CN103512837A - 一种锂电池隔膜孔隙率的测试方法 - Google Patents
一种锂电池隔膜孔隙率的测试方法 Download PDFInfo
- Publication number
- CN103512837A CN103512837A CN201310418707.XA CN201310418707A CN103512837A CN 103512837 A CN103512837 A CN 103512837A CN 201310418707 A CN201310418707 A CN 201310418707A CN 103512837 A CN103512837 A CN 103512837A
- Authority
- CN
- China
- Prior art keywords
- water
- barrier film
- becket
- porosity
- testing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 32
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000011521 glass Substances 0.000 claims abstract description 9
- 238000005303 weighing Methods 0.000 claims abstract description 4
- 230000004888 barrier function Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 238000010998 test method Methods 0.000 claims description 4
- 239000004809 Teflon Substances 0.000 claims description 3
- 229920006362 Teflon® Polymers 0.000 claims description 3
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract 5
- 239000002184 metal Substances 0.000 abstract 5
- 238000001514 detection method Methods 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 abstract 1
- 238000007796 conventional method Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310418707.XA CN103512837A (zh) | 2013-09-13 | 2013-09-13 | 一种锂电池隔膜孔隙率的测试方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310418707.XA CN103512837A (zh) | 2013-09-13 | 2013-09-13 | 一种锂电池隔膜孔隙率的测试方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103512837A true CN103512837A (zh) | 2014-01-15 |
Family
ID=49895906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310418707.XA Pending CN103512837A (zh) | 2013-09-13 | 2013-09-13 | 一种锂电池隔膜孔隙率的测试方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103512837A (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104062199A (zh) * | 2014-07-10 | 2014-09-24 | 深圳市星源材质科技股份有限公司 | 高分子微孔隔膜的吸液率的测试方法及测试装置 |
CN105241799A (zh) * | 2015-09-25 | 2016-01-13 | 超威电源有限公司 | 极板孔隙率检测装置及检测方法 |
CN105333843A (zh) * | 2015-10-20 | 2016-02-17 | 北京北冶功能材料有限公司 | 一种定量评定高温母合金棒中心缩孔尺寸大小的方法 |
CN105699270A (zh) * | 2016-02-29 | 2016-06-22 | 山东玉皇新能源科技有限公司 | 一种锂离子电池隔膜孔隙率的测试方法 |
CN105758777A (zh) * | 2016-03-02 | 2016-07-13 | 南京国轩电池有限公司 | 一种锂电复合隔膜的陶瓷涂层的孔隙率测试方法 |
CN107389532A (zh) * | 2017-09-05 | 2017-11-24 | 贵州省交通规划勘察设计研究院股份有限公司 | 一种用于测试多孔工程材料空隙分布特征的试验装置及方法 |
CN107843533A (zh) * | 2017-10-26 | 2018-03-27 | 东莞市创明电池技术有限公司 | 隔膜孔隙率测试方法 |
CN112834400A (zh) * | 2020-12-31 | 2021-05-25 | 合肥工业大学 | 一种动态测量土样在渗透过程中孔隙率变化的装置及方法 |
CN113607623A (zh) * | 2021-08-06 | 2021-11-05 | 苏州领湃新能源科技有限公司 | 锂电池的极片或隔膜的孔隙率测试的装置及方法 |
CN114720323A (zh) * | 2021-01-05 | 2022-07-08 | 广汽埃安新能源汽车有限公司 | 一种电池极片孔隙率的测试装置及测试方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103115857A (zh) * | 2013-01-22 | 2013-05-22 | 合肥国轩高科动力能源股份公司 | 电池隔膜涂覆氧化铝陶瓷涂层孔隙率的测试方法 |
CN103134743A (zh) * | 2011-12-02 | 2013-06-05 | 天津市捷威动力工业有限公司 | 一种测试孔隙率的方法 |
-
2013
- 2013-09-13 CN CN201310418707.XA patent/CN103512837A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103134743A (zh) * | 2011-12-02 | 2013-06-05 | 天津市捷威动力工业有限公司 | 一种测试孔隙率的方法 |
CN103115857A (zh) * | 2013-01-22 | 2013-05-22 | 合肥国轩高科动力能源股份公司 | 电池隔膜涂覆氧化铝陶瓷涂层孔隙率的测试方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104062199A (zh) * | 2014-07-10 | 2014-09-24 | 深圳市星源材质科技股份有限公司 | 高分子微孔隔膜的吸液率的测试方法及测试装置 |
CN104062199B (zh) * | 2014-07-10 | 2016-08-10 | 深圳市星源材质科技股份有限公司 | 高分子微孔隔膜的吸液率的测试方法及测试装置 |
CN105241799A (zh) * | 2015-09-25 | 2016-01-13 | 超威电源有限公司 | 极板孔隙率检测装置及检测方法 |
CN105333843A (zh) * | 2015-10-20 | 2016-02-17 | 北京北冶功能材料有限公司 | 一种定量评定高温母合金棒中心缩孔尺寸大小的方法 |
CN105333843B (zh) * | 2015-10-20 | 2018-05-18 | 北京北冶功能材料有限公司 | 一种定量评定高温母合金棒中心缩孔尺寸大小的方法 |
CN105699270A (zh) * | 2016-02-29 | 2016-06-22 | 山东玉皇新能源科技有限公司 | 一种锂离子电池隔膜孔隙率的测试方法 |
CN105758777A (zh) * | 2016-03-02 | 2016-07-13 | 南京国轩电池有限公司 | 一种锂电复合隔膜的陶瓷涂层的孔隙率测试方法 |
CN107389532A (zh) * | 2017-09-05 | 2017-11-24 | 贵州省交通规划勘察设计研究院股份有限公司 | 一种用于测试多孔工程材料空隙分布特征的试验装置及方法 |
CN107843533A (zh) * | 2017-10-26 | 2018-03-27 | 东莞市创明电池技术有限公司 | 隔膜孔隙率测试方法 |
CN112834400A (zh) * | 2020-12-31 | 2021-05-25 | 合肥工业大学 | 一种动态测量土样在渗透过程中孔隙率变化的装置及方法 |
CN114720323A (zh) * | 2021-01-05 | 2022-07-08 | 广汽埃安新能源汽车有限公司 | 一种电池极片孔隙率的测试装置及测试方法 |
CN113607623A (zh) * | 2021-08-06 | 2021-11-05 | 苏州领湃新能源科技有限公司 | 锂电池的极片或隔膜的孔隙率测试的装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103512837A (zh) | 一种锂电池隔膜孔隙率的测试方法 | |
CN103512821A (zh) | 一种电池隔膜吸液率的测试方法 | |
Cannarella et al. | Mechanical properties of a battery separator under compression and tension | |
Chandrashekar et al. | 7Li MRI of Li batteries reveals location of microstructural lithium | |
Huang et al. | Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer | |
Harris et al. | Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress | |
Oldenburg et al. | Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/nafion bilayer membranes | |
Plaimer et al. | Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: Methodology and application | |
CN103134743A (zh) | 一种测试孔隙率的方法 | |
Babcock et al. | Using neutron methods SANS and PGAA to study evolution of structure and composition of alkali-doped polybenzimidazole membranes | |
CN101576607B (zh) | 镍氢电池隔膜湿电阻检测方法和装置 | |
Avdeev et al. | Rate-and temperature-dependent material behavior of a multilayer polymer battery separator | |
CN106769599A (zh) | 一种锂离子电池极片孔隙率的测试方法 | |
Love | Perspective on the mechanical interaction between lithium dendrites and polymer separators at low temperature | |
CN104048892A (zh) | 一种复合隔膜孔隙率的测试方法 | |
CN106370930A (zh) | 一种锂离子电池隔膜电性能测试装置及其方法 | |
Vandiver et al. | Durability and performance of polystyrene‐b‐poly (vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes | |
Ye et al. | An Efficient Route to Polymeric Electrolyte Membranes with Interparticle Chain Microstructure Toward High‐Temperature Lithium‐Ion Batteries | |
CN107764247B (zh) | 泥沙监测仪及泥沙监测系统 | |
CN109238937A (zh) | 一种锂离子电池陶瓷隔膜孔隙率的测试方法 | |
CN105699270A (zh) | 一种锂离子电池隔膜孔隙率的测试方法 | |
Zhang et al. | Room‐temperature synthesis of a COFs membrane via LBL self‐assembly strategy for energy harvesting | |
Simunovic et al. | Laser scanning method for high-resolution thickness mapping of lithium-ion pouch cells | |
CN207215965U (zh) | 测试软包锂电池边电压的装置 | |
CN101377459B (zh) | 测量电解液对电极材料的渗透能力的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 518078, Guangdong, Shenzhen, Nanshan District Lang Road, Tong Fang information port, block A, building 5 Applicant after: Shenzhen Senior Technology Material Co., Ltd. Address before: 518078, Guangdong, Shenzhen, Nanshan District Lang Road, Tong Fang information port, block A, building 5 Applicant before: SHENZHEN SENIOR TECHNOLOGY CO., LTD. |
|
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Wu Shuqiu Inventor after: Wang Jingang Inventor after: Yang Jiafu Inventor after: Chen Xiufeng Inventor after: Chen Liang Inventor before: Chen Xiufeng Inventor before: Chen Liang Inventor before: Wu Shuqiu Inventor before: Yang Jiafu Inventor before: Wang Jingang |
|
COR | Change of bibliographic data |
Free format text: CORRECT: APPLICANT; FROM: SHENZHEN SENIOR MATERIAL TECHNOLOGY CO., LTD. TO: SHENZHEN SENIOR TECHNOLOGY MATERIAL CO., LTD. Free format text: CORRECT: INVENTOR; FROM: CHEN XIUFENG CHEN LIANG WU SHUQIU YANG JIAFU WANG JINGANG TO: WU SHUQIU WANG JINGANG YANG JIAFU CHEN XIUFENG CHEN LIANG |
|
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: 518078, Shenzhen, Guangming District, Guangdong province Gongming office northbound Applicant after: Shenzhen Senior Technology Material Co., Ltd. Address before: 518078, Guangdong, Shenzhen, Nanshan District Lang Road, Tong Fang information port, block A, building 5 Applicant before: Shenzhen Senior Technology Material Co., Ltd. |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140115 |