CN103515466A - 一种复合式δe-e核辐射探测器及其制备方法 - Google Patents

一种复合式δe-e核辐射探测器及其制备方法 Download PDF

Info

Publication number
CN103515466A
CN103515466A CN201210219025.1A CN201210219025A CN103515466A CN 103515466 A CN103515466 A CN 103515466A CN 201210219025 A CN201210219025 A CN 201210219025A CN 103515466 A CN103515466 A CN 103515466A
Authority
CN
China
Prior art keywords
detector
layer
nuclear radiation
pin detector
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210219025.1A
Other languages
English (en)
Inventor
朱智源
于民
王陪权
朱韫晖
孙新
刘晨晨
马盛林
金玉丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201210219025.1A priority Critical patent/CN103515466A/zh
Publication of CN103515466A publication Critical patent/CN103515466A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种复合式ΔE-E核辐射探测器及其制造方法,属于半导体核辐射探测器技术领域。本发明的复合式ΔE-E核辐射探测器包括薄型PIN探测器,厚型PIN探测器以及两者之间的介质键合层;薄型PIN探测器与厚型PIN探测器通过介质键合层机械固定到一起,并且形成电学互连;所述薄型PIN探测器包括高阻硅基片和所述高阻硅基片上的探测窗口;所述薄型PIN探测器探测窗口包括P区,N区以及两者之间的硅层。本发明还公开了所述复合式ΔE-E核辐射探测器的制造方法。本发明可用于空间探测,核物理,医学检测,和环境检测等多个领域。

Description

一种复合式ΔE-E核辐射探测器及其制备方法
技术领域
本发明涉及一种复合式ΔE-E核辐射探测器及其制备方法,属于半导体核辐射探测器技术领域
背景技术
ΔE-E望远镜广泛用于测量粒子的种类和能量,表现为:重离子的检测和跟踪、高γ射线辐射下的短程粒子检测、X射线检测等。ΔE-E望远镜一般由一个厚PIN探测器和一个薄PIN探测器组成。它的工作原理为:当入射粒子进入ΔE-E望远镜中,首先与薄探测器发生作用,失去能量ΔE。然后与厚探测器作用,失去剩余能量(E-ΔE)。利用ΔE与E-ΔE的测量可以测量粒子的能量和质量,进行粒子鉴别。
在制作探测器时,厚探测器需要制作得足够厚,从而阻止粒子完全停留在探测器中。而薄探测器需要制作得非常薄,以减少入射的高能粒子在ΔE探测器中损失的能量,获得较高的测量精度。
传统意义上的ΔE-E望远镜通常由两个分离的PIN探测器构成,由于薄探测器需要制作得非常薄,所以在实际使用过程中容易破碎,带来可靠性的问题。同时,分离的探测器也不符合小型化、集成化的发展趋势。
为了解决如上的问题,国际上通常采用将薄型的PIN探测器和厚型的PIN探测器集成到一起,组成一个整体单元,利用厚型的PIN探测器来支撑薄型的PIN探测器,从而解决机械可靠性的问题。这种集成结构也有利于减小死层厚度,从而提高探测灵敏度。
为了制造这种集成的探测器结构,一种方法是利用高能粒子注入,形成导电埋层作为厚型PIN探测器与薄型的PIN探测器的公共电极,再进行低能粒子注入掺杂,形成厚型PIN探测器与薄型的PIN探测器的另一个电极,其中,导电埋层采用另外一次注入掺杂引出电极。这种结构设计能得到超薄的薄型探测器,从而能够探测超低能量的粒子。整个探测器结构如G.Cardellab等人于1996年在《Nuclear Instruments and Methods in Physics Research A》上发表的名称为“A monolithic silicon detector telescope”的论文中所示;另外一种方法是首先利用扩散掺杂的方法制作厚型的PIN探测器,然后采取外延的方法制作出薄型的PIN探测器,导电埋层采用金线引出。其探测器结构如Kim,C.等人于1982年在《IEEE Transaetions onNuclear Science》上发表的名称为“Epitaxial Integrated E-dE Position Sensitive Silicon Detectors”的论文中所示。还有一种方法是采用金属硅化物键合圆片的方式形成ΔE-E核辐射探测器,采用这种方式能得到低阻导电埋层。其探测器结构如
Figure BSA00000741610200021
等人于1997年在《Nuclear Instruments and Methods in Physics Research A》上发表的名称为“Fabrication of anintegrated ΔE-E-silicon detector by wafer bonding using cobaltdisilicide”的论文中所示。
以上集成探测器虽然各具优点,但是制作方法相当复杂,对于前两种集成式ΔE-E核辐射探测器而言,会带来相当大的信号串扰问题,而且,死层厚度对粒子探测的影响也显著增加。
发明内容
本发明旨在克服现有技术的不足,提供一种复合式ΔE-E核辐射探测器及其制备方法,获得的探测器应当具有良好的探测灵敏度、探测效率和机械稳定性,同时,简化制备工艺,降低成本。
为达到上述目的,本发明采用的技术方案是:一种复合式ΔE-E核辐射探测器,包括薄型PIN探测器、厚型PIN探测器以及两者之间的介质键合层,所述薄型PIN探测器包括高阻硅基片和所述高阻硅基片上的探测窗口。所述厚型的PIN探测器包括高阻硅基片和所述高阻硅基片上的探测窗口。所述介质键合层将薄型PIN探测器与厚型PIN探测器机械固定到一起,并且具备电学连接特性。
上述技术方案中,所述薄型PIN探测器中高阻硅基片优选为100晶向的N型硅,电阻率大于1000欧姆厘米,厚度在300μm到550μm范围内。
上述技术方案中,所述薄型PIN探测器中高阻硅基片上的探测窗口包括P区,N区以及两者之间的硅层,该硅层厚度小于100μm。所述P区与N区表面均设有铝层,所述N区优选通过TMAH腐蚀法形成,其外形呈倒圆台状,侧面和底面的夹角为54.74°。
上述技术方案中,所述厚型PIN探测器中高阻硅基片优选为111晶向的N型硅,电阻率大于1000欧姆厘米,厚度在300μm到1000μm范围内
上述技术方案中,所述薄型PIN探测器与厚型PIN探测器之间的介质键合层优选为Al-Sn-Al结构,所述Al层厚度优选为200nm-500nm,所述Sn层厚度优选为600nm-1000nm。
本发明还公开了一种复合式ΔE-E核辐射探测器的制造方法,其包括下列步骤:
a)通过下列步骤制造薄型PIN探测器:
i.在第一高阻硅基片上下表面生长足够厚的二氧化硅层;
ii.腐蚀正面探测窗口上方二氧化硅层至50nm到200nm厚度;
iii.正面注入磷离子,形成N区,快速热退火;
iv.常规清洗,双面淀积氮化硅层;
v.在背面光刻探测窗口图形,腐蚀硅基片背面裸露部分直至获得所需的探测窗口厚度;
vi.在背面探测窗口注入硼离子,形成P区;离子注入后进行快速热退火;
vii.RIE刻蚀正面氮化硅层;湿法腐蚀正面二氧化硅层;
viii.正反两面溅射铝层,合金,形成良好的欧姆接触;
ix.利用氩离子去除正面铝电极上的自然氧化层,原位淀积锡层
b)通过下列步骤制造厚型PIN探测器:
i.在第二高阻硅基片上下表面生长足够厚的二氧化硅层;
ii.背面光刻探测窗口图形,腐蚀背面探测窗口以及正面高阻硅片上方二氧化硅层至70-100nm厚度;
iii.正面注入磷离子,快速热退火;
iv.背面注入硼离子,快速热退火;
v.去除探测器正反面的二氧化硅层,双面溅射铝层;
vi.合金,形成良好的欧姆接触;
vii.利用氩离子去除正面铝电极上的自然氧化层,原位淀积锡层;
c)通过下列步骤组装复合式ΔE-E核辐射探测器:
i.将薄型PIN探测器与厚型PIN探测器正面重合对准在一起,移至键合装置;
ii.低温键合;
与现有技术相比,本发明的有益效果是:
1)本发明首先分别制造出厚型PIN探测器和薄型的PIN探测器,通过介质键合层将薄型PIN探测器与厚型PIN探测器集成到一起,工艺简单可行,提高了成品率;
2)本发明可集成大面积,超薄厚度的薄型PIN探测器,可以满足探测质量很大或者能量很低的粒子条件。
3)本发明采用金属层作为薄型PIN探测器和厚型PIN探测器的介质键合层,有效的避免了电信号的串扰、损耗问题。
附图说明
图1是本发明实施例复合式ΔE-E核辐射探测器结构示意图;
图2是本发明实施例薄型PIN探测器制造流程示意图;
图3是本发明实施例厚型PIN探测器制造流程示意图;
图4是本发明实施例复合式ΔE-E核辐射探测器的组装流程示意图;
其中:
A-薄型PIN探测器;B-厚型PIN探测器;
1-第一高阻硅基片;21,22-二氧化硅层;31,32-N区;41,42-氮化硅层;5-背面探测窗口;61,62-P区;71,72-正面铝层;81,82-背面铝层;91,92-正面锡层;10-第二高阻硅基片;
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
在本实施例中,复合式ΔE-E核辐射探测器由薄型PIN探测器与厚型PIN探测器通过金属低温键合的方式组装而成的。
对于薄型PIN探测器而言:
采用100晶向的N型硅,电阻率大于1500欧姆厘米,厚度为320μm;
探测窗口呈圆形,包括N区31,P区61,以及两者之间厚度小于100μm的硅膜;
P区61通过TMAH湿法腐蚀技术形成的,其侧面和底面的夹角为54.74°;
N区31上方设有正面铝层71和正面锡层91,P区61上方有背面铝层81;
对于厚型PIN探测器而言:
采用111晶向的N型硅,电阻率大于4000欧姆厘米,厚度为420μm;
探测窗口由N区32,P区62以及其间的高阻硅片组成,其尺寸大小与薄型PIN探测器探测窗口一致;
N区32上方有正面铝层72和正面锡层92,P区62上方有背面铝层82;
最终制备的传感器的结构如图1所示,整个传感器由薄型PIN探测器A和厚型PIN探测器B构成。
I、薄型PIN探测器A的工艺流程如图2所示,包括:
1、准备n型<100>双面抛光硅片,其电阻率大于1500欧姆厘米,厚度为320μm,常规清洗;
2、在硅基片两面生长700nm-800nm的高质量二氧化硅层21,如图2(a)所示;
3、腐蚀硅基片正面二氧化硅层到50nm-200nm厚度,如图2(b)所示;
4、在探测器探测窗口正面注入磷,形成N区31,注入能量为120kev,注入浓度为1×1016/cm2,离子注入后进行快速热退火,如图2(c)所示;
5、双面淀积100nm的氮化硅层41,如图2(d)所示;
6、在背面光刻探测窗口图形,分别用RIE和HF去除背面探测窗口图形下的氮化硅层41和二氧化硅层21,采用TMAH湿法腐蚀,减薄探测器厚度至38μm,形成背面探测窗口5,如图2(e)所示;
7、在探测器背面探测窗口注入硼,形成N区61,注入能量为45kev,注入浓度为5×1015/cm2,离子注入后进行快速热退火,如图2(f)所示;
8、用RIE刻蚀正面氮化硅层41;
9、去除探测器正面的二氧化硅层,如图2(g)所示;
10、双面溅射500nm的铝层,如图2(g)所示;
11、合金,形成良好的欧姆接触,温度为430度,时间为30min;
12、利用氩离粒子去除探测器正面铝电极上的自然氧化层,原位淀积500nm的锡层91,如图2(h)所示;
II、厚型PIN探测器A的工艺流程如图3所示,包括:
1、准备n型<111>双面抛光硅片,其电阻率大于4000欧姆厘米,厚度为420μm,常规清洗;
2、在硅基片两面生长300nm的高质量二氧化硅层22,如图3(a)所示;
3、光刻背面有源区窗口图形,腐蚀背面以及正面有源区下的二氧化硅层到70-100nm厚度,如图3(b)所示;
4、正面注入磷,形成N区32,注入能量为120kev,注入浓度为1×1016/cm2,离子注入后进行快速热退火;
5、背面注入硼,形成P区62,注入能量为45kev,注入浓度为5×1015/cm2,离子注入后进行快速热退火,如图3(c)所示;
6、去除探测器正反面的二氧化硅层,双面溅射500nm的铝层,如图3(d)所示;
7、合金,形成良好的欧姆接触,温度为430度,时间为30min;
8、利用氩离子去除正面铝电极上的自然氧化层,原位淀积500nm的锡层92,如图3(e)所示;
III、复合式ΔE-E核辐射探测器的组装流程如图4所示,包括
1、将薄型PIN探测器与厚型PIN探测器P区重合对准在一起,移至键合装置;
2、键合温度为280摄氏度,键合压强为0.25MPa,键合时间为3分钟,氮气保护进行低温键合,即可得到复合式ΔE-E核辐射探测器。
以上通过详细实例描述了本发明,本领域的技术人员应当理解,在不脱离本发明实质的范围内,可以对本发明做一定的变形或修改;其制备方法也不限于实施例中所公开的内容。

Claims (9)

1.一种复合式ΔE-E核辐射探测器,包括薄型PIN探测器、厚型PIN探测器以及两者之间的介质键合层,
其特征在于,
所述薄型PIN探测器包括高阻硅基片和所述高阻硅基片上的探测窗口。所述厚型的PIN探测器包括高阻硅基片和所述高阻硅基片上的探测窗口,薄型PIN探测器与厚型PIN探测器通过介质键合层机械固定到一起,并且形成电学互连。
2.如权利要求书1所述的复合式ΔE-E核辐射探测器,其特征在于,所述薄型PIN探测器高阻硅基片为100晶向的N型硅,电阻率大于1000欧姆厘米,厚度在300μm到550μm范围内。
3.如权利要求书1所述的复合式ΔE-E核辐射探测器,其特征在于,所述薄型PIN探测器探测窗口包括P区,N区以及两者之间的硅层,所述硅层厚度小于100μm。
4.如权利要求书1所述的复合式ΔE-E核辐射探测器,其特征在于,所述厚型PIN探测器高阻硅基片为111晶向的N型硅,电阻率大于1000欧姆厘米,厚度在300μm到1000μm范围内.
5.如权利要求书1所述的复合式ΔE-E核辐射探测器,其特征在于,所述薄型PIN探测器与厚型PIN探测器之间的介质键合层为Al-Sn-Al结构。
6.如权利要求书1和5所述的复合式ΔE-E核辐射探测器,其特征在于,所述Al层厚度为200nm-500nm。
7.如权利要求书1和5所述的复合式ΔE-E核辐射探测器,其特征在于,所述Sn层厚度为600nm-1000nm。
8.一种复合式ΔE-E核辐射探测器的制造方法,其包括下列步骤:
a)通过下列步骤制造薄型PIN探测器:
i.在第一高阻硅基片上下表面生长足够厚的二氧化硅层;
ii.腐蚀正面探测窗口上方二氧化硅层至50nm到200nm厚度;
iii.正面注入磷离子,形成N区,快速热退火;
iv.常规清洗,双面淀积氮化硅层;
v.在背面光刻探测窗口图形,腐蚀硅基片背面裸露部分直至获得所需的探测窗口厚度;
vi.在背面探测窗口注入硼离子,形成P区;离子注入后进行快速热退火;
vii.RIE刻蚀正面氮化硅层;湿法腐蚀正面二氧化硅层;
viii.正反两面溅射铝层,合金,形成良好的欧姆接触;
ix.利用氩离子去除正面铝电极上的自然氧化层,原位淀积锡层;
b)通过下列步骤制造厚型PIN探测器:
i.在第二高阻硅基片上下表面生长足够厚的二氧化硅层;
ii.背面光刻探测窗口图形,腐蚀背面探测窗口以及正面高阻硅片上方二氧化硅层至70-100nm厚度;
iii.正面注入磷离子,快速热退火;
iv.背面注入硼离子,快速热退火;
v.去除探测器正反面的二氧化硅层,双面溅射铝层;
vi.合金,形成良好的欧姆接触;
vii.利用氩离子去除正面铝电极上的自然氧化层,原位淀积锡层;
c)通过下列步骤组装复合式ΔE-E核辐射探测器:
i.将薄型PIN探测器与厚型PIN探测器正面重合对准在一起,移至键合装置;
ii.低温键合;
9.如权利要求书7所述的一种复合式ΔE-E核辐射探测器的制造方法,其特征在于,所述低温键合温度为280℃,键合压强为0.25MPa,键合时间为3min。
CN201210219025.1A 2012-06-26 2012-06-26 一种复合式δe-e核辐射探测器及其制备方法 Pending CN103515466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210219025.1A CN103515466A (zh) 2012-06-26 2012-06-26 一种复合式δe-e核辐射探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210219025.1A CN103515466A (zh) 2012-06-26 2012-06-26 一种复合式δe-e核辐射探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN103515466A true CN103515466A (zh) 2014-01-15

Family

ID=49897873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210219025.1A Pending CN103515466A (zh) 2012-06-26 2012-06-26 一种复合式δe-e核辐射探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN103515466A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157856A (zh) * 2015-07-29 2015-12-16 西北核技术研究所 利用半导体折射率变化测量MeV核辐射脉冲时间宽度的装置
CN109686812A (zh) * 2019-01-03 2019-04-26 北京大学 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541835B1 (en) * 1996-03-29 2003-04-01 Sture Pettersson Integrated ΔE-E detector telescope
JP2004317276A (ja) * 2003-04-16 2004-11-11 Osaka Gas Co Ltd 薄膜ガスセンサ
CN1652326A (zh) * 2004-02-04 2005-08-10 中国科学院半导体研究所 高效硅基共振腔增强型探测器器件的制作方法
CN101286536A (zh) * 2008-05-06 2008-10-15 北京大学 超薄硅基粒子探测器及其制备方法
CN102496632A (zh) * 2011-12-29 2012-06-13 北京大学 基于键合基片的超薄硅pin高能粒子探测器及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541835B1 (en) * 1996-03-29 2003-04-01 Sture Pettersson Integrated ΔE-E detector telescope
JP2004317276A (ja) * 2003-04-16 2004-11-11 Osaka Gas Co Ltd 薄膜ガスセンサ
CN1652326A (zh) * 2004-02-04 2005-08-10 中国科学院半导体研究所 高效硅基共振腔增强型探测器器件的制作方法
CN101286536A (zh) * 2008-05-06 2008-10-15 北京大学 超薄硅基粒子探测器及其制备方法
CN102496632A (zh) * 2011-12-29 2012-06-13 北京大学 基于键合基片的超薄硅pin高能粒子探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GORAN THUNGSTROM,ETC.: "Fabrication of an integrated ΔE-E-silicon detector by wafer bonding using cobaltdisilicide", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A》 *
李科佳,王金延,于民,田大宇,张录,金玉丰: "超薄硅基PIN高能粒子探测器的制造工艺和特性分析", 《第十四届全国核电子学与核探测技术学术年会论文集(上册)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157856A (zh) * 2015-07-29 2015-12-16 西北核技术研究所 利用半导体折射率变化测量MeV核辐射脉冲时间宽度的装置
CN105157856B (zh) * 2015-07-29 2019-01-11 西北核技术研究所 利用半导体折射率变化测量MeV核辐射脉冲时间宽度的装置
CN109686812A (zh) * 2019-01-03 2019-04-26 北京大学 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法

Similar Documents

Publication Publication Date Title
CN101714591B (zh) 一种硅光电二极管的制作方法
CN103904164B (zh) 一种n型背结太阳能电池的制备方法
CN103413838B (zh) 一种晶体硅太阳电池及其制备方法
CN101527308B (zh) 一种平面结构铟镓砷阵列红外探测器
CN101866961A (zh) 一种用于薄膜硅/晶体硅异质结太阳电池的陷光结构
CN101882650A (zh) 带有电荷埋层的太阳电池的制备方法
CN102064237A (zh) 一种用于晶体硅太阳电池的双层钝化方法
CN103515467A (zh) 一种基于基片键合的δe-e核辐射探测器及其制备方法
WO2021249344A1 (zh) 光电探测器及其制备方法
CN109326673A (zh) P型晶体硅perc电池及其制备方法
CN102254963A (zh) 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN109686812A (zh) 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法
CN205985014U (zh) 具有叠层异质结结构的钝化发射极太阳电池
CN103515466A (zh) 一种复合式δe-e核辐射探测器及其制备方法
CN205944122U (zh) 低暗电流pin探测器
CN110047956A (zh) 具有挡光层的非等平面AlGaN基肖特基型紫外探测器及其制备方法
CN109698246A (zh) Perc太阳电池及其制备方法
CN109545883A (zh) 一种低暗电流台面型雪崩单光子探测器及制备方法
CN209169152U (zh) Perc太阳电池
CN202210522U (zh) 基于p型硅片的背接触异质结太阳电池结构
CN208797019U (zh) P型晶体硅perc电池
CN103078004A (zh) 一种选择性发射结与背面点接触结合的太阳能电池的制备方法
CN110416342A (zh) 一种基于金属纳米颗粒的hjt电池及其制备方法
CN203491268U (zh) 一种新型双面受光太阳电池
CN205211778U (zh) 热电堆红外探测器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20171103