispositif micro electromecanique et dispositif correspondant
KR101837999B1 (ko) * 2016-12-21 2018-03-14 재단법인 포항산업과학연구원 압력센서 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065638A1 (en) * 2002-10-07 2004-04-08 Bishnu Gogoi Method of forming a sensor for detecting motion
US20060283245A1 (en) * 2005-06-16 2006-12-21 Mitsubishi Denki Kabushiki Kaisha Vibratory gyroscope
US20090139342A1 (en) * 2007-11-30 2009-06-04 Philippe Robert Device with detection by suspended piezoresistive strain gauge comprising a strain amplifier cell
US20090256297A1 (en) * 2008-04-14 2009-10-15 Freescale Semiconductor, Inc. Spring member for use in a microelectromechanical systems sensor
US20100186510A1 (en) * 2009-01-23 2010-07-29 Commissariat A L'energie Atomique Inertial or resonating sensor in surface technology, with out of plane detection by strain gauge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851080A (en) * 1987-06-29 1989-07-25 Massachusetts Institute Of Technology Resonant accelerometer
US20050172717A1 (en) * 2004-02-06 2005-08-11 General Electric Company Micromechanical device with thinned cantilever structure and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065638A1 (en) * 2002-10-07 2004-04-08 Bishnu Gogoi Method of forming a sensor for detecting motion
US20060283245A1 (en) * 2005-06-16 2006-12-21 Mitsubishi Denki Kabushiki Kaisha Vibratory gyroscope
US20090139342A1 (en) * 2007-11-30 2009-06-04 Philippe Robert Device with detection by suspended piezoresistive strain gauge comprising a strain amplifier cell
US20090256297A1 (en) * 2008-04-14 2009-10-15 Freescale Semiconductor, Inc. Spring member for use in a microelectromechanical systems sensor
US20100186510A1 (en) * 2009-01-23 2010-07-29 Commissariat A L'energie Atomique Inertial or resonating sensor in surface technology, with out of plane detection by strain gauge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355285A (zh) * 2014-10-13 2015-02-18 华东光电集成器件研究所 一种mems器件的真空封装结构及其制造方法
CN105628973A (zh) * 2014-11-14 2016-06-01 精工爱普生株式会社 惯性传感器的制造方法以及惯性传感器
CN105628973B (zh) * 2014-11-14 2019-08-27 精工爱普生株式会社 惯性传感器的制造方法以及惯性传感器
CN105399047A (zh) * 2015-11-10 2016-03-16 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法
CN105399047B (zh) * 2015-11-10 2017-07-28 中国工程物理研究院电子工程研究所 一种多电容梳齿式微加速度计的加工方法
CN110182753A (zh) * 2019-04-19 2019-08-30 中国科学院上海微系统与信息技术研究所 高灵敏度加速度传感器结构的制作方法
CN110182753B (zh) * 2019-04-19 2021-11-16 中国科学院上海微系统与信息技术研究所 高灵敏度加速度传感器结构的制作方法
CN110806496A (zh) * 2019-10-10 2020-02-18 上海应用技术大学 一种全金属微惯性系统器件及其加工方法

Also Published As

Publication number Publication date
JP2014512518A (ja) 2014-05-22
KR20140074865A (ko) 2014-06-18
WO2012117177A1 (fr) 2012-09-07
FR2972263B1 (fr) 2013-09-27
EP2681568A1 (fr) 2014-01-08
US20140024161A1 (en) 2014-01-23
FR2972263A1 (fr) 2012-09-07

Similar Documents

Publication Publication Date Title
CN103518138A (zh) 一种惯性传感器的制造方法
CN102762992B (zh) 加速计及其制造方法
EP2778691B1 (en) Fully differential capacitive architecture for MEMS accelerometer
CN102388292B (zh) 环境稳健的盘式谐振陀螺仪
US8616059B2 (en) Force sensor with reduced noise
CA2842769C (en) Sensor with vacuum-sealed cavity
EP2517026B1 (en) Cmos compatible pressure sensor for low pressures
EP2778692B1 (en) Force feedback electrodes in MEMS accelerometer
US8263426B2 (en) High-sensitivity z-axis vibration sensor and method of fabricating the same
EP2500702B1 (en) Vibration transducer
JPH10508090A (ja) 誘電的に分離した共振マイクロセンサ
JP2005268758A (ja) 薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法
CN105776122A (zh) 具多重气密空腔的微机电装置及其制作方法
US20190064021A1 (en) MEMS Device Using a Released Device Layer as Membrane
JP6305647B2 (ja) 電気機械デバイスを製造するための方法及び対応するデバイス
JP7399519B2 (ja) 毛細チャネル環境センサ、およびそのための準備方法
JP6044607B2 (ja) 振動式センサ装置
CN113702664B (zh) 一种宽频带mems加速度计及其制备方法
US20240223968A1 (en) Electromechanical system comprising capacitive measurement or actuation means and a transmission shaft
CN115752818A (zh) 一种谐振式压力传感器及其制造方法
US20180346325A1 (en) Method for manufacturing a microelectromechanical device and corresponding device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140115