CN103502473A - 胃肠胰神经内分泌肿瘤(gep-nen)的预测 - Google Patents

胃肠胰神经内分泌肿瘤(gep-nen)的预测 Download PDF

Info

Publication number
CN103502473A
CN103502473A CN201280021361.3A CN201280021361A CN103502473A CN 103502473 A CN103502473 A CN 103502473A CN 201280021361 A CN201280021361 A CN 201280021361A CN 103502473 A CN103502473 A CN 103502473A
Authority
CN
China
Prior art keywords
gep
nen
biomarker
gene product
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280021361.3A
Other languages
English (en)
Other versions
CN103502473B (zh
Inventor
I·M·莫德林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yale University
Original Assignee
Yale University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yale University filed Critical Yale University
Publication of CN103502473A publication Critical patent/CN103502473A/zh
Application granted granted Critical
Publication of CN103502473B publication Critical patent/CN103502473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Abstract

本申请描述涉及胃肠胰神经内分泌瘤(GEP-NEN)的生物标志物及其检测所用试剂、系统和试剂盒,以及相关GEP-NEN诊断、预后和预测方法及其应用,例如检测、预测、分期、谱分析、分类和监测治疗功效和其它转归的实施方式。

Description

胃肠胰神经内分泌肿瘤(GEP-NEN)的预测
相关申请的交叉引用
本申请要求2011年3月1日提交的美国临时申请61/448,137号的权益,其公开内容通过引用全文纳入本文用于所有目的。
对通过EFS-Web提交的序列表的引用
以下通过如在MPEP§1730II.B.2(a)(C)中批准说明的USPTO(美国专利商标局)EFS-WEB服务器电子提交的序列表全部内容,通过引用全文纳入本文用于所有目的。电子提交文本文件中的序列表鉴定如下:
文件名称 生成日期 大小(字节)
669102000140Seqlist 2012年2月28日 447,716字节
技术领域
本文所述的本发明涉及胃肠胰神经内分泌肿瘤(GEP-NEN)生物标志物和用于检测所述相同生物标志物的试剂、系统以及试剂盒,以及相关的GEP-NEN诊断和预后方法,例如检测、预测、分期、分类和监测治疗功效及其它结果。
背景技术
胃肠胰神经内分泌肿瘤(GEP-NEN,也称作胃肠胰(GEP)神经内分泌肿瘤和神经内分泌肿瘤(NET))是美国第二最普遍的胃肠(GI)道恶性肿瘤,比胃、食道、胰腺和肝胆管肿瘤更加普遍,发生率为2.5-5例/100,000人。过去三十年中,在美国,发生率和流行程度增加了100-600%,但成活率没有增加。
GEP-NEN的异质性和复杂性造成了诊断、治疗和分类上的困难。这些肿瘤缺少通常与其它癌症相关联的若干突变;很大程度上缺乏微卫星不稳定性。参见Tannapfel A、Vomschloss S、Karhoff D等,“BRAF gene mutations are rare events ingastroenteropancreatic neuroendocrine tumors(BRAF基因突变是胃肠胰神经内分泌肿瘤中的稀有事件)”,Am J Clin Pathol2005;123(2):256-60;Kidd M、Eick G、ShapiroMD等.“Microsatellite instability and gene mutations in transforming growth factor-betatype II receptor are absent in small bowel carcinoid tumors(小肠类癌瘤中缺乏转化生长因子-βII型受体中的微卫星不稳定性和基因突变)”Cancer2005;103(2):229-36。虽然个体组织病理学亚型与明显的临床表现相关联,但仍没有明确的、普遍接受的病理学分类或预测方案,这阻碍了治疗的发展。现有的诊断和预后方法包括成像(例如,CT和MRI)、组织学和对一些基因产物的检测。可用的方法有限,例如,受到低灵敏度和/或特异度,以及无法检测早期疾病的限制。GEP-NEN经常到其转移时才被诊断,而且常常无法治疗。
需要具有特异性和敏感性的方法和试剂来检测GEP-NEN(包括早期阶段的GEP-NEN),例如,以用于诊断、预后、预测、分期、分类、治疗、监测和风险评估应用,以及用于研究和了解该疾病的发病机理、恶性和侵袭性的分子因素。例如,需要能够简单、迅速且相对低成本地实施的所述方法和试剂。本文提供满足这些需求的方法、组合物和组合。
发明内容
一方面,本发明涉及胃肠胰神经内分泌肿瘤(GEP-NEN)生物标志物,其检测可用于诊断、预后和预测方法。所述提供的对象包括GEP-NEN生物标志物、所述生物标志物组、用于结合与检测所述生物标志物的试剂、包含所述试剂的试剂盒和系统,以及用于(例如,在生物样品中)检测所述生物标志物的方法和组合物,及其预后、预测、诊断和治疗应用。
提供用于GEP-NEN预后、检测和诊断的试剂、试剂群和包含所述试剂的系统。通常,所述系统包括多种试剂(例如,试剂群),其中,所述多种试剂特异性结合和/或检测GEP-NEN生物标志物组中的多种GEP-NEN生物标志物。所述试剂通常是特异性结合一种或多种GEP-NEN生物标志物的经分离多肽或多核苷酸。例如,提供结合GEP-NEN生物标志物组的经分离的多核苷酸和多肽的群,及其方法和应用。
还提供对于GEP-NEN及相关病症、综合症和症状的预后、诊断和预测方法以及所述试剂、组合物、系统和试剂盒的应用。例如,提供对于GEP-NEN或其结果、阶段或侵袭性水平或风险或者相关病症的检测、诊断、分类、预测、治疗监测、预后或其它评价的方法和应用。在一些实施方式中,所述方法通过测定GEP-NEN生物标志物,更优选测定多种GEP-NEN生物标志物(例如生物标志物组)的存在、缺失、表达水平或表达谱,和/或将所述信息和正常或参照表达水平或谱或标准相比较来实行。因此,在一些实施方式中,所述方法通过获得生物测试样品并检测本文所述的GEP-NEN生物标志物,更优选检测至少两个所提供GEP-NEN生物标志物组的存在、缺失、表达水平或表达谱来进行。例如,所述方法可采用本文提供的任何试剂(例如,多核苷酸或多肽)系统来实行。例如,所述方法通常使用一种或多种所提供的系统来进行。
提供用于检测和区别多种不同GEP-NEN类型、阶段和位置(例如,胰腺和小肠GEP-NEN)的方法、试剂和组合物。一方面,区分不同位置可提供预后信息或帮助鉴定GEP-NEN。因此,在一些实施方式中,所述方法区别小肠NEN(SI-NEN)和胰腺NEN(PI-NEN)。示例性的GEP-NEN类型和阶段包括转移性和原发性GEP-NEN、对各种疗法响应或不响应的GEP-NEN,以及不同GEP-NEN亚型,包括高分化的NET(WDNET)、原发性高分化神经内分泌癌(WDNEC)、原发性低分化神经内分泌肿瘤(PDNET)、原发性低分化NEC(PDNEC)、转移性WDNET(WDNET MET)、转移性WDNEC(WDNEC MET)、转移性PDNEC(PDNEC MET)和转移性PDNET(PDNET MET)。
一方面,所述提供的方法和组合物可用于特异性且敏感地检测GEP-NEN,例如早期、原发性或无症状的GEP-NEN;在一些方面,所述方法和组合物可用于预测疾病进展、治疗反应和转移。本文提供的方法和组合物可用于诊断、预后、预测(即,预测早期和原发性GEP-NEN的转移性)、分期、分类、治疗、监测、风险评估以及研究与GEP-NEN疾病相关联的分子因素。
所提供的此类方法相较于其它诊断和预后方法能快速、简单且相对低成本地进行。
提供可用于确定基于基因表达的GEP-NEN分类,并因而可用于(例如,在疾病早期阶段或使用组织学阴性样品)预测恶性和转移,提供准确分期,促进合理治疗并开发用于GEP-NEN特异性治疗的大型有效临床数据集的方法和组合物。
所述GEP-NEN生物标志物包括随GEP-NEN的存在或缺失而有不同或相关表达,或随特定分类、阶段、侵袭性、严重性、程度、转移、症状、风险、治疗反应或功效,或者相关综合症而有不同或相关表达的生物标志物。所述GEP-NEN生物标志物组通常包括至少两种GEP-NEN生物标志物,通常至少三种生物标志物。在一些实施方式中,所述生物标志物组包括至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100种或更多生物标志物,或者包括正好或大约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100种GEP-NEN生物标志物,或者更多。
例如,在一些方面,所述生物标志物组包括至少3种、至少11种、至少21种或至少29种生物标志物,至少51种生物标志物或至少75种或更多生物标志物。在一个具体的示例中,所述组包含至少51种生物标志物或约51种生物标志物或51种生物标志物。因为所述系统包括与所述组中生物标志物特异性结合或杂交的多种试剂(通常是多肽或多核苷酸),所以生物标志物的数量通常与特定系统中试剂的数量相关。例如,所提供的系统包括含有51种试剂的系统,所述试剂与51种GEP-NEN生物标志物组分别特异性杂交或结合。
在一些方面,所述生物标志物组包括至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种和/或全部下组基因产物(包括多核苷酸(例如,转录物)和多肽:
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3、APLP2、CD59、ARAF1、BRAF1、KRAS和RAF1基因产物;
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物;和
APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
在一些示例中,所述生物标志物组包括AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
在一些示例中,所述生物标志物组包括APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
在一些示例中,所述生物标志物组包括AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
在一些示例中,所述生物标志物组包括APLP2基因产物、CD59基因产物、ARAF1基因产物、BRAF1基因产物、KRAS基因产物或RAF1基因产物。
在一些示例中,所述GEP-NEN生物标志物组包括APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;或所述GEP-NEN生物标志物组包括APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物。
在一些示例中,所述组还包括选自下组的基因产物:MAGE-D2、MTA1、生存素、Kiss1、HOXC6、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、CTGF、PTPRN2、SPOCK1和SCG5基因产物。
在其它示例中,所述GEP-NEN生物标志物组包括一组、多组或全部下组基因产物(包括多核苷酸(例如,转录物)和多肽)中的至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29种或各生物标志物:
(a)APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物;(b)MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph基因产物;(c)ARAF1、BRAF、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;(d)CXCL14、GRIA2、HOXC6、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NKX2-3、OR51E1、PTPRN2、SCG5、SPOCK1和X2BTB48基因产物;(e)CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48基因产物;(f)APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;(g)APLP2、ARAF1、BRAF1、CD59、KRAS和RAF1基因产物;和/或(h)ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物。
在一些示例中,所述生物标志物包括至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种以下基因产物(所述术语基因产物包括,例如多核苷酸(例如,转录物)和多肽):AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
在一些方面,所述生物标志物包括AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
在一些示例中,所述生物标志物包括至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37或38种以下基因产物(所述术语基因产物包括,例如多核苷酸(例如,转录物)和多肽):AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
在一些方面,所述生物标志物包括AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3。
在一些示例中,所述生物标志物包括选自APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物的至少两种GEP-NEN生物标志物。
在一个实施方式中,所述多种GEP-NEN生物标志物包括APLP2基因产物或CD59基因产物。在一个实施方式中,所述GEP-NEN生物标志物包括APLP2基因产物。在一个实施方式中,其包括CD59基因产物。
在一个实施方式中,所述GEP-NEN生物标志物包括APLP2、CD59、ARAF1、BRAF1、KRAS或RAF1基因产物。
在一些实施方式中,所述GEP-NEN生物标志物组包括APLP2、ARAF1、BRAF、CD59、KRAS或RAF1基因产物或者GTGF、FZD7、Ki67、NAP1L1、PNMA2、TPH1或VMAT2基因产物。在一些实施方式中,所述GEP-NEN生物标志物组包括PNMA2基因产物。
在一些实施方式中,所述GEP-NEN生物标志物组包括VMAT2基因产物。
在一些实施方式中,所述GEP-NEN生物标志物组包括CgA、CXCL14、GRIA2、HOXC6、Kiss1、MAGE-D2、MTA1、NKX2-3、NRP2、OR51E1、PTPRN2、SCG5、SPOCK1、生存素、VMAT1或X2BTB48基因产物。在其它实施方式中,所述组包括PNMA2生物标志物。在一些实施方式中,所述组包括VMAT2生物标志物。
在一些实施方式中,所述组包括APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;或者包括MAGE-D2、MTA1、NAP1L1、Ki67、生物素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5、CgA和Tph基因产物。一方面,所述生物标志物包括以下生物标志物中的至少一种或各种:APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2、生存素和X2BTB48基因产物。在一个所述实施方式中,所述生物标志物还包括CgA基因产物。
在一个实施方式中,所述GEP-NEN生物标志物包括一种或多种基因产物,所述基因产物的核苷酸序列与以下序列具有至少或正好或大约90、91、92、93、94、95、96、97、98、99%的相同性或100%相同性(即,具有以下核苷酸序列):SEQ IDNO:1或SEQ ID NO:1的核苷酸残基158-2449;SEQ ID NO:2或SEQ ID NO:2的核苷酸残基195-2015;SEQ ID NO:3或SEQ ID NO:3的核苷酸残基62-2362;SEQ IDNO:4或SEQ ID NO:4的核苷酸残基278-664;SEQ ID NO:5或SEQ ID NO:5的核苷酸残基1-1374;SEQ ID NO:6或SEQ ID NO:6的核苷酸残基207-1256;SEQ ID NO:7或SEQ ID NO:7的核苷酸残基466-801;SEQ ID NO:8或SEQ ID NO:8的核苷酸残基62-1786;SEQ ID NO:9或SEQ ID NO:9的核苷酸残基460-3111;SEQ ID NO:10或SEQ ID NO:10的核苷酸残基113-820;SEQ ID NO:11或SEQ ID NO:11的核苷酸残基196-9966;SEQ ID NO:12或SEQ ID NO:12的核苷酸残基155-571;SEQ ID NO:13或SEQ ID NO:13的核苷酸残基182-751;SEQ ID NO:14或SEQ ID NO:14的核苷酸残基100-1920;SEQ ID NO:15或SEQ ID NO:15的核苷酸残基188-2335;SEQ IDNO:16或SEQ ID NO:16的核苷酸残基413-1588;SEQ ID NO:17或SEQ ID NO:17的核苷酸残基200-1294;SEQ ID NO:18或SEQ ID NO:18的核苷酸残基792-3587;SEQ ID NO:19或SEQ ID NO:19的核苷酸残基145-1101;SEQ ID NO:20或SEQ IDNO:20的核苷酸残基771-1865;SEQ ID NO:21或SEQ ID NO:21的核苷酸残基122-3169;SEQ ID NO:22或SEQ ID NO:22的核苷酸残基416-2362;SEQ ID NO:23或SEQ ID NO:23的核苷酸残基118-756;SEQ ID NO:24或SEQ ID NO:24的核苷酸残基152-1471;SEQ ID NO:25或SEQ ID NO:25的核苷酸残基2811-2921、3174-3283、5158-5275、11955-12044或SEQ ID NO:34;SEQ ID NO:26或SEQ ID NO:26的核苷酸残基27-1361;SEQ ID NO:27或SEQ ID NO:27的核苷酸残基472-2049;SEQ ID NO:28或SEQ ID NO:28的核苷酸残基32-1576;SEQ ID NO:29或SEQ IDNO:29的核苷酸残基467-1801;SEQ ID NO:105或SEQ ID NO:105的核苷酸残基122-1456;SEQ ID NO:201或SEQ ID NO:201的核苷酸残基100-2040;SEQ ID NO:204或SEQ ID NO:240,的核苷酸残基293-1744;SEQ ID NO:205或SEQ ID NO:205,的核苷酸残基125-784;SEQ ID NO:206或SEQ ID NO:206的核苷酸残基278-1006;SEQ ID NO:207或SEQ ID NO:207的核苷酸残基38-508;SEQ ID NO:208或SEQ IDNO:208的核苷酸残基260-1621;SEQ ID NO:209或SEQ ID NO:209的核苷酸残基281-1126;SEQ ID NO:210或SEQ ID NO:210的核苷酸残基30-4589;SEQ ID NO:211或SEQ ID NO:211的核苷酸残基852-1967;SEQ ID NO:212或SEQ ID NO:212的核苷酸残基362-2128;SEQ ID NO:213或SEQ ID NO:213的核苷酸残基188-1798;SEQ ID NO:215或SEQ ID NO:215的核苷酸残基17-2017;SEQ ID NO:217或SEQID NO:217的核苷酸残基505-1371;SEQ ID NO:218或SEQ ID NO:218的核苷酸残基194-853;SEQ ID NO:219或SEQ ID NO:219的核苷酸残基319-837;SEQ ID NO:220或SEQ ID NO:220的核苷酸残基216-311和313-786;SEQ ID NO:221或SEQ IDNO:221的核苷酸残基312-1151;SEQ ID NO:222或SEQ ID NO:222的核苷酸残基625-2667;SEQ ID NO:223或SEQ ID NO:223的核苷酸残基210-13117或参照GenBank GI号205360961或该序列的核苷酸残基210-13118;SEQ ID NO:224或SEQID NO:224的核苷酸残基399-1871;SEQ ID NO:225或SEQ ID NO:225的核苷酸残基122-919;SEQ ID NO:227或SEQ ID NO:227的核苷酸残基320-1273;SEQ ID NO:228或SEQ ID NO:228的核苷酸残基121-4446;SEQ ID NO:229或SEQ ID NO:229的核苷酸残基229-1866;SEQ ID NO:232或SEQ ID NO:232的核苷酸残基102-1553;SEQ ID NO:233或SEQ ID NO:233的核苷酸残基176-1879;SEQ ID NO:234或SEQID NO:234的核苷酸残基618-1793;SEQ ID NO:235或SEQ ID NO:235的核苷酸残基526-1782;SEQ ID NO:236或SEQ ID NO:236的核苷酸残基65-1231;SEQ ID NO:237或SEQ ID NO:237的核苷酸残基89-1183;SEQ ID NO:238或SEQ ID NO:238的核苷酸残基227-4030;SEQ ID NO:239或SEQ ID NO:239的核苷酸残基104-1969;SEQ ID NO:240或SEQ ID NO:240的核苷酸残基94-612;SEQ ID NO:243或SEQ IDNO:243的核苷酸残基409-10988;SEQ ID NO:244或SEQ ID NO:244的核苷酸残基130-8499;SEQ ID NO:245或SEQ ID NO:245的核苷酸残基55-2187;和/或SEQ IDNO:246或SEQ ID NO:246的核苷酸残基477-3188。
所提供的方法、试剂和系统能分类或检测人血样品中的GEP-NEN。在一些实施方式中,所提供的系统和方法可分类或鉴定人血样品中的GEP-NEN;在一些实施方式中,其可区分带有GEP-NEN的对象和带有其它类型胃肠(GI)癌(或其它癌)的对象,或可测定GEP-NEN的位置,例如,通过区分带有小肠NEN的对象和带有胰腺NEN的对象。在一些示例中,所述系统可提供此类信息,所述信息具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%(例如,至少80%)的特异度、灵敏度和/或准确度。
在一些实施方式中,所述系统可预测对GEP-NEN治疗的治疗反应,或测定患者是否在GEP-NEN治疗后变得临床稳定或是否对该治疗有反应,所述GEP-NEN治疗例如手术介入或药物治疗(例如,促生长素抑制素类似物治疗)。在一些情况中,所述方法和系统如此具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的特异度、灵敏度和/或准确度(例如,具有至少90%的准确度)。在一些情况中,可用至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的特异度、灵敏度和/或准确度(例如,以至少85%的灵敏度和特异度)区分治疗的和未治疗的GEP-NEN。
在一些情况中,可以测定关于先前经诊断带有GEP-NEN的对象的诊断或预后信息,例如,该对象是否具有稳定疾病、进行性疾病或完全缓解(例如,将患者临床分类为具有稳定疾病、进行性疾病或处于完全缓解)。
在一些实施方式中,用于检测所述生物标志物的试剂(例如,多核苷酸或多肽试剂群)及其应用能够区分生物样品中GEP-NEN的存在和缺失,区分GEP-NEN和其它肠及黏膜样品(如肠嗜铬细胞(EC)与小肠(SI)黏膜样品和GEP-NEN样品),区分转移性或侵袭性和原发性GEP-NEN样品,和/或区分GEP-NEN的特定类型或亚型。
在一些实施方式中,所述方法区分GEP-NEN和其它癌,例如腺癌,包括胃肠腺癌或乳腺、前列腺、或胰腺、或胃或肝癌之一,例如食道癌、胰腺癌、胆囊癌、结肠癌或直肠癌。在其它实施方式中,所述方法和系统区分不同位置的GEP-NEN,例如小肠GEP-NEN和胰的GEP-NEN。在一个实施方式中,所述试剂群区分肠嗜铬细胞(EC)和小肠(SI)黏膜。一方面,所述GEP-NEN生物标志物组包括CTGF、CXCL14、FZD7、Kiss1、FZD、Kiss1、NKX2-3、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48基因产物。在另一个实施方式中,所述系统或试剂群区分腺癌和GEP-NEN,例如腺癌和GEP-NEN样品。一方面,所述GEP-NEN生物标志物组包含至少16种GEP-NEN生物标志物,包括CgA基因产物。在另一个实施方式中,所述系统或试剂群区分原发性和转移性GEP-NEN疾病。在该实施方式的一方面,所述GEP-NEN生物标志物组包括至少18种GEP-NEN生物标志物。
在一些实施方式中,所述系统或试剂群或其应用区分一种或多种不同GEP-NEN亚型,和/或包含结合或检测生物标志物群的试剂,所述生物标志物的表达谱或总表达(例如,矢量加和的表达)在不同亚型中具有显著差异。在该实施方式的一方面,所述系统区分原发性PDNEC和原发性WDNET;在一个示例中,所述生物标志物组包括CXCL14和MAGE-D2基因产物。在另一个实施方式中,所述系统区分原发性PDNEC和原发性WDNEC;在一个示例中,所述GEP-NEN生物标志物组包括三种生物标志物,包括PTPRN2基因产物。在另一个实施方式中,所述系统区分原发性PDNEC和原发性PDNET;在一个示例中,所述生物标志物组包括MTA1和PNMA2基因产物。在另一个实施方式中,所述系统区分原发性PDNET和原发性WDNET;在一个示例中,所述NE生物标志物组包括至少四种生物标志物。在另一个实施方式中,所述系统区分原发性WDNEC和原发性WDNET;在一个示例中,所述群包含至少21种生物标记物。在另一个实施方式中,所述系统区分转移性GEP-NEN亚型,例如区分转移性WDNEC和转移性WDNET,例如,其中所述组包含至少三种生物标志物,包括CXCL14基因产物;区分转移性PDNEC和转移性WDNEC,例如,其中所述生物标志物的群包括至少四种生物标志物,包括NAP1L1基因产物;区分转移性PDNEC和转移性WDNET,例如,其中所述GEP-NEN生物标志物组包括至少六种生物标志物,例如,包括NRP2基因产物。
一方面,所述系统能分类或检测人血样品或人唾液样品中的GEP-NEN。一方面,所述人样品是未针对任何特定细胞群进行预先分选或富集的全血或由全血制备的核酸或蛋白质。一方面,所述系统包括与至少29种GEP-NEN生物标志物的组中的生物标志物结合的试剂。
在一些方面,所述方法和系统提供如上所述的的诊断、区分、检测、预测或预后信息或测定,相较于其它诊断方法例如现有的检测或诊断方法,例如循环CgA水平的检测具有更高敏感度、特异度或准确度。
在一些实施方式中,除结合所述GEP-NEN生物标志物的试剂以外,所提供的系统还包含与用于标准化或作为对照的基因产物结合的一种或多种试剂,所述基因产物例如管家基因产物,包括以下任何一种或多种:ACTB、TOX4、TPT1和TXNIP基因产物;
管家基因产物包括以下任何一种或多种:18S、GAPDH、ALG9、SLC25A3、VAPA、TXNIP、ADD3、DAZAP2、ACTG1、ACTB、ACTG4B、ARF1、HUWE1、MORF4L1RHOA、SERP1、SKP1、TPT1、TOX4、TFCP2和ZNF410基因产物;
管家基因包括以下任何一种或多种:18S、GAPDH、ALG9、SLC25A3、VAPA、TXNIP、ADD3、DAZAP2、ACTG1、ACTB、ACTG4B、ARF1、HUWE1、MORF4L1RHOA、SERP1、SKP1、TPT1和TOX4基因产物;或
管家基因包括以下任何一种或多种:ALG9、TFCP2、ZNF410、18S和GAPDH基因产物。
在一些实施方式中,所述系统区分肠嗜铬细胞(EC)和小肠(SI)黏膜且GEP-NEN生物标志物组还包括CTGF、CXCL14、FZD7、Kiss1、FZD、Kiss1、NKX2-3、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48基因产物。在另一个实施方式中,所述GEP-NEN生物标志物组包括MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CgA、CTGF、PTPRN2、SCG5和Tph1基因产物。在另一个实施方式中,所述系统区分腺癌和GEP-NEN,并且包括与16种或更多GEP-NEN生物标志物(包括CgA基因产物)组特异性杂交的多核苷酸或多肽群。
在一些实施方式中,所述方法和系统测定存在、缺失、表达水平或表达谱,所述表达谱指示所述GEP-NEN的存在、缺失、分类、预后、风险、治疗反应性、侵袭性、严重性或转移。例如,在一个方面,测试样品中测得的存在、缺失、表达水平或表达谱指示GEP-NEN的治疗功效。在一方面,所检测的存在、缺失、表达水平或表达谱区分原发性PDNEC和原发性WDNET且所述生物标志物组包含CXCL14和MAGE-D2基因产物;在其它方面,其区分原发性PDNEC和原发性WDNEC且所述生物标志物组包含三种生物标志物(包括PTPRN2基因产物);在另一个方面,其区分原发性PDNEC和原发性PDNET且所述生物标志物组包含MTA1和PNMA2基因产物;在另一个方面,其区分原发性PDNET和原发性WDNET或原发性PDNET和原发性WDNEC且所述生物标志物组包含至少四种生物标志物;在另一个方面,其区分原发性WDNEC和原发性WDNET,所述生物标志物组包含21种生物标志物;在另一个方面,其区分转移性WDNEC和转移性WDNET且所述生物标志物组包含至少三种生物标志物(包括CXCL14基因产物);在另一个方面,其区分转移性PDNEC和转移性WDNEC且所述组包含至少四种生物标志物(包括NAP1L1基因产物);在另一个方面,其区分转移性PDNEC和转移性WDNET且所述组包含至少6种生物标记物(包括NRP2基因产物)。
用于所述方法的生物测试样品可以是任何生物样品,例如组织、生物液体,或其它样品,包括血液样品,例如血浆、血清、全血、棕黄层,或者其它血液样品、组织、唾液、血清、尿液或精液样品。在一些方面,所述样品获自血液。所述测试样品常取自GEP-NEN患者。
在一些实施方式中,所述方法还包括将测试样品中所测生物标志物的表达水平或表达谱或存在或缺失和正常或参照表达水平,或正常或参照表达谱,或表达水平、量或表达谱的标准值,或者参照或正常样品中检测的存在(或更常为缺失)作比较。
在一些所述实施方式中,所述方法包括获得正常或参照样品并检测该正常样品中GEP-NEN生物标志物组的存在、缺失、表达水平或表达谱的步骤,该步骤通常在所述比较步骤之前进行。一方面,该附加步骤测定正常或参照表达水平或者正常或参照表达谱,可将该测定与所述测试生物样品中测得的表达水平或表达谱作比较。
在一些情况中,实施统计学分析来确定是否存在差异,例如所述测试生物样品中检测到的表达水平和所述正常或参照样品中检测到的表达水平或其它标准或参照表达水平间的显著差异。例如,当p值小于0.05或当标准偏差为±2时,可认为差异显著。用于确定显著性的其它方法是本领域已知的。
所述正常或参照样品可以来自健康患者或患有GEP-NEN的患者。当所述测试样品来自患有GEP-NEN的患者时,所述正常或参照样品或水平可来自相同或不同患者。例如,所述正常或参照样品可来自GEP-NEN患者中预计不包含GEP-NEN或GEP-NEN细胞的组织、液体或细胞。在另一个方面,所述正常或对照样品来自治疗介入之前或之后(例如,手术或化学介入之后)的GEP-NEN患者。在另一个方面,所述参照或正常样品来自健康个体中与所述GEP-NEN或所述测试样品的转移相对应的组织或体液,例如正常EC或SI样品,或正常肝、肺、骨、血、唾液或其它体液、组织或生物样品。在另一个实施方式中,所述测试样品来自GEP-NEN患者的转移、血浆或全血或其它液体,而所述参照样品来自原发性肿瘤或经分选的肿瘤细胞。
一方面,所述测试生物样品来自治疗前的GEP-NEN患者而所述正常或参照样品来自治疗后的GEP-NEN患者。另一方面,所述正常或参照样品来自所述GEP-NEN患者的非转移组织。
在其它方面,所述测试样品来自血液且所述测试生物样品来自治疗后的GEP-NEN患者,而所述参照样品来自治疗前与所述测试生物样品相同的GEP-NEN患者;所述参照样品来自不含GEP-NEN细胞的组织或液体;所述参照样品来自健康个体;所述参照样品来自GEP-NEN以外的癌症;所述参照样品来自EC细胞或SI组织;所述测试生物样品来自转移性GEP-NEN而所述参照样品来自非转移性GEP-NEN;或者所述参照样品来自与获得所述测试生物样品的GEP-NEN患者相比分类不同的GEP-NEN。
所述试剂可以是用于检测生物标志物的任何试剂,通常为经分离的多核苷酸或经分离的多肽或蛋白质(例如抗体),例如,与包括至少21种GEP-NEN生物标志物的GEP-NEN生物标志物组特异性杂交或结合的那些。
在一些实施方式中,所述方法通过使所述测试样品接触所提供的试剂之一来实施,更常是通过接触多种所提供的试剂,例如,所提供的系统之一,如特异性结合GEP-NEN生物标志物组的多核苷酸群。在一些实施方式中,所述多核苷酸群包括DNA、RNA、cDNA、PNA、基因组DNA或合成的寡核苷酸。在一些实施方式中,所述方法包括在检测前从所述测试样品分离RNA的步骤,如通过RT-PCR,例如QPCR。因此,在一些实施方式中,所述GEP-NEN生物标志物例如其表达水平的检测包括检测RNA的存在、缺失或RNA的量。在一个示例中,所述RNA通过PCR或通过杂交检测。
一方面,所述多核苷酸包括正义和反义引物,例如特异性针对所述生物标记物组中各GEP-NEN生物标记物的引物对。在该实施方式的一方面,GEP-NEN生物标志物的检测通过PCR完成,通常是定量或实时PCR。例如,在一方面,检测通过由所述测试样品经逆转录生成cDNA;然后用与所述GEP-NEN生物标志物组特异性杂交的正义和反义引物对扩增所述cDNA,并检测所述扩增产物来进行。在一些实施方式中,所述GEP-NEN生物标志物包括mRNA、cDNA或蛋白质。
在一些实施方式中,所述方法能够检测少量GEP-NEN、早期阶段的GEP-NEN、微转移、循环GEP-NEN细胞和/或通过现有方法(例如成像或检测可用生物标志物例如GEP-NEN)难以检测的其它GEP-NEN情况。例如,在一些实施方式中,所述样品是血液样品,例如全血样品,而所述方法检测至少正好或大约三种GEP-NEN细胞/毫升(mL)全血。
在一些方面,所述方法还包括统计学分析和使用预测模型(例如数学算法)的分析。在一个示例中,所述方法包括计算所述测试生物样品中GEP-NEN生物标志物组的平均表达水平。在该实施方式的一方面,所述计算通过矢量加和所测多种GEP-NEN生物标志物各自的表达水平来进行。在一些方面,将所述平均表达水品与参照平均表达水平(例如通过在参照或正常样品上实行所述方法获得的表达水平)作比较。所述比较通常显示所述测试样品中的平均表达水平相较于所述平均参照表达水平的显著差异。在一些方面,所测表达或表达谱有足够差异,例如显著差异或足够的上调或下调(其中p值小于或约小于0.05),或+标准偏差的差异,或S值为±0.4(S<-0.4或S>0.4),或其它已知的方法,例如本文所述的那些。在一些方面,测试生物样品中检测和/或测定的的表达(例如平均表达、平均加和表达或表达谱)与另一GEP-NEN样品相关,例如,如果该测试样品是全血或其它生物液体样品,则所述量与GEP-NEN组织或经纯化细胞群中的量相关。例如,R2为至少约0.4、0.5、0.6、0.7、0.8、0.9或1。
在一个实施方式中,所述方法以80%-100%,例如正好或大约或者至少正好或大约80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100%的预测值、敏感度或特异度来鉴定GEP-NEN的存在或缺失、分类或阶段。在一些实施方式中,所述方法包括从测试生物样品压缩所测生物标志物的表达水平的步骤。通常进行所述压缩以测定所述生物标记物组的表达谱。
在一些实施方式中,所述测试生物样品是来自GEP-NEN患者的全血或唾液样品,并且,对所述测试生物样品检测或测定的表达水平或表达谱与就获自同一患者的GEP-NEN组织样品或经纯化GEP-NEN细胞样品而言相同GEP-NEN生物标志物的表达水平或表达谱相关联,其R2为至少约0.4。
在一些实施方式中,所述方法包括使用预测算法、模型和/或拓扑分析来分析数据的步骤。在一些示例中,所述预测算法是支持向量机(SVM)、线性判别分析(LDA)、K-最近邻(K-nearest neighbor,KNN)或朴素贝叶斯(Bayes,NB)。在一些示例中,所述预测算法是支持向量机(SVM)、线性判别分析(LDA)或K-最近邻(KNN)。在其它示例中,所述算法是决策树、SVM、RDA或感知器(Perceptron),或本领域已知或本文所述的其它模型。一方面,所述模型或算法确定GEP-NEN的存在、缺失、转移或非转移性质,或用0.05-0的误分率区分两种或更多类别的GEP-NEN。
还提供用于检测血液中神经内分泌肿瘤细胞的方法,该方法通过获得血液样品;并使所述血液样品接触一种或多种试剂,所述试剂特异性结合GEP-NEN生物标志物组(包括至少两种GEP-NEN生物标志物)来进行,其中,所述方法检测至少或至少约1、2、3、4或5种细胞/mL血液。GEP-NEN细胞/mL血液。
所提供的实施方式还包括用于从液体和细胞混合物(例如血浆、血液、棕黄层、细胞培养物、生物液体或其它细胞培养物)富集或分离GEP-NEN细胞的方法。在该实施方式的一方面,所述方法通过使所述细胞混合物接触特异性结合GEP-NEN生物标志物的试剂,然后纯化结合所述试剂的细胞来进行。在该实施方式的一方面,所述生物标志物是CD164。一方面,所述生物标志物是多肽生物标志物。在这一方面,所述试剂是特异性结合所述生物标志物的抗体,例如CD164抗体。在一些实施方式中,所述纯化通过FACS或柱纯化或基于亲和性纯化细胞的任何其它已知方法进行。一方面,所述接触还包括使所述细胞接触其它GEP-NEN特异性试剂。在一些方面,所述方法富集或分离至少或至少约1、2、3、4或5种细胞/mL血液。
还提供所提供的生物标志物、试剂、系统和检测方法用于GEP-NEN治疗和治疗监测的方法和应用。例如,提供将上述诊断、预测和检测方法与GEP-NEN治疗联用的方法,例如测定获自正在接受治疗的对象或先前接受过GEP-NEN治疗的对象的样品。在一个实施方式中,所述方法通过从所述患者获得样品,然后检测或测定所述样品中GEP-NEN生物标志物(通常是GEP-NEN生物标志物组)表达的存在或缺失、表达水平或表达谱来进行。一方面,所述方法包括首先对所述患者提供治疗。在这些方法中,所述生物标志物或生物标志物组通常使用本文提供的试剂或系统如上文所述的那些来检测。在一些方面,所述方法还包括,在提供所述治疗之前测定来自所述患者的样品中所述生物标志物或生物标志物组在治疗前的量、存在、缺失、表达水平或表达谱。因此,在一些示例中,将所述治疗前的量、存在、缺失、表达水平或表达谱与治疗后所述患者内测定或检测的量、存在、缺失、表达水平或表达谱作比较。
在一些情况中,该分析确定治疗前表达水平和治疗后表达水平间存在表达水平的差异,这能指示所述治疗的功效。在一些情况中,所述方法还包括后续测定患者内或来自该患者的样品中所述生物标志物表达的量、存在、缺失、水平或谱。此类方法还可包括比较后续与初始检测或测定的信息。所述信息,例如所述表达的量、存在、缺失、水平或谱水平之间的差异能指示关于所述个体是否已对治疗产生反应的信息,例如,可指示复发、缺乏治疗反应、稳定性疾病或进行性疾病。
在一些实施方式中,所述方法具有相较于现有诊断方法(例如检测血清或其它样品中的CgA水平)提供更高敏感度、特异度或准确度信息的优势。因此,在一个示例中,所述方法在所测多个样品中(例如,在治疗前和治疗后样品和/或后续时间点获取的样品之间,或在测试样品和正常样品之间)的CgA表达水平无显著差异的情况下提供指示性的诊断、预后或预测信息。
在一些示例中,根据所述方法的测定来终止或改进所述治疗。所述方法可以重复方式进行,根据表达水平或谱或比较对治疗进行重新评价或改进。因此,在一些实施方式中,所述方法还包括例如根据由所述诊断方法测定的信息来停止或改进对所述患者提供的治疗。在一些示例中,所述比较和/或表达的量、存在、缺失、水平或谱指示患者内GEP-NEN微转移的存在。在一个示例中,通过其它诊断方法例如通过组织学或单独CgA检测来测定取自所述患者的一个或多个样品无GEP-NEN、GEP-NEN转移或GEP-NEN复发。
在其它实施方式中,所述治疗方法通过以下方式进行:从GEP-NEN患者获取第一样品并检测该第一样品中GEP-NEN生物标志物组的表达水平;对所述患者提供治疗;从该GEP-NEN患者获得第二样品并检测该第二样品中GEP-NEN生物标志物组的表达水平;以及比较所述第一样品中检测的表达水平和所述第二样品中检测的表达水平。一方面,所述方法还包括测定所述第一和第二样品间的表达水平是否存在差异,例如,测定存在该差异。在一个示例中,所述差异指示所述治疗的功效。在另一个实施方式中,所述方法还包括从所述患者获得第三样品,检测该第三样品中的表达水平,并将所述水平与第一或第二样品中的表达水平作比较。在一些示例中,所述比较指示转移例如微转移的存在。在一些实施方式中,所述样品中的一种或多种取自经其它检测(例如单独CgA检测、成像或组织学)测定无GEP-NEN、GEP-NEN转移或GEP-NEN复发的患者,但所述方法在相同样品中检测到存在GEP-NEN、GEP-NEN转移或GEP-NEN复发。
在一个示例中,所述方法还包括测定所述第二样品和第三样品中所测表达水平间存在差异,其中,所述差异指示复发或缺乏治疗反应性。在一些方面,第二样品中CgA的表达水平相较第一样品或第三样品无显著差异。
附图简要说明
图1.正常、局部和恶性组织间的基因表达分布。样品间个体基因(如每张图上方所列)的表达与正常肠嗜铬(EC)细胞中的平均表达作比较,并指定为上调、下调或基线等级。各图自左向右显示正常、恶性和局部组织的结果。椭圆对应于±2个标准偏差(SD)的阈值。所有p值:p<0.05。
图2.原发性小肠神经内分泌肿瘤、转移和正常EC细胞的主成分(PC)分析。经ln-标准化的指示性生物标志物的实时PCR表达水平减少至3个主成分,显示原发性肿瘤亚型和正常EC细胞制备物的方差为75.6%(2A),而原发性肿瘤亚型和相应转移的方差为73.2%(2C)。就原发性肿瘤和正常EC细胞而言,观察到表达模式相似的三组基因(2B),而两组在相应转移中得到鉴定(2D)。
图3.采用原发性小肠神经内分泌肿瘤和正常EC细胞中标志物基因表达的皮尔森相关的相似矩阵。经ln-标准化的指示性基因的实时PCR表达水平在X-和Y-轴上的作图。
图4.正常EC细胞和小肠神经内分泌肿瘤间的分布密度图。经FS鉴定的指示性转录物的表达水平在X-和Y-轴上作图,其中,正常样品和肿瘤样品根据各自基因对的表达来分散,基于样品间平均欧氏距离(表达差异)的分布密度着色为绿色(正常)和红色(肿瘤)。蓝色区域指示正常组和肿瘤组间的转变区域。
图5.对原发性小肠神经内分泌肿瘤分类的决策树。确定NAP1L1和Ki-67的表达水平为使用特征选择的决策树分类器的主要鉴别物。通过使NAP1L1和Ki-67的值与原发性肿瘤亚型相互关联来构建该模型。圆括号中的百分数表示原发性小肠神经内分泌肿瘤亚型的出现频率。
图6.原发性小肠神经内分泌肿瘤及其转移间的分布密度图。通过FS算法鉴定的Kiss1、NAP1L1、MAGE-D2和CgA转录物的表达水平在X-和Y-轴上作图。原发性小肠神经内分泌肿瘤亚型(WDNET、WDNEC、PDNEC)和各转移(MET)根据其各自基因对表达来分散(6A-C)。基于样品间平均欧氏距离(表达差异)的分布密度着色为蓝色(原发性肿瘤)和红色(转移)。绿色区域表示原发性肿瘤亚型和各自转移间的转换区域。
图7.所述分类器在测试集和训练集中的性能评价。该图显示训练集和测试集中正确验证样品的百分比,显示正常EC细胞交叉验证的准确度为77%,而在独立测试集中的预测准确度为76%(p=0.84)。局部NET的交叉验证准确度为78%,而在测试集中的预测准确度为63%(p=0.25)。恶性NET的交叉验证准确度为83%,而在独立集中的预测准确度为83%(p=0.80)。
图8.NET、腺癌和正常组织中标志物基因的主成分分析(PCA)和表达。8A.21种标志物基因的组的转录物表达减少至捕获该数据集中大多数变异(83%)的3个主成分。如样品的主成分向量所指定,每个质心(平均表达)对应该样品的转录物表达谱。以这种表现形式,质心间分离的接近度表示近似程度。因此,所述标志物基因组能够成功区分腺癌(乳腺、结肠、胰腺)、正常SI黏膜、正常EC细胞和原发性及转移性NET亚型。值得注意的是,正常EC细胞的遗传谱与正常SI黏膜和肿瘤组织有本质区别。8B.对表达各标志物基因的样品比例的分析证明相较于腺癌(AC),明显更多NET样品(>95%)就所述标志物基因中的16种呈阳性。在两种肿瘤类型中皆高度表达的基因包括CTGF、FZD7、NRP2、PNMA2和生存素。NML=正常SI黏膜,NML_EC=正常EC细胞,MET=转移,WDNET=高分化NET;WDNEC=高分化神经内分泌癌;PDNET=低分化NET;PDNEC=低分化NEC。SI NET相比腺癌的*p<0.002(费舍尔精确检验)。
图9.高度相关基因对的相关系数和关系网的热图。9A.所有组织类型间各基因的皮尔森相关系数(R2)经计算并以热图显示,其中,最低值(-0.03)以黑色表示,中值(0.4)以深灰色表示,且最高值(1)以浅灰色表示。9B.构建共表达网络使R2>0.40的转录物对通过边缘连接。实际R2值在各边缘上迭加。
图10.基因等级和t-检验显著性(p)值的火山图。10A.计算双样本t检验来鉴定1)EC细胞、正常SI黏膜和原发性及转移性组织;2)原发性NET亚型;3)转移性NET亚型中的差异表达基因。相较于正常SI黏膜,正常EC细胞中典型神经内分泌标志物Tph1的转录物表达显著较高(p<0.001,S=0.7)。10B.相较于正常SI黏膜,肿瘤组织表达更高的CgA和GRIA-2转录物水平,但肿瘤组织和正常EC细胞间的CgA表达无显著改变(p=0.07,S=0.39)。10C.在所有转移作为一组和全部不同原发性NET亚型作为一组分析之间没有差异表达基因。10D.在PDNET-PDNEC和WDNET-PDNEC之间没有差异表达的转录本,而在WDNEC-PDNEC中,MAGE-D2是唯一显著的标志物(p=0.009,S=1.03)。在所有转移亚型间,CgA、Kiss1、NRP2和Tph1都差异性表达。
图11.全血中的转录物表达。在Trizol mRNA分离(11A)和QIAamp RNA血液迷你试剂盒法(11B)之后鉴定血浆中的管家基因(ALG-9、TFCP2、ZNF410),显示采用QIAamp RNA血液迷你试剂盒法分离之后,在显著更多的样品中(8/15相比2/15,p=0.05)鉴定出管家基因。通过PCR在mRNA中评价相同3个管家基因和11个NET生物标志物基因的转录物表达水平,所述mRNA由来自3位健康供体的全血制备(正常样品),显示所测基因的表达水平在样品间高度相关(11C)。
图12.各基因的平均综合转录物表达(12A)。转录物显示低变异性:0.04-0.45(中位数0.12)。就全部样品而言平均标志物基因表达的主成分分析(12B)。所述数学算法(SVM、LDA、KNN和NB)鉴定在0、30分钟、1小时、2小时和4小时时间做出正确检出。在8-48小时出现不一致的检出率,表示冷冻前在冰箱贮存的优选时间为0-4小时。
图13.鉴定最合适管家基因并测定进食对全血中ALG-9转录物的影响。评价5个健康对照中5个管家基因的转录物表达。经鉴定,ALG-9变化最小(13A)。检测随着进食后时间而变化的ALG-9表达,显示进食后(至多4小时)无显著变化(13B)。
图14.拓扑分析候选管家基因与血液相互作用组(7,000基因,50,000相互作用)的作图:程度(14A)、介数(14B)和聚类(14C)。各类中具有最低值的基因包括TXNIP、ACTB、TOX4和TPT1。血液和组织相关的管家基因的分析鉴定了用于标准化方案的潜在候选基因。
图15.原始CT值作为组织源性或血液源性候选管家基因的函数作图。变化最少的基因包括ALG9、ARF1、ATG4B、RHDA和SKP1。包括平均值和SD。未扩增的样品的指定值为40。无基因表达的样品的指定值为40(例如,使用MORF4L1扩增的4个样品)。候选管家基因的分析鉴定了显示低变异度的相对较小数量(n=6)并且是用于开发标准化方案的候选者。
图16.使用geNorm程序计算各候选管家基因的M值。ALG9是组织源性基因中最稳定的。10个血液源性基因中有九个(除了SERP1)被认为是稳健的。稳健标志(虚线框)。
图17.各候选管家基因的PCR效率曲线图。有效扩增在0.9-1.0之间出现。低于0.9的值指示未达最佳的引物结合和低效率扩增。高于1.0的值指示过度扩增,大概是因为引物结合特异性不足。具有合适效率的基因包括18S、ALG9和TPT1。平均值±SD,n=3。少量候选者(n=3)显示作为管家基因的功效。
图18.管家基因和靶基因的扩增动力学差异。约为0.1的值证明PCR效率相似,并指示该管家可用于比较CT法。ALG9是唯一显示标准化方案可接受效率的管家基因。
图19.使用geNorm方案(使用18S、ALG9和GAPDH作为管家基因)或者有ALG9的△△CT方案的正常样品中的靶基因表达差异。就各靶基因而言,后者显示显著较低的变异系数,并且有约60%的基因显示正常分布。*p<0.004(曼-惠特尼检验)。用于标准化的优选方法为△△CT
图20.来自U133A和HUGE阵列的组织相关基因的鉴定。相较于其它瘤形成(乳腺、结肠、前列腺和肝),GEP-NEN的PCA鉴定所述转录组最接近克罗恩病(20A)。减去与其它瘤形成相关的转录物表达鉴定了特异性GEP-NEN基因签名(作为相互作用组建模-20B)。通过层次聚类分析(20C)和主成分分析(PCA)(20D)进行组织阵列的反分析鉴定了与GEP-NEN对照不同的21种新标志物。SI-NEN显示与其它癌不同的转录物谱。NEN特异性基因签名是可识别的,由此可以区分这些肿瘤与对照样品。
图21.血液(21A,D)、“内部(In-house)”(21B,E)和公共数据集(21C,F)中的基因表达谱。经转录物表达的分析鉴定,来自GEP-NEN组织和血液的样品可能都与对照不同。这说明,这些分隔各自都含有可确定的GEP-NEN分子指纹,所述分子指纹可检测并用于区分肿瘤和对照。
图22.血液和组织样品中转录物变化的相关性谱。组织数据集高度相关(R=0.59,22A),但需注意,血液转录组和所述“内部”数据集(R=-0.11,22B)或公共数据集(R=-0.05,22C)之间相关性较低。在组织和血液样品中鉴定的共同基因提供了一组候选标志物转录物,我们随后在血液中对其进行检测。
图23.A:来自外周血和肿瘤组织样品的GEP-NEN转录组中的相关与反相关生物过程。B和C.与肿瘤功能(细胞内信号转导和转录及细胞死亡的调控)相关的85个基因在组织和血液样品中上调。认为该组代表可评价的候选循环生物标志物。
图24.血液相互作用组中具有低旁系同源物数目(0-3)的22个基因的表达比全部其它基因(约6,000个基因)更加核心约3倍。这组几乎不相关的特异性基因在血液中存在,并能认为是神经内分泌瘤的潜在标志物。
图25.来自患有转移性NET患者的AO/APC-CD164双染全血的FACS。对来自患有转移性NET的患者的AO(吖啶橙)/APC-CD164双染色全血进行流式细胞分析显示与NET细胞(P1,箭头:25A)尺寸一致的明显细胞群,显示NET的特征性AO/APC阳性(25B)。收集该细胞群(25C);采用抗TPH的免疫染色证实该细胞是NET细胞(25C-插图)。
图26.全血PCR标志物水平和FACS收集的循环NET与组织间的关系。生物标志物转录物的全血表达水平与FACS分选样品(代表循环肿瘤细胞(26A))和组织(26B)高度相关(p<0.0001),证实全血是用于检测NET转录物的合适间隔。
图27.NET预测的ROC和敏感度和特异度。如实施例5D所述计算耶鲁样品(NET和对照)中的选定基因(前3组)和叠加转录物(V1)(左下)的ROC和AUC。测试预测分离点在来自柏林和乌普萨拉的NET中的应用,并提供敏感度和特异度(右下)。
图28:血液中目标基因的再现性研究。所述标志物基因ALG9和所述目标基因FZD7的再现性证明高度相关性:R2:0.92-0.97,p<0.0001(28A-B)。就标准化FDZ7而言的批内和批间再现性高(28C-D,CV=2.28-3.95%);对照中标准化的FZD7和肿瘤样品中的FZD7间没有发现差异(28D),证明血液检测的显著再现性。
图29:所述标志物基因的组在区分正常组织和GEP-NEN(经处理和未经处理)方面的性能。所有四种数学算法显示约88%的相似性能度量。
图30:各数学算法(SVM、LDA、KNN和贝叶斯)在各四个独立集中的正确检出率。所述51种标志物组比所述25或13组子集具有显著更高的正确检出(高出20%)。增加所述标志物基因的数量,增加血液中GEP-NEN检测的敏感度。平均±标准平均数误差。*p<0.008对比13和25组(耶茨值(Yates value)6.8-14.7;#费歇尔双尾精确概率检验<0.005)。
图31:血液PCR标志物水平和CgA在手术切除过程中的变化。在手术后两周检测时,肿瘤切除显著降低如实施例5H中所述的生物标志物组(“PCR”)的表达水平(31A)。CgA水平可变(31B)。水平线=平均值。n=9个患者。
图32:血液PCR标志物水平和CgA在奥曲肽LAR治疗过程中的变化。奥曲肽LAR显著降低如实施例5H中所述的生物标志物组(“PCR”)的血液表达水平;表达随时间进程保持受抑制(32A)。CgA水平在6个月时下降之前是可变的(32B)。*p<0.02对比之前。#p=0.06对比1个月。水平线=平均值。MON=月。n=8个患者。
图33:冷冻消融后血液PCR标志物水平和CgA的变化。如实施例5H所述,冷冻消融之前和之后数个时间患者SK内CgA和13-生物标志物组(PCR+)的表达水平,生物标志物表达的变化与微转移出现相关。
图34:血液PCR标志物水平和CgA在手术切除和奥曲肽LAR治疗过程中的变化。如实施例5H中所述,手术后2周和奥曲肽LAR后检测患者BG内的CgA和NET生物标志物组的表达水平。
图35:完全缓解的患者的正确检出整体百分数(组I:完全响应者[CR],n=12),认为临床上为手术(n=42,组II–SD-Sx)或用长期活性抑生长素类似物(LAR:n=78,组III–SD-LAR)治疗后显示稳定疾病(SD)。*这包括帕瑞肽:n=1和依维莫司:n=4)。该PCR测试显示针对经处理样品的90-100%的正确检出率。
图36:数学分析(包括SVM、LDA、KNN和贝叶斯)证明所述13种生物标志物组能够以约73%的敏感度区分稳定疾病和进行性疾病。
图37:对照和GEP-NEN(未经处理和处理的)血液样品(n=130)间的CgA DAKO的比较。使用学生t检验(37A)或非参数分析(37B)发现未经处理样品和经处理样品间的差异。红色十字代表离群值(37A),y轴经对数转换以达直观目的(37A,B)。CgA水平能够一贯地区分正常组和未经处理组,但对经处理的样品显示明显重叠。
图38:CgA ELISA用于正确检测GEP-NEN并区分经处理样品和未经处理样品的效用。使用19U/L作为截止值(作为每DAKO标准),针对GEP-NEN和对照的整体正确检出百分数为70%,并且未经处理的患者相较于经处理患者具有较好的性能量度(敏感度63%对比45%)。CgA水平最佳鉴定未经处理的患者和来自无疾病个体(对照)的样品。
图39:使用基于PCR方法在对照和GEP-NEN(未经处理的和经处理的)血液样品(n=130)间比较循环CgA DAKO水平的正确检出率和个体算法。相较于CgA的约50%检出率,基于PCR测试的检出率显著较高(各算法约90-95%)(图39A)。将CgA值纳入所述算法并不增加正确检出率,反而与KNN算法的正确检出下降相关(图39B)。
图40:血液样品的PCR分数获自正常对照(黑色虚线:PCR分数=15,判定为“正常”)和具有肠系膜转移的情况1(红色虚线:PCR分数68:判定为“未经处理的肿瘤”)。群分布为实线。这提供了所述算法判定和分数(转录物指数)间关系的示意图。
图41:SI-NEN(n=46)和PNEN(n=18)的PCA确定所述51种标志物的组能够区分胰腺NEN和小肠NEN(41A)。多种数学算法(包括SVM、LDA、KNN和贝叶斯)证明这两个肿瘤组能够以约92%的总体敏感度被区分(图41B)。SI-NEN的标签与PNEN不同。
图42:GEP-NEN(n=64)和胃肠癌(n=42)的PCA确定所述51种标志物组能够区分所述两种瘤类型(图42A)。数学分析(包括SVM、LDA、KNN和贝叶斯)证明这两种肿瘤类型能够以约83%的敏感度被区分(图42B)。GEP-NEN的标签与胃肠癌不同。
图43:对照和GEP-NEN(未经处理的和经处理的)血液样品间(n=130)基于PCR的方法和CgA DAKO水平的比较。就鉴定GEP-NEN或区分经处理和未经处理样品而言,基于PCR测试的检出率显著较高。*p<0.0005对比CgA,#p<0.02对比CgA。在检测肿瘤和区分经处理患者和未经处理患者方面,所述PCR血液测试比CgA水平的检测显著更准确。
发明详述
A.定义
除非另外定义,本文使用的所有术语、符号和其它科学术语旨在具有与本发明所属领域的技术人员通常所理解的相同含义。在一些情况中,本文出于阐明和/或便于引用目的对具有常规理解含义的术语加以限定,本文中包括此类限定不应理解为表示与本领域常规理解的有显著差异。本文所述或所引用的技术和方法一般已由本领域技术人员充分了解并通常通过常规方法采用,例如,Sambrook等在Molecular Cloning:A Laboratory Manual(《分子克隆:实验室手册》)第二版(1989),冷泉港实验室出版社(Cold Spring Harbor Laboratory Press)(纽约州冷泉港)中描述的广泛应用的分子克隆方法。适用时,除非另有说明,涉及使用市售可得试剂盒和试剂的过程通常按生产商给出的方案和/或参数进行。
本文所用的术语“GEP-NEN生物标志物”和“NET生物标志物”为同义词,指生物分子(例如基因产物),所述生物分子的表达或存在(例如,表达水平或表达谱)相较自身或一种或多种其它生物标志物(例如,相关表达)根据GEP-NEN疾病的存在、缺失、类型、种类、严重性、转移性、位置、阶段、预后、相关症状、结果、风险、治疗反应的可能性或预后而不同(即,增加或减少),或随所述因素或其预测而相关地呈阳性或阴性。
本文所用的术语“多核苷酸”或核酸分子指长度为至少10个碱基或碱基对的核苷酸的多聚形式,可以是核糖核苷酸或脱氧核糖核苷酸或任一核苷酸类型的修饰形式,并且意在包括单链和双链形式的DNA。如本文所用,在微阵列分析中作为探针使用的本发明核酸分子或核酸序列优选包含核苷酸链,更优选地包含DNA和/或RNA。在其它实施方式中,本发明的核酸分子或核酸序列包含其它种类的核酸结构,例如,DNA/RNA螺旋、肽核酸(PNA)、锁核酸(LNA)和/或核酶。因此,本文所用的术语“核酸分子”还包括含有非天然核苷酸、经修饰核苷酸和/或非核苷酸构造块的链,其显示与天然核苷酸相同的功能。
本文所用的术语“多肽”指至少10个氨基酸的聚合物。说明书中通篇使用氨基酸的标准三字母或单字母名称。
本文在涉及多核苷酸上下文中所用的术语“杂交”、“使……杂交”、“与……杂”等意在指常规的杂交情况,优选例如在50%甲酰胺/6XSSC/0.1%SDS/100μg/mLssDNA中杂交,其中,杂交温度高于37℃,在0.1XSSC/0.1%SDS中的洗涤温度高于55℃,并且最优选严谨杂交条件。
在涉及氨基酸序列比较的上下文中,术语“相同性”用于表示相同对应位置上氨基酸残基相同的百分数。并且,在该上下文中,术语“同源性”用于表示如本领域普通技术人员了解的那样,按照BLAST分析的保守氨基酸标准,在相同对应位置上的氨基酸残基相同或类似的百分数。基于该标准被认为是保守的氨基酸取代的其它细节将在下文提供。
其它定义在下文部分提供。
B.GEP-NEN疾病和生物标志物
GEP-NEN的诊断和预后具有困难,部分因为该疾病症状和综合症没有特点,例如类癌瘤综合症、腹泻、潮红、发汗、支气管收缩、GI出血、心脏病、间歇性腹痛,所述疾病通常保持无症状数年。现有诊断方法包括解剖定位,例如通过成像(例如X光、胃肠内窥镜检查、腹部计算机断层摄影(CT)、立体定向放射手术(SRS)/CT联合,以及MRI)和检测一些基因产物。已知方法受限于例如低特异性和/或敏感度和/或早期疾病检测能力。单一生物标志物的检测仍未完全满足需求,例如,在鉴定人血液样品中的恶性以及预测综合转归(如纤维化和转移性)方面。参见MichielsS、Koscielny S、Hill C,“Interpretation of microarray data in cancer(癌症中微阵列数据的说明)”Br J Cancer2007;96(8):1155-8。现有方法中的限制导致病例分类、分期和预测、治疗开发以及治疗效果监测中的困难。本文提供的实施方式包括解决这些限制的方法和组合物。
一方面,所提供的本发明涉及检测和鉴定例如生物样品中GEP-NEN生物标志物和所述生物标志物组。提供用于检测、测定生物样品(通常为血液样品)中生物标志物的表达水平和对所述生物标志物的识别或结合,以及用于检测和分析生物标志物组的表达谱(标签)的方法和组合物(例如,试剂,如多核苷酸)。还提供包含所提供方法中所用试剂的组合物和组合,包括试剂群(组)、系统和试剂盒。
还提供用于根据一种或多种所述GEP-NEN生物标志物的表达来检测、富集、分离和纯化,例如血液样品、培养物、细胞混合物、液体或其它生物样品中GEP-NEN细胞(例如,循环GEP-NEN细胞(CNC))的方法和组合物。
还提供模型和生物数学算法(例如,监督学习算法)及其使用方法以用于预测、分类和评价GEP-NEN及相关转归,例如,预测风险程度、治疗反应、转移性或侵袭性,以及用于测定GEP-NEN亚型。
使用所提供实施方式检测生物标志物有利于改进GEP-NEN的诊断和预后,并报告治疗方案。在一些方面,通过所提供的实施方式检测所述生物标志物和/或表达水平证实或指示GEP-NEN或GEP-NEN细胞(例如循环GEP-NEN细胞(CNC))的存在、缺失、阶段、种类、位置、亚型、侵袭性、恶性、转移性、预后或其它转归。所提供的方法和组合物可用于肿瘤定位,还可用于预测或检测转移、微转移和小病灶,和/或用于测定风险程度、复发可能性、治疗反应或缓解,并提示合适的治疗进程。例如,生物标志物(例如,循环中)的检测可用于检测早期和原发性GEP-NEN(例如,鉴定早先通过另一种方法如解剖学定位视作“阴性”的患者内的GEP-NEN疾病或转移)。
所提供的方法和组合物可用于设计、执行并监控治疗策略,包括患者特异性治疗策略。在一个示例中,所测GEP-NEN生物标志物的表达水平作为治疗功效的替代性标志物,例如,以通过检测肿瘤的消除或复发(甚至以小规模微转移形式)来监测手术治疗(例如,肿瘤切除)、靶向药物治疗(例如,抑制肿瘤分泌/增殖)以及其它治疗方案的效果。所述方法还可用于评价临床症状和转归,以及用于GEP-NEN的组织学分级和分子表征。
C.GEP-NEN生物标志物
所提供的生物标志物包括GEP-NEN生物标志物及其组(群)。所提供的GEP-NEN生物标志物包括基因产物,例如DNA、RNA(例如,转录物)和蛋白质,所述基因产物在GEP-NEN疾病中差异表达和/或在GEP-NEN的不同阶段或亚型中差异表达,或在不同GEP-NEN肿瘤中差异表达,例如,在转移性和原发性肿瘤中差异表达,在具有不同侵袭程度的肿瘤中差异表达,在高风险和低风险肿瘤中差异表达,在反应性和无反应性肿瘤中差异表达,在显示不同病理学分类和/或响应特定治疗方案的可能性的肿瘤中差异表达的基因产物,以及与GEP-NEN疾病、阶段或类型特征相关,或与神经内分泌细胞或相关的细胞类型相关的那些。
例如,所述生物标志物包括基因产物,所述基因产物的表达关联或参与肿瘤形成能力、转移或激素生成,或者原发性或转移性GEP-NEN的表型(例如粘连、迁移、增殖、凋亡、转移和激素分泌),以及通常与瘤形成或恶性相关联的那些。所述生物标志物还包括相关正常组织(例如神经内分泌细胞、小肠(SI)黏膜和肠嗜铬(EC)细胞)中表达的基因产物。
所述生物标志物包括GEP-NEN细胞分泌产物,包括激素和胺,例如,胃泌素、饥饿激素、胰多肽、P物质、组胺和血清素,以及生长因子,例如肿瘤生长因子-β(TGF-β)和结缔组织生长因子(CTGF),其在循环中是可检测的。分泌产物可随肿瘤亚型和来源而不同。
在一个示例中,所述生物标志物是与调节基因型(即,粘连、迁移、增殖、凋亡、转移和/或激素分泌)相关联的基因产物,所述调节基因型是不同GEP-NEN亚型、阶段、侵袭程度或治疗反应的基础。
所述GEP-NEN生物标志物还包括相较于正常小肠黏膜和EC细胞纯制备物,在原发性GEP-NEN和肝转移中差异表达的基因产物。参见Modlin等,“Geneticdifferentiation of appendiceal tumor malignancy:a guide for the perplexed(阑尾肿瘤恶性的遗传差异:指点解惑)”Ann Surg2006;244(1):52-60;Kidd M等,“The role ofgenetic markers,NAP1L1,MAGE-D2and MTA1,in defining small intestinal carcinoidneoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Annals of Surgical Oncology2006;13:253-62;Kidd M等,“Q RT-PCR detection ofChromogranin A:A new standard in the identification of neuroendocrine tumordisease(嗜铬粒蛋白A的Q RT-PCR检测:神经内分泌肿瘤疾病的鉴定新标准)”Annals of Surgery2006;243:273-80。所述GEP-NEN生物标志物包括:AKAP8L(A激酶(PRKA)锚定蛋白8-样)、ATP6V1H(ATP酶,H+转运,溶酶体50/57kDa,V1亚基H)、BNIP3L(BCL2/腺病毒E1B19kDa相互作用蛋白3-样)、C21orf7(染色体21开放阅读框7)、COMMD9(铜代谢结构域蛋白9)、ENPP4(外核苷酸焦磷酸酶/磷酸二酯酶4)。FAM13A(序列相似家族13,成员A)、FLJ10357(Rho鸟嘌呤核苷酸交换因子40)、GLT8D1(糖基转移酶8结构域1)、HDAC9(组蛋白脱乙酰酶9)、HSF2(热激转录因子2)、LEO1(Paf1/RNA聚合酶II复合体成分,同源物(酿酒酵母(S.cerevisiae))、MORF4L2(MORF4L2致死因子4样蛋白2)、NOL3(核仁蛋白3(带有CARD结构域的凋亡抑制剂))、NUDT3(Nudix(核苷二磷酸连接X)-型基元3)、OAZ2(鸟氨酸脱羧酶抗酶2)、PANK2(泛酸激酶2)、PHF21A(PHD指蛋白21A)、PKD1(多囊性肾病1(自体显性))、PLD3(磷脂酶D家族,成员3)、PQBP1(多谷氨酰胺结合蛋白1)、RNF41(多谷氨酰胺结合蛋白1)、RSF1(重构和间隔因子1)、RTN2(网状蛋白2)、SMARCD3(SWI/SNF相关,基质关联,肌动蛋白依赖性染色质调控因子,亚家族d,成员3p)、SPATA7(精子发生相关基因7)、SST1(抑生长素受体1)、SST3(抑生长素受体3)、SST4(抑生长素受体4)、SST5(抑生长素受体5)、TECPR2(β-螺旋桨重复结构蛋白2)、TRMT112(tRNA甲基转移酶11-2同源物(酿酒酵母))、VPS13C(膜泡分选蛋白13同源物C(酿酒酵母))、WDFY3(含WD重复和FYVE结构域的3)、ZFHX3(锌指同源框3)、ZXDC(ZXD家族锌指C)、ZZZ3(锌指,含ZZ-型3)、淀粉样β(A4)前体样蛋白2(APLP2)、V-raf鼠科肉瘤3611病毒癌基因同源物(ARAF1)、v-raf鼠科肉瘤病毒癌基因同源物B1(BRAF1)、CD59、嗜铬粒蛋白A(CgA,也称为甲状旁腺分泌蛋白1,CHGA)、结缔组织生长因子(CTGF)、趋化因子(C-X-C基序)配体14(CXCL14)、卷曲同源物7(FZD7)、谷氨酸受体,促离子型,AMPA2(GRIA2)、同源框C6(HOXC6)、Ki-67、KiSS-1转移抑制剂(Kiss1)、v-Ki-ras2Kirsten大鼠肉瘤病毒癌基因同源物(KRAS)、黑色素瘤抗原家族D,2(MAGE-D2)、转移相关基因1(MTA1)、核小体组装蛋白1样1(NAP1L1)、NK2转录因子相关,基因座3(例如,智人(HomoSapiens)NK2转录因子相关,基因座3(果蝇(Drosophila))(NKX2-3)、神经菌毛素2(NRP2)、嗅觉受体,家族51,亚家族E,成员1(OR51E1)、附瘤抗原MA2(PNMA2)、蛋白酪氨酸磷酸酶,受体型,N多肽2(PTPRN2)、v-raf-1鼠科白血病病毒癌基因同源物1(RAF1)、分泌粒蛋白V(7B2蛋白)(SCG5)、Sparc/骨粘连蛋白,cwcv和kazal-样结构域蛋白多糖(睾丸蛋白聚糖)1(SPOCK1)、凋亡抑制生存素基因(BIRC5、API4、EPR-1)(生存素)、色氨酸羟化酶1(TPH1)、溶质载体家族18(囊泡单胺),成员1(VMAT1)、溶质载体家族18(囊泡单胺),成员2(VMAT2)和X2BTB48(丝氨酸蛋白酶抑制剂(serpin)肽酶抑制剂,进化枝A(α-1抗蛋白酶,抗胰蛋白酶),成员10),包括基因产物(典型为人基因产物),包含转录物、mRNA、cDNA、编码序列、蛋白质和多肽,以及编码所述蛋白质和多肽的多核苷酸(核酸),包括天然发生的变异体,例如,等位基因变异体、剪接变异体、转录变异体和单核苷酸多态性(SNP)变异体。例如,所述生物标志物包括具有本文公开序列的多核苷酸、蛋白质和多肽,及其天然发生的变异体。
所述GEP-NEN生物标志物还包括CD164。在另一方面,所述生物标志物包括NALP,例如,激活凋亡基因和凋亡标志物的半胱天冬酶-3的产物-NALP。APLP2生物标志物包括人APLP2基因产物,包括天然变异体,例如,等位基因变异体,及其同源物和类似物。在一个示例中,所述APLP2生物标志物是具有SEQ ID NO:1(参照GenBank GI号214010177)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:1的核苷酸158-2449处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。所述ARAF1生物标志物包括人ARAF1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ARAF1生物标志物是具有SEQ ID NO:2(参照GenBank GI号283484007)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:2的核苷酸195-2015处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述BRAF1生物标志物包括人BRAF1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述BRAF1生物标志物是具有SEQ ID NO:3(参照GenBank GI号187608632)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:3的核苷酸62-2362处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述CD59生物标志物包括人CD59基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述CD59生物标志物是具有SEQID NO:4(参照GenBank GI号187829037)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:4的核苷酸278-664处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述CgA生物标志物包括人CGA或CHGA基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述CgA生物标志物是具有SEQ ID NO:5(参照GenBank GI号33990769)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:5的核苷酸1-1374处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。人CgA编码水溶性酸性糖蛋白,该酸性糖蛋白贮存在神经内分泌细胞的分泌颗粒中并且可在血浆中检测。所述CTGF生物标志物包括人CTGF基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述CTGF生物标志物是具有SEQ ID NO:6(参照GenBank GI号98986335)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:6的核苷酸207-1256处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述CXCL14生物标志物包括人CXCL14基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述CXCL14生物标志物是具有SEQ ID NO:7(参照GenBank GI号208022628)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:7的核苷酸466-801处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述FZD7生物标志物包括人FZD7基因产物,例如,智人卷曲同源物7(果蝇)(FDZ7),包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述FDZ7生物标志物是具有SEQ ID NO:8(参照GenBank GI号4503832)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:8的核苷酸62-1786处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述GRIA2生物标志物包括人GRIA2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述GRIA2生物标志物是具有SEQ ID NO:9(参照GenBank GI号134304849)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:9的核苷酸460-3111处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述同源框C6(HOXC6)生物标志物包括人HOXC6基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述HOXC6生物标志物是具有SEQ ID NO:10(参照GenBank GI号93141222)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:10的核苷酸113-820处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述Ki67生物标志物包括人Ki67基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述Ki67生物标志物是具有SEQ IDNO:11(参照GenBank GI号225543213)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:11的核苷酸196-9966)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述Kiss1生物标志物包括人KISS1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述KISS1生物标志物是具有SEQID NO:12(参照GenBank GI号116829963)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:12的核苷酸155-571处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述KRAS生物标志物包括人KRAS基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述KRAS生物标志物是具有SEQ ID NO:13(参照GenBank GI号34485724)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:13的核苷酸182-751)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述MAGE-D2生物标志物包括人MAGE-D2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述MAGE-D2生物标志物是具有SEQ ID NO:14(参照GenBank GI号29171703)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:14的核苷酸100-1920处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。MAGE-D2编码黏着斑相关蛋白。
所述MTA1生物标志物包括人MTA1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述MTA1生物标志物是具有SEQ ID NO:15(参照GenBank GI号115527079)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:15的核苷酸188-2335)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。已经使用MTA(雌激素拮抗乳腺癌恶性基因)来鉴定其它肿瘤(包括乳腺、肝细胞、食道、胃和结直肠癌)中的进进性(转移性)疾病。
所述NAP1L1生物标志物包括人NAP1L1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述NAP1L1生物标志物是具有SEQ ID NO:16(参照GenBank GI号219842231)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:16的核苷酸413-1588处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。NAP1L1是编码涉及染色质组装和DNA复制的核蛋白的有丝分裂调控基因。所述NKX2-3生物标志物包括人NKX2-3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述NKX2-3生物标志物是具有SEQ ID NO:17(参照GenBank GI号148746210)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:17的核苷酸200-1294处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述NRP2生物标志物包括人NRP2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述NRP2生物标志物是具有SEQID NO:18(参照GenBank GI号41872561)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:18的核苷酸792-3587处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述OR51E1生物标志物包括人OR51E1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述OR51E1生物标志物是具有SEQ ID NO:19(参照GenBank GI号205277377)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:19的核苷酸145-1101处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PNMA2生物标志物包括人PNMA2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PNMA2生物标志物是具有SEQ ID NO:20(参照GenBank GI号156766040)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:20的核苷酸771-1865处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PTPRN2生物标志物包括人PTPRN2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PTPRN2生物标志物是具有SEQ ID NO:21(参照GenBank GI号194097439)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:21的核苷酸122-3169处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述RAF1生物标志物包括人RAF1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述RAF1生物标志物是具有SEQID NO:22(参照GenBank GI号189458830)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:22的核苷酸416-2362处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SCG5生物标志物包括人SCG5基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SCG5生物标志物是具有SEQID NO:23(参照GenBank GI号221139784)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:23的核苷酸118-756处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SPOCK1生物标志物包括人SPOCK1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SPOCK1生物标志物是具有SEQ ID NO:24(参照GenBank GI号82659117)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:24的核苷酸152-1471处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述生存素生物标志物包括人生存素基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述生存素生物标志物是具有SEQ ID NO:25(参照GenBank GI号59859877)中所列核苷酸序列或包含所述序列的蛋白编码部分(例如,SEQ ID NO:25的核苷酸122-550处的开放阅读框)的多核苷酸,或者具有GenBank GI号2315862中核苷酸2811-2921、3174-3283、5158-5275、11955-12044的蛋白编码序列(SEQ ID NO:34)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TPH1生物标志物包括人TPH1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TPH1生物标志物是具有SEQID NO:26(参照GenBank GI号226342925)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:26的核苷酸27-1361处的开放阅读框)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。TPH1编码由胃肠(GI)道的肠嗜铬(EC)细胞生成的酶,对血清素生成具有重要性。所述VMAT1生物标志物包括人VMAT1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述VMAT1生物标志物是具有SEQ ID NO:27(参照GenBank GI号215272388)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:27的核苷酸472-2049)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述VMAT2生物标志物包括人VMAT2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述VMAT2生物标志物是具有SEQ ID NO:28(参照GenBank GI号141803164)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:28的核苷酸32-1576)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述X2BTB48生物标志物包括人丝氨酸蛋白酶抑制剂肽酶抑制剂,进化枝A(α-1抗蛋白酶,抗胰蛋白酶),成员10)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述X2BTB48生物标志物是具有SEQ ID NO:29(参照GenBank GI号154759289)中所列核苷酸序列或包含所述序列中编码区域(例如,SEQ ID NO:29的核苷酸467-1801)的多核苷酸,其天然变异体,例如参照GenBank GI号154759290(SEQ ID NO:105)的多核苷酸序列或其编码序列(例如,其在核苷酸122-1456处的编码序列),或由所述多核苷酸编码的蛋白质(例如,具有参照GenBank GI号7705879的氨基酸序列的蛋白质)。
所述AKAP8L(A激酶(PRKA)锚定蛋白8-样)生物标志物包括人AKAP8L基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述AKAP8L生物标志物是具有SEQ ID NO:201(参照GenBank GI号49472840)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:201的核苷酸100-2040处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ATP6V1H(ATP酶,H+转运,溶菌酶50/57kDa,V1亚基H)生物标志物包括人ATP6V1H基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ATP6V1H生物标志物是具有SEQ ID NO:204(参照GenBank GI号47717103)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸293-1744处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述BNIP3L(BCL2/腺病毒E1B19kDa相互作用蛋白3-样)生物标志物包括人BNIP3L基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述BNIP3L生物标志物是具有SEQ ID NO:205(参照GenBank GI号47078259)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:205的核苷酸125-784处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述C21orf7(染色体21开放阅读框7)生物标志物包括人C21orf7基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述C21orf7生物标志物是具有SEQ ID NO:206(参照GenBank GI号31542267)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:206的核苷酸278-1006处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述COMMD9(铜代谢结构域蛋白9)生物标志物包括人ATP6V1H基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述COMMD9生物标志物是具有SEQ ID NO:207(参照GenBank GI号156416006)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:207的核苷酸38-508处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ENPP4(外核苷酸焦磷酸酶/磷酸二酯酶4)生物标志物包括人ENPP4基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ENPP4生物标志物是具有SEQ ID NO:208(参照GenBank GI号194688140)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:208的核苷酸260-1621处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述FAM13A(序列相似家族13,成员A)生物标志物包括人FAM13A基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述FAM13A生物标志物是具有SEQ ID NO:209(参照GenBank GI号283806631)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:209的核苷酸281-1126处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述FLJ10357(Rho鸟嘌呤核苷酸交换因子40)生物标志物包括人ARHGEF40基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述FLJ10357生物标志物是具有SEQ ID NO:210(参照GenBank GI号50843836)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:210的核苷酸30-4589处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述GLT8D1(糖基转移酶8结构域1)生物标志物包括人GLT8D1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述GLT8D1生物标志物是具有SEQ ID NO:211(参照GenBank GI号58331224)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:211的核苷酸852-1967处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述HDAC9(组蛋白脱乙酰酶9)生物标志物包括人HDAC9基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述HDAC9生物标志物是具有SEQ ID NO:212(参照GenBank GI号323423043)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:212的核苷酸362-2128处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述HSF2(热激转录因子2)生物标志物包括人HSF2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述HSF2生物标志物是具有SEQ ID NO:213(参照GenBank GI号207113145)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:213的核苷酸188-1798处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述LEO1(Paf1/RNA聚合酶II复合体成分,同源物(酿酒酵母))生物标志物包括人LEO1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述LEO1生物标志物是具有SEQ ID NO:215(参照GenBank GI号37059738)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:215的核苷酸17-2017处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述MORF4L2(MORF4L2致死因子4样蛋白2)生物标志物包括人MORF4L2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述MORF4L2生物标志物是具有SEQ ID NO:217(参照GenBank GI号215490020)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸505-1371处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述NOL3(核仁蛋白3(带有CARD结构域的凋亡抑制剂))生物标志物包括人NOL3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述NOL3生物标志物是具有SEQ ID NO:218(参照GenBank GI号297632351)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸194-853处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述NUDT3(Nudix(核苷二磷酸连接X)-型基元3)生物标志物包括人NUDT3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述NUDT3生物标志物是具有SEQ ID NO:219(参照GenBank GI号322302838)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:219的核苷酸319-837处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述OAZ2(鸟氨酸脱羧酶抗酶2)生物标志物包括人OAZ2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述OAZ2生物标志物是具有SEQ ID NO:220(参照GenBank GI号161377456)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸216-311和313-786处的编码序列)的多核苷酸,或其天然变异体或由所述多核苷酸编码的蛋白质。
所述PANK2(泛酸激酶2)生物标志物包括人PANK2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PANK2生物标志物是具有SEQ ID NO:221(参照GenBank GI号85838514)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸312-1151处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PHF21A(PHD指蛋白21A)生物标志物包括人PHF21A基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PHF21A生物标志物是具有SEQ ID NO:222(参照GenBank GI号156546893)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸625-2667处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PKD1(多囊性肾病1(自体显性))生物标志物包括人PKD1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PKD1生物标志物是具有SEQ ID NO:223中所列核苷酸序列或参照GenBank GI号205360961的序列,或者包含所述序列中编码蛋白部分(例如,位于GenBank GI号205360961或SEQ ID NO:223的核苷酸210-13118或核苷酸210-13117处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PLD3(磷脂酶D家族,成员3)生物标志物包括人PLD3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PLD3生物标志物是具有SEQ ID NO:224(参照GenBank GI号166197669)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:224的核苷酸399-1871处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述PQBP1(多谷氨酰胺结合蛋白1)生物标志物包括人PQBP1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述PQBP1生物标志物是具有SEQ ID NO:225(参照GenBank GI号74027246)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸122-919处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述RNF41(多谷氨酰胺结合蛋白1)生物标志物包括人RNF41基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述RNF41生物标志物是具有SEQ ID NO:227(参照GenBank GI号338827617)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:227的核苷酸320-1273处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述RSF1(重构和间隔因子1)生物标志物包括人RSF1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述RSF1生物标志物是具有SEQ ID NO:228(参照GenBank GI号38788332)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:228的核苷酸121-4446处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述RTN2(网状蛋白2)生物标志物包括人RTN2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述RTN2生物标志物是具有SEQ ID NO:229(参照GenBank GI号46255010)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:229的核苷酸229-1866处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SMARCD3(SWI/SNF相关,基质关联,肌动蛋白依赖性染色质调控因子,亚家族d,成员3p)生物标志物包括人SMARCD3基因产物,包括天然变异体,例如,等位基因变异体,及其同源物和类似物。在一个示例中,所述SMARCD3生物标志物是具有SEQ ID NO:232(参照GenBank GI号51477701)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸102-1553处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SPATA7(精子发生相关基因7)生物标志物包括人SPATA7基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SPATA7生物标志物是具有SEQ ID NO:233(参照GenBank GI号295789142)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:233的核苷酸176-1879处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SST1(抑生长素受体1)生物标志物包括人SST1基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SST1生物标志物是具有SEQ ID NO:234(参照GenBank GI号33946330)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:234的核苷酸618-1793处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SST3(抑生长素受体3)生物标志物包括人SST3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SST3生物标志物是具有SEQ ID NO:235(参照GenBank GI号44890055)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:235的核苷酸526-1782处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SST4(抑生长素受体4)生物标志物包括人SST3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SST3生物标志物是具有SEQ ID NO:236(参照GenBank GI号149944553)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸65-1231处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SST5(抑生长素受体5)生物标志物包括人SST3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SST3生物标志物是具有SEQ ID NO:237(参照GenBank GI号289547751)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸89-1183处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TECPR2(β-螺旋桨重复结构蛋白2)生物标志物包括人TECPR2基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TECPR2生物标志物是具有SEQ ID NO:238(参照GenBank GI号289547516)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:238的核苷酸227-4030处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TRMT112(tRNA甲基转移酶11-2同源物(酿酒酵母))生物标志物包括人TRMT112基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TRMT112生物标志物是具有SEQ ID NO:241(参照GenBankGI号7705476)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:241的核苷酸36-413处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述VPS13C(膜泡分选蛋白13同源物C(酿酒酵母))生物标志物包括人VPS13C基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述VPS13C生物标志物是具有SEQ ID NO:242(参照GenBank GI号308081495)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,其在核苷酸92-10978处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述WDFY3(含WD重复和FYVE结构域的3)生物标志物包括人WDFY3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述WDFY3生物标志物是具有SEQ ID NO:243中所列核苷酸序列或参照GenBank GI号195972885的序列或包含所述序列中编码蛋白质部分(例如,SEQ IDNO:243或GenBank GI号195972885的核苷酸409-10988处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ZFHX3(锌指同源框3)生物标志物包括人ZFHX3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ZFHX3生物标志物是具有SEQ ID NO:244(参照GenBank GI号258613986)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:244的核苷酸130-8499处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ZXDC(ZXD家族锌指C)生物标志物包括人ZXDC基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ZXDC生物标志物是具有SEQ ID NO:245(参照GenBank GI号217035098)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:245的核苷酸55-2187处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ZZZ3(锌指,含ZZ-型3)生物标志物包括人ZZZ3基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ZZZ3生物标志物是具有SEQ ID NO:246(参照GenBank GI号141803158)中所列核苷酸序列或包含所述序列中编码蛋白质部分(例如,SEQ ID NO:246的核苷酸477-3188处的其编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
在一些方面,所提供的方法和组合物检测GEP-NEN生物标志物;在一些示例中,所提供的方法和组合物检测GEP-NEN生物标志物组,包括两种或多种GEP-NEN生物标志物,例如至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100或更多种生物标志物。
例如,提供检测以下生物标志物群内至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种和/或全部的方法和组合物:
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3、APLP2、CD59、ARAF1、BRAF1、KRAS和RAF1基因产物;
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、和ZZZ3基因产物;和
APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
还提供检测以下生物标志物群内至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28或29种的方法和组合物:
APLP2、ARAF1、BRAF1、CD59、CgA、CTGF、CXCL14、FZD7、GRIA2、HOXC6、Ki-67;Kiss1、KRAS、MAGE-D2、MTA1、NAP1L1、NKX2-3、NRP2、OR51E1、PNMA2、PTPRN2、RAF1、SCG5、SPOCK1、生存素、TPH1、VMAT1、VMAT2);和X2BTB48;
APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48;
CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48;或CgA(嗜铬粒蛋白A)、CTGF、FZD7(卷曲同源物7)、Ki-67(增殖标志物)、Kiss1(Kiss1转移抑制剂)、MAGE-D2(黑素瘤抗原家族D2)、MTA1(转移相关蛋白1)、NAP1L1、NRP2(神经菌毛素2)、Tph1、VMAT1、VMAT2和生存素。
在一些方面,所述组还包括CD164。
在一些方面,其还包括NALP或其它已知的生物标志物。
在一些实施方式中,例如,多核苷酸组还包括能够与“管家”或参照基因特异性杂交的一种或多种多核苷酸,所述多核苷酸的基因已知具有表达差异或预计与所分析的变量差异不相关,例如,与GEP-NEN的存在或缺失或其它肿瘤疾病不相关,与不同GEP-NEN亚型的区分不相关,与转移、黏膜或其它组织类型、预后指示和/或其它表型、预测或转归不相关。在一些方面,所述管家基因的表达水平经检测并用作总体表达水平标准,例如用来使获自不同样品的GEP-NEN生物标志物的表达数据标准化。
管家基因是本领域众所周知的。所述管家基因通常包括以特别适合分析GEP-NEN样品为特点的一种或多种基因,例如ALG9、TFCP2和ZNF410。参见KiddM等,“GeneChip,geNorm and Gastrointestinal tumors:novel reference genes forreal-time PCR(基因芯片,geNorm和胃肠肿瘤:用于实时PCR的新型参照基因)”,Physiol Genomics2007;30:363-70。其它管家基因和多核苷酸为本领域众所周知,并且包括甘油醛-3-磷酸去氢酶(GAPDH)、次黄嘌呤磷酸核糖基转移酶(HPRT)和18SRNA。
所述ALG9管家基因包括人ALG9(天冬酰胺连接糖基化9,α-1,2-甘露糖基转移酶同源物)基因产物,包括天然变异体,例如,等位基因变异体,及其同源物和类似物。在一个示例中,所述ALG9管家是具有SEQ ID NO:35和参照GenBank GI号118026920中所列核苷酸序列或包含SEQ ID NO:35的核苷酸100-1956处的编码区域的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TFCP2管家基因包括人TFCP2(转录因子CP2)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TFCP2管家是具有SEQ ID NO:36和参照GenBank GI号291219872中所列核苷酸序列或包含SEQ IDNO:36的核苷酸722-2230处的编码区域的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ZNF410管家基因包括人ZNF410(锌指蛋白410)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ZNF410管家是具有SEQ ID NO:37和参照GenBank GI号10863994中所列核苷酸序列或包含SEQ ID NO:37的核苷酸183-1619处的编码区域的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述GAPDH管家基因包括人GAPDH(甘油醛-3-磷酸去氢酶)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述GAPDH管家是具有SEQ ID NO:38和参照GenBank GI号83641890中所列核苷酸序列或包含SEQ ID NO:38的核苷酸103-1110处的编码区域的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述18S管家基因包括人18S(真核18S rRNA),包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述18S管家是具有SEQ IDNO:39和参照GenBank GI号36162中所列核苷酸序列的多核苷酸或其天然变异体。
所述HPRT管家基因包括人HPRT基因产物,包括天然变异体,例如,等位基因变异体,及其同源物和类似物。在一个示例中,所述HPRT管家是具有SEQ IDNO:40和参照GenBank GI号164518913中所列核苷酸序列或包含SEQ ID NO:40的核苷酸168-824处的编码区域的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SLC25A3管家基因包括人SLC25A3(溶质载体家族25(线粒体载体;磷酸盐载体),成员3)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SLC25A3管家是具有SEQ ID NO:247和参照GenBankGI号223718119中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:247的核苷酸121-1209处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述VAPA管家基因包括人VAPA((囊泡相关膜蛋白)-相关蛋白A)基因产物,包括天然变异体,例如,等位基因变异体,及其同源物和类似物。在一个示例中,所述VAPA管家是具有SEQ ID NO:248和参照GenBank GI号94721249中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:248的核苷酸300-1184处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TXNIP管家基因包括人TXNIP(硫氧还蛋白相互作用蛋白)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TXNIP管家是具有SEQ ID NO:249和参照GenBank GI号171184420中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:249的核苷酸342-1517处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ADD3管家基因包括人ADD3(内收蛋白3(γ))基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ADD3管家是具有SEQ ID NO:250和参照GenBank GI号62912451中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:250的核苷酸377-2497处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述DAZAP2管家基因包括人DAZAP2(DAZ-相关蛋白2)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述DAZAP2管家是具有SEQ ID NO:251和参照GenBank GI号211904132中所列核苷酸序列或包含其编码区域(例如,其在核苷酸185-691处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ACTG1管家基因包括人ACTG1(肌动蛋白,γ1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ACTG1管家是具有SEQ ID NO:252和参照GenBank GI号316659408中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:252的核苷酸259-1386处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ACTB管家基因包括人ACTB(肌动蛋白,β)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ACTB管家是具有SEQ ID NO:200和参照GenBank GI号168480144中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:200的核苷酸85-1212处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ATG4B管家基因包括人ACG4B(自噬相关蛋白4同源物B(酿酒酵母))基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ACTG4B管家是具有SEQ ID NO:203中所列核苷酸序列或包含其编码区域(例如,SEQ ID NO:203的核苷酸104-1285处的编码序列),或参照GenBank GI号47132610的序列的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述ARF1管家基因包括人ARF1(ADP-核糖基化因子1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述ARF1管家是具有SEQ ID NO:202和参照GenBank GI号66879659中所列核苷酸序列或包含其编码区域(例如,其在核苷酸229-774处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述HUWE1管家基因包括人HUWE1(含HECT、UBA和WWE结构域的蛋白1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述HUWE1管家是具有SEQ ID NO:214和参照GenBank GI号195963314中所列核苷酸序列或包含其编码区域(例如,其在核苷酸403-13527处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述MORF4L1管家基因包括人MORF4L1(死亡因子4样1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述MORF4L1管家是具有SEQ ID NO:216和参照GenBank GI号45643136中所列核苷酸序列或包含其编码区域(例如,核苷酸189-1160处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述RHOA管家基因包括人RHOA(大鼠同源物基因家族,成员A)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述RHOA管家是具有SEQ ID NO:226和参照GenBank GI号50593005中所列核苷酸序列或包含其编码区域(例如,其在核苷酸277-858处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SERP1管家基因包括人SERP1(内质网应激相关蛋白1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SERP1管家是具有SEQ ID NO:230和参照GenBank GI号109809760中所列核苷酸序列或包含其编码区域(例如,其在核苷酸507-707处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述SKP1管家基因包括人SKP1(S期激酶相关蛋白1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述SKP1管家是具有SEQ ID NO:231和参照GenBank GI号160420325中所列核苷酸序列或包含其编码区域(例如,其在核苷酸180-662处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TOX4管家基因包括人TOX4(TOX高迁移率族蛋白成员4)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TOX4管家是具有SEQ ID NO:239和参照GenBank GI号99077116中所列核苷酸序列或包含其编码区域(例如,其在核苷酸104-1969处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
所述TPT1管家基因包括人TPT1(肿瘤蛋白,翻译控制1)基因产物,包括天然变异体,例如,等位基因变异体及其同源物和类似物。在一个示例中,所述TPT1管家是具有SEQ ID NO:240和参照GenBank GI号141801911中所列核苷酸序列或包含其编码区域(例如,其在核苷酸94-612处的编码序列)的多核苷酸,其天然变异体或由所述多核苷酸编码的蛋白质。
D.用于检测GEN-NEN生物标志物、肿瘤和细胞的方法和试剂
还提供用于检测所述GEP-NEN生物标志物以及用于鉴定、分离和富集表达所述GEP-NEN生物标志物的肿瘤和细胞的方法、组合物和系统。例如,提供用于检测所述GEP-NEN生物标志物的试剂、试剂群和系统,及其应用方法,包括用于诊断和预后应用。
1.用于检测所述生物标志物的试剂和系统
在一个实施方式中,所述试剂是蛋白质、多核苷酸或与所述GEP-NEN生物标志物特异性结合或特异性杂交的其它分子。所述试剂包括多核苷酸,例如探针和引物,例如与所述多核苷酸生物标志物(例如,mRNA)相同或互补的正义或反义PCR引物,以及蛋白质,例如特异性结合所述生物标志物的抗体。还提供包含所述试剂的群和试剂盒,例如与生物标志物组特异性杂交或结合的试剂。
因此,本文提供的所述系统(例如,微阵列、多核苷酸群和试剂盒)包括具有核酸分子的那些,通常是DNA寡核苷酸,例如引物和探针,其长度通常从15个碱基至数千碱基不等,例如20个碱基-1千个碱基,40-100个碱基和50-80个核苷酸或20-80个核苷酸。一方面,核苷酸微阵列、试剂盒或其它系统的大多数(即,至少60%)核酸分子都能与GEP-NEN生物标志物杂交。
在一个示例中,提供包含与所述生物标志物特异性杂交的多核苷酸的系统(例如,核酸微阵列)以按照所提供的方法检测并测量所述生物标志物表达水平的变化并测定其表达谱。所述系统(例如微阵列)包括含有能够与以下生物标志物群中至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100种或更多生物标志物,例如至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种和/或全部杂交的多核苷酸的那些:
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3、APLP2、CD59、ARAF1、BRAF1、KRAS和RAF1基因产物;
AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、和ZZZ3基因产物;和
APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物;或
APLP2、ARAF1、BRAF1、CD59、CgA、CTGF、CXCL14、FZD7、GRIA2、HOXC6、Ki-67;Kiss1、KRAS、MAGE-D2、MTA1、NAP1L1、NKX2-3、NRP2、OR51E1、PNMA2、PTPRN2、RAF1、SCG5、SPOCK1、生存素、TPH1、VMAT1、VMAT2);和X2BTB48;或生物标志物APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48;或生物标志物CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1和X2BTB48中的至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28或29种。
在一些方面,至少60%、或至少70%、至少80%、或更多所述系统(例如微阵列)的核酸分子能与所述生物标志物组中的生物标志物杂交。在一个示例中,固定在所述核苷酸微阵列上的探针包括至少2种,通常至少3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100种或更多生物标志物,例如至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种或更多能与至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、80、85、90、95或100种或更多生物标志物杂交的核酸分子,例如至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50或51种或更多生物标志物,其中所述各核酸分子能够与不同的一种所述生物标志物特异性杂交,使得能够结合至少多种不同生物标志物。
在一个示例中,所述微阵列上或多核苷酸群内的剩余核酸分子,例如40%或至多40%的所述核酸分子能够与参照基因群或标准化基因(例如管家基因)群杂交,例如,用于降低系统偏差的标准化。系统偏差导致总体性能中阵列间差异造成的变化,这可归因于例如阵列制造、染色和扫描中的不一致性,以及经标记的RNA样品间的变化,这可归因于例如纯度不同。系统偏差可在微阵列实验的样品处理过程中产生。为了减少系统偏差,优选根据背景非特异性杂交来校正测定的RNA水平并标准化。
所述参照探针的应用有益但非强制。在一个实施方式中,提供多核苷酸群或系统(例如,微阵列),其中至少90%的核酸序列能与所述GEP-NEN生物标志物杂交;其它实施方式包括该系统和群,其中至少95%或甚至100%的多核苷酸与所述生物标志物杂交。
实施例中公开的内容是示例性的合适多核苷酸,例如PCR引物。当然,能够与所述生物标志物的不同区域杂交的其它核酸探针和引物也合适与所提供的系统、试剂盒和方法联用。
2.所述生物标志物的检测
还提供用于检测和定量所述生物标志物的方法,包括检测所述生物标志物的存在、缺失、量或相对量,例如表达水平或表达谱。所述方法通常是基于核酸的方法,例如,检测生物标志物mRNA表达的存在、量或表达水平。所述方法通常通过使多核苷酸试剂接触生物样品如测试样品和正常和参照样品来进行,例如,用预定量所述样品中核酸生物标志物(例如,mRNA)的表达水平。
可用本领域已知的任何合适方法按所提供的实施方式进行生物标志物的检测和分析。例如,若所述生物标志物是RNA生物标志物,则使用RNA检测和定量方法。
用于定量或检测核酸表达水平(例如,mRNA表达)的示例性方法众所周知,并且包括Northern印迹和原位杂交(Parker和Barnes,Methods in Molecular Biology106:247-283,1999);RNA酶保护实验(Hod,Biotechniques13:852-854,1992);以及定量或半定量逆转录聚合酶链式反应(TR-PCR)(Weis等,Trends in Genetics8:263-264,1992),基于测序的基因表达分析的代表性方法包括基因表达系列分析(SAGE)和通过大规模平行测序技术(MPSS)的基因表达分析。
因此,在一个实施方式中,所述生物标志物或生物标志物组的表达包括RNA表达;所述方法包括测定所述生物标志物的RNA(例如,获自和/或存在于患者样品中的RNA)水平,并根据就所述生物标志物或生物标志物组测得的RNA表达水平进行分析、诊断或预测确定。
RNA样品可通过本领域技术人员已知的多种方式加工。用于从样品分离RNA的数种方法是为人熟知的,包括异硫氰酸胍-苯酚-氯仿提取法,该方法可使用专有制剂
Figure BDA0000406202150000481
试剂来进行(参见Chomczynski P,Sacchi N(2006)."The single-stepmethod of RNA isolation by acid guanidinium thiocyanate-phenol-chloroformextraction:twenty-something years on(通过酸性异硫氰酸胍-苯酚-氯仿提取的RNA分离一步法:使用约二十年)".Nat Protoc1(2):581–5)。在该方法中,
Figure BDA0000406202150000482
用于提取RNA和DNA;氯仿和离心用于分离RNA和其它核酸,随后用乙醇进行一系列洗涤以清洁所述RNA样品。
所述RNA样品可在获取时从细胞或组织新鲜配制;或者,其可制备自在-70℃贮存直至就样品制备进行加工的样品。或者,可使组织或细胞样品贮存在和/或经受本领域已知的其它条件下以保存所述RNA的质量,包括如采用福尔马林或相似试剂固定;以及使用RNA酶抑制剂孵育,所述试剂如
Figure BDA0000406202150000491
(法敏进公司(Pharmingen))或
Figure BDA0000406202150000492
(安碧公司(Ambion));水溶液例如(奥斯瑞根公司(Assuragen))、羟已基哌嗪乙磺酸-谷氨酸介导的具有保护作用的有机溶剂(HOPE)和RCL2(阿尔菲利斯公司(Alphelys));以及非水性溶液例如通用分子固定剂(樱花医疗集团美国公司(Sakura Finetek USA Inc.))。离液核酸分离裂解缓冲液(Boom法,Boom等,J Clin Microbiol.1990;28:495-503)也可用于RNA分离。
在一个实施方式中,通过使样品与
Figure BDA0000406202150000494
孵育,从棕黄层分离RNA,然后清洁RNA。使RNA溶于焦碳酸二乙酯水中并用分光光度法测量,并在生物分析仪(加利福尼亚州帕洛阿尔托的安捷伦科技公司(Agilent Technologies))上分析等分试样以评估所述RNA的质量(Kidd M等.“The role of genetic markers--NAP1L1,MAGE-D2,and MTA1--in defining small-intestinal carcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。在另一个实施方式中,用QIAamp RNA血液迷你试剂盒从血浆分离RNA;在一些情况中,该方法允许与方法相比更好的检测,其通过实时PCR检测血浆中显著更多的管家基因。在另一个实施方式中,RNA从全血直接分离,例如,使用QIAamp RNA血液迷你试剂盒以类似方式进行分离。
用于从经固定、石蜡包埋的组织分离RNA作为RNA来源的方法众所周知,并通常包括mRNA分离、纯化、引物延伸和扩增(例如:T.E.Godfrey等,.J.Molec.Diagnostics2:84-91[2000];K.Specht等.,Am.J.Pathol.158:419-29[2001])。在一个示例中,使用所述QIAamp RNA血液迷你试剂盒RNA从样品例如血液样品中提取RNA。通常从组织提取RNA,然后去除蛋白质和DNA并分析RNA浓度。可包括RNA修复和/或扩增步骤,例如用于RT-PCR的RNA逆转录步骤。
可通过本领域的任何已知方法测定或定量所述RNA生物标志物的表达水平或量,例如,通过定量相对于管家基因的RNA表达或与同时所测其它基因的RNA水平相关的RNA表达。测定基因的RNA水平的方法为本领域技术人员已知,并包括但不限于,Northern印迹、(定量)PCR和微阵列分析。
可进行Northern印迹,通过杂交与所述RNA特异性相互作用的经标记探针,然后通过凝胶电泳分离RNA来定量特定生物标志物基因的RNA或基因产物。例如,探针用放射性同位素或化学发光底物标记。与所述核酸表达产物相互作用的经标记探针的定量作为测定表达水平的量度。经测定的表达水平可采用如内部校准器或外部校准器通过比较已知在样品间表达水平无差异的基因表达水平或者通过在测定表达水平之前添加已知量的RNA来就两个分离样品间的核酸表达产物总量差异进行标准化。
就RT-PCR而言,使生物标志物RNA逆转录成为cDNA。例如,逆转录-聚合酶链式反应(RT-PCR)使用与感兴趣的RNA序列杂交的特定引物和逆转录酶来进行。此外,RT-PCR可采用随机引物,例如沿所述RNA随机杂交的随机六聚体或十聚体,或与mRNA的聚(A)尾杂交的寡d(T),以及逆转录酶来进行。
在一些实施方式中,样品中所述生物标志物的RNA表达水平使用定量方法(例如通过实时rt-PCR(qPCR)或微阵列分析)来测定,所述样品例如来自患有或疑似患有GEP-NEN或相关症状或综合症的患者。在一些实施方式中,使用定量聚合酶链式反应(QPCR)来定量核酸表达的水平。一方面,例如,所述生物标志物表达水平的检测和测定使用RT-PCR、基因芯片分析、定量实时PCR(Q RT-PCR)或类癌瘤组织微阵列(TMA)免疫染色/定量来进行,以比较生物标志物RNA(例如,mRNA)或其它表达产物、不同样品群中的水平,表征基因表达模式,从而区分紧密相关的mRNA并分析RNA结构。
在一个示例中,使用实时PCR(RTPCR)进行QPCR,其中,在所述扩增反应过程中监测产物的量,或通过测定终产物量的终点测量法进行QPCR。如本领域技术人员所知,rtPCR例如通过使用核酸嵌入剂(例如溴化乙锭或
Figure BDA0000406202150000501
Green I染料)进行,所述核酸嵌入剂与所有生成的双链产物相互作用,使得扩增过程中荧光增加;或者例如通过使用与所产生的感兴趣基因的双链产物特异性反应的经标记探针进行。可用的替代性检测方法由枝状聚合物信号放大、杂交信号放大和分子信标等来提供。
在一个实施方式中,使用高容量cDNA存档试剂盒(美国加利福尼亚州福斯特城的应用生物系统公司(Applied Biosystems(ABI)),按照生产商建议的方法(简言之,使用内含2微克总RNA的50微升水,与含有逆转录缓冲液、脱氧核苷酸三磷酸盐溶液、随机引物和Multiscribe逆转录酶的50uL2XRT混合物混合)进行总RNA的逆转录。RT反应条件众所周知。在一个示例中,所述RT反应使用以下热循环仪条件进行:10分钟,25℃;120分钟,37℃(参见Kidd M等,“The role of geneticmarkers--NAP1L1,MAGE-D2,and MTA1--in defining small-intestinal carcinoidneoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。
对于个体转录物水平的测量,在一个实施方式中,按照生产商的建议使用Assays-on-Demand 产品和ABI7900序列检测系统(参见Kidd M,Eick G,ShapiroMD等.Microsatellite instability and gene mutations in transforming growth factor-betatype II receptor are absent in small bowel carcinoid tumors(小肠类癌瘤中缺乏转化生长因子-βII型受体内的微卫星不稳定性和基因突变).Cancer2005;103(2):229-36)。在一个示例中,循环在标准条件下进行,使用
Figure BDA0000406202150000511
通用PCR预混试剂方案,通过混合内含cDNA的7.2uL水、0.8uL20·Assays-on-Demand引物和探针混合物以及8uL2X TaqMan通用预混试剂,在384-孔光学反应板上,采用下列条件:50℃,2分钟;95℃,10分钟;50个循环的95℃15分钟,60℃1分钟(参见Kidd M等,“The roleof genetic markers--NAP1L1,MAGE-D2,and MTA1--in defining small-intestinalcarcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。
通常使用内部标准和/或通过比较管家基因表达水平对实时PCR结果进行标准化。例如,在一个实施方式中,上述QPCR的原始ΔCT(ΔCT=循环时间随扩增的变化)数据使用众所周知的方法(例如geNorm)进行标准化(参见Vandesompele J,DePreter K,Pattyn F等.Accurate normalization of real-time quantitative RT-PCR data bygeometric averaging of multiple internal control genes(通过多重内参基因的几何平均使实时定量TR-PCR数据准确标准化).Genome Biol2002;3(7):RESEARCH0034)。通过管家基因表达水平的标准化也是众所周知的。参见Kidd M等,“GeneChip,geNorm,and gastrointestinal tumors:novel reference genes for real-time PCR(基因芯片、geNorm和胃肠肿瘤:用于实时PCR的新参照基因)”Physiol Genomics2007;30(3):363-70。
微阵列分析涉及使用固定在表面上的所选核酸分子。这些称为探针的核酸分子能够与核酸表达产物杂交。在一个优选实施方式中,使所述探针暴露至经标记的样品核酸,杂交,洗涤并测定所述样品中核酸表达产物与探针互补的(相对)量。微阵列分析允许同时测定大量基因的核酸表达水平。在如本发明所述的一个方法中,优选同时检测如本发明所述的至少五个基因。例如,可以按背景扣除后消除阴性强度值的“补偿”方法进行背景校正。此外,可进行标准化以使各单阵列上的两个通道具有可比性,例如,使用全局loess标准化和确保对数概度比(log-ratio)被调整为具有相同的阵列间中位数绝对偏差(MAD)的尺度标准化。
例如,蛋白质水平可以使用基于抗体的结合实验来检测。经酶标记的、放射性标记的或荧光标记的抗体可以用于蛋白质检测。示例性的实验包括酶联免疫吸附实验(ELISA)、放射免疫实验(RIA)、Western印迹实验和免疫组化染色实验。或者,为了同时测定多种蛋白质的表达水平,使用蛋白质阵列例如抗体阵列。
通常检测生物样品中的所述生物标志物和管家标志物,所述生物样品例如组织或液体样品,例如血液,如全血、血浆、血清、粪便、尿、唾液、泪液、血清或精液样品,或由所述组织或液体制备的样品,例如细胞制备物,包括来自血液、唾液或组织(例如肠黏膜、肿瘤组织,以及含有和/或疑似含有GEP-NEN转移或脱落的肿瘤细胞的组织,例如肝、骨和血液)的细胞。在一个实施方式中,特定细胞制备物通过对细胞悬液或者来自组织或液体(例如黏膜,如肠黏膜、血液或棕黄层样品)的液体进行荧光活化细胞分选(FACS)来获得。
在一些实施方式中,所述样品取自GEP-NEN患者、疑似患有GEP-NEN的患者、一般患有和/或疑似患有癌症的患者、显示一种或多种GEP-NEN症状或综合症或经测定具有GEP-NEN风险的患者,或者正经历治疗或已完成治疗的GEP-NEN患者,包括疾病缓解和/或被认为缓解的患者。
在其它实施方式中,所述样品取自无GEP-NEN疾病的人,例如健康个体或带有不同癌症类型(如腺癌,例如,胃肠腺癌或乳腺、前列腺或胰腺之一的腺癌,或胃癌或肝癌,例如食道癌、胰腺癌、胆囊癌、结肠癌或直肠癌)的个体。
在一些示例中,所述方法区分GEP-NEN和其它癌,例如腺癌,包括胃肠腺癌或乳腺、前列腺、或胰腺之一的腺癌,或胃或肝癌,例如食道、胰腺、胆囊、结肠或直肠癌。在其它实施方式中,所述方法和系统区分不同位置的GEP-NEN,例如小肠GEP-NEN和胰的那些GEP-NEN。例如,此类实施方式可用于测定肿瘤的未知原发位置和确定预后(尤其因为GEP-NEN肿瘤根据初始位置会显示显著不同的预后)。在一些实施方式中,所述方法和系统以至少80、85、90、91、92或更高的准确度区分不同位置(例如,胰腺和小肠肿瘤)的GEP-NEN。在其它实施方式中,所述方法能诊断或检测具有神经内分泌成分的腺癌。
在一些实施方式中,所述样品取自GEP-NEN肿瘤或转移。在其它实施方式中,所述样品取自GEP-NEN患者,但是来自预计不含GEP-NEN或GEP-NEN细胞的组织或液体;可以使用所述样品作为参照或正常样品。或者,所述正常或参照样品可以是来自无GEP-NEN疾病的患者的组织或液体或其它生物样品,例如对应组织、液体或其它样品,如正常血液样品、正常小肠(SI)黏膜样品、正常肠嗜铬细胞(EC)细胞制备物。
在一些实施方式中,所述样品是全血样品。由于神经内分泌肿瘤具转移性,它们通常脱落细胞进入血液。因此,本文提供的血浆和血液样品中GEP-NEN生物标志物组的检测可以用于鉴定早期时间点的GEP-NEN并用于预测肿瘤转移的存在,例如,尽管解剖学定位研究显示阴性。因此,所提供的试剂和方法可用于早期诊断。
因此,在一些实施方式中,所述方法可鉴定1mL或约1mL全血中的GEP-NEN分子签名或表达谱。在一些方面,所述分子签名或表达谱在冷冻前至多四小时是稳定的(例如,若样品在静脉切开术后冷藏在4-8℃)。一方面,能够使用获自肿瘤组织的样品来诊断、预后或预测给定GEP-NEN相关结果的方法同样也能使用血液样品做出相同诊断、预后或预测。
现有多种检测和诊断方法需要7-10天来生成可能的阳性结果,并且可能是高成本的。因此,一方面,所述提供的方法和组合物有助于GEP-NEN诊断相关的简便性改善和成本降低,并使早期诊断可行。
因此,在一个示例中,检测循环中的所述生物标志物,例如,通过检测血液样品,如血清、血浆、细胞(例如,获自棕黄层的外周血单核细胞(PBMC)),或全血样品。
已经在一些癌的全血内检测到肿瘤特异性转录物。参见Sieuwerts AM等,“Molecular characterization of circulating tumor cells in large quantities ofcontaminating leukocytes by a multiplex real-time PCR(通过多重实时PCR对大量污染白细胞中的循环肿瘤细胞进行分子表征),”Breast Cancer Res Treat2009;118(3):455-68和Mimori K等,“A large-scale study of MT1-MMP as a marker forisolated tumor cells in peripheral blood and bone marrow in gastric cancer cases(胃癌病例中MT1-MMP作为外周血和骨髓中已分离肿瘤细胞标志物的大规模研究)”AnnSurg Oncol2008;15(10):2934-42。
CellSearchTM CTC测试(Veridex LLC)(由Kahan L.,“Medical devices;immunology and microbiology devices;classification of the immunomagneticcirculating cancer cell selection and enumeration system.Final rule(免疫磁循环癌细胞选择和例举系统的医疗装置、免疫学和微生物学装置、分类,最终规则)”Fed Regist2004;69:26036-8描述)使用包被有检测上皮细胞(CK-8/18/19)和白细胞(CD45)的EpCAM-特异性抗体的磁珠,如Sieuwerts AM,Kraan J,Bolt-de Vries J等,“Molecularcharacterization of circulating tumor cells in large quantities of contaminatingleukocytes by a multiplex real-time PCR(通过多重实时PCR在大量污染白细胞中对循环肿瘤细胞进行分子表征)”Breast Cancer Res Treat2009;118(3):455-68。该方法已被用来针对转移性前列腺(Danila DC,Heller G,Gignac GA等,Circulating tumor cellnumber and prognosis in progressive castration-resistant prostate cancer(进行性去势抵抗性前列腺癌中的循环肿瘤细胞数和预后).Clin Cancer Res2007;13(23):7053-8)、结直肠(Cohen SJ,Alpaugh RK,Gross S等,Isolation and characterization of circulatingtumor cells in patients with metastatic colorectal cancer(患有转移性结直肠癌的患者内的循环肿瘤细胞的分离和表征).Clin Colorectal Cancer2006;6(2):125-32.)以及乳腺(Cristofanilli M,Budd GT,Ellis MJ等,Circulating tumor cells,disease progression,and survival in metastatic breast cancer(转移性乳腺癌中的循环肿瘤细胞、疾病进展和存活率).N Engl J Med2004;351(8):781-91)检测循环肿瘤细胞(CTC),并监测疾病进展和治疗功效。
该方法和其它现有方法还未完全满足GEP-NEN细胞检测的需求,所述细胞能显示可变表达和/或不表达细胞角蛋白(参见Van Eeden S等,Classification oflow-grade neuroendocrine tumors of midgut and unknown origin(中肠和未知来源的低级神经内分泌肿瘤的分类)”Hum Pathol2002;33(11):1126-32;Cai YC等,“Cytokeratin7and20and thyroid transcription factor1can help distinguish pulmonaryfrom gastrointestinal carcinoid and pancreatic endocrine tumors(细胞角蛋白7和20以及甲状腺转录因子1能协助区分肺肿瘤与胃肠类癌瘤和胰腺内分泌肿瘤)”Hum Pathol2001;32(10):1087-93,和本文所述检测29种GEP-NEN样品中2种的EpCAM转录物表达的研究)。
检测循环肿瘤细胞的现有方法中考虑的因素是外周血中相对低数量的细胞,通常为约1/106个外周血单核细胞(PBMC)(参见Ross AA等,“Detection and viabilityof tumor cells in peripheral blood stem cell collections from breast cancer patients usingimmunocytochemical and clonogenic assay techniques(使用免疫细胞化学和克隆源性测定技术对乳腺癌患者源性外周血干细胞收集物中肿瘤细胞的检测及活力)”Blood1993;82(9):2605-10),以及白细胞污染的可能。参见Sieuwerts AM等,“Molecularcharacterization of circulating tumor cells in large quantities of contaminatingleukocytes by a multiplex real-time PCR(通过多重实时PCR对大量污染白细胞中的循环肿瘤细胞进行分子表征)”Breast Cancer Res Treat2009;118(3):455-68;Mimori K等)和可用方法的技术复杂性。这些因素可能使得现有方法无法完全满足临床实验室应用的需求。
在一些实施方式中,神经内分泌细胞在吖啶橙(AO)染色并摄取后使用已知方法就异质性进行FACS分选,如以下文献所述:Kidd M等,“Isolation,Purification andFunctional Characterization of the Mastomys EC cell(乳腺瘤EC细胞的分离、纯化和功能表征)”Am J Physiol2006;291:G778-91;Modlin IM等,“The functionalcharacterization of normal and neoplastic human enterochromaffin cells(正常和肿瘤人肠嗜铬细胞的功能表征)”J Clin Endocrinol Metab2006;91(6):2340-8。
在一些实施方式中,所提供的检测方法用于检测、分离或富集2-3mL或更少血液中的GEP-NEN细胞和/或生物标志物。这些方法使用标准实验室装置进行,从而容易在临床实验室设置中进行。在一个示例中,在12小时内获得读数,平均耗费为大约20-30/样品。
E.诊断、预后和预测应用
还提供用于本文所提供试剂和检测方法的诊断、预后和预测应用,例如,用于GEP-NEN、相关转归和治疗反应的诊断、预后和预测。例如,现有的GEP-NEN分类方法受限制,部分归因于不正确的分类以及个别病灶或肿瘤可发展成不同GEP-NEN亚型或模式,和/或包含多于一种GEP-NEN亚型。例如,已知的分类结构在预测治疗反应或准确区别具有相似组织病理学特征但在临床进程和治疗反应中显著变化的肿瘤,以及预测治疗反应方面的能力有限。
例如,世界卫生组织(WHO)在2000年采用的分类标准基于尺寸、增殖速率、定位、分化和激素生成来区分高分化NET(WDNET)(良性状态或不确定恶性可能)、高分化神经内分泌癌(低级恶性)(WDNEC)、低分化神经内分泌肿瘤(PDNET)(中级恶性)和低分化(通常为小细胞)NEC(PDNEC)(高级恶性)。转移性亚型依照相同命名和分类策略(MET-WDNET、MET-WDNEC、MET-PDNET、MET-PDNEC)。所提出的替代分类可能是主观的。需要基于分子或基因的分类方案。所述提供的方法和系统(包括基于基因的GEP-NEN特异性预测模型)解决这些问题,并可用于鉴定和分析预测生物性质的分子参数,并基于所述参数进行预测。所提供的诊断、预后和预测方法包括使用统计学分析和生物数学算法以及预测模型以分析关于GEP-NEN生物标志物和其它标志物(例如管家基因)表达的所测信息。在一些实施方式中,使表达水平、所测结合或其它信息针对参照值(例如正常样品或标准中的表达水平)进行标准化和评估。提供的实施方式包括使用关于GEP-NEN生物标志物表达的所检测或测量信息对GEP-NEN进行分类和预测的方法和系统,例如在分类、分期、预后、治疗设计、治疗选择评价和GEP-NEN疾病转归(例如,预测转移的发展)的预测方面。
GEP-NEN的检测和诊断
在一些实施方式中,所述方法用于建立GEP-NEN诊断,例如早期疾病或转移的诊断或检测、疾病程度的确定或预测、早期扩散或转移的鉴定、转归或预后的预测、进展预测、疾病分类、治疗反应监测、复发的检测或监测,并用于促进早期治疗介入。例如,所述提供的方法和算法包括用于分类、分期、预后、治疗设计、治疗选择评价和GEP-NEN疾病转归的预测(例如,转移发展的预测)的那些。
在一个实施方式中,所述方法、算法和模型用于诊断、监督例如常规监督。在一些实施方式中,所述方法、算法和模型提供早期诊断;一方面,所述方法能够检测小体积肿瘤,并检测循环肿瘤细胞,包括检测疾病早期阶段的循环肿瘤细胞,例如检测少至或约3个循环GEP-NEN细胞/mL血液。在一些实施方式中,早期检测允许早期治疗介入,这时候治疗更加有效,可改善存活率和疾病转归。
例如,在一个实施方式中,所述方法用于GEP-NEN复发和/或转移的早期检测,例如治疗后,如手术或化学介入之后。在一些方面,所述方法在治疗介入后每周或每月进行,例如,在人血样品上进行。在一些方面,所述方法能够检测常规手段如通过成像方法无法检测到的微转移。例如,一方面,所述方法能够检测少于1厘米(cm)的转移,例如(如肝内)正好或大约1、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1cm转移。
例如,所述提供的方法和系统包括以56-92%的正确检出率测定对象或样品中GEP-NEN存在或缺失(或两者)的那些,例如至少或至少约65、70、75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100%的正确检出率。在一些情况中,所述方法用于以至少或至少约70、75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100%的特异度或敏感度来诊断。
在其它方面,所述方法相较于其它诊断方法(例如成像和现有生物标志物的检测)能够检测治疗后或较早期阶段疾病初始进展过程中GEP-NEN的复发、转移或扩散。在一些方面,所测生物标志物的表达水平和/或表达签名与疾病进展、疾病严重性或侵袭性、治疗反应缺乏、治疗功效下降、GEP-NEN相关事件、风险、预后、GEP-NEN类型或种类或疾病分期显著相关。
例如,在一些实施方式中,所述方法能够预测或监测治疗介入的效果。一方面,所提供的方法相较于检测和诊断所用的现有方法(例如通过成像和检测现有生物标志物如CgA)能够更快或更有效地检测作为治疗结果的疾病改善。
处理和治疗应用的发展和监测
所提供的实施方式包括治疗发展中使用所提供生物标志物的方法及其检测、策略、以及监测方法,包括对治疗反应的评价,以及考虑所述肿瘤的可能自然史和患者一般健康的患者特异性或个体化治疗策略。
GEP-NEN处理策略包括手术—用于治愈(几乎无法实现)或细胞减灭术—放射介入—例如,通过化学栓塞术或射频消融术—化疗、冷冻消融和采用抑生长素和抑生长素类似物(例如Sandostatin
Figure BDA0000406202150000571
(醋酸奥曲肽注射液))的治疗,以控制由释放的肽和神经胺、C-PET-CT和转移切除引起的症状。包括干扰素在内的生物试剂、和激素治疗以及抑生长素标记的放射性核苷酸正在研究之中。
在一个示例中,冷冻消融释放GEP-NEN组织以进入血液,这进而诱导症状,如以下文献所述,Mazzaglia PJ等,“radiofrequency ablation of neuroendocrine livermetastases:a10-year experience evaluating predictors of survival(神经内分泌肝转移的腹腔镜射频消融:评价存活预测器的10年经验)”Surgery2007;142(1):10-9。
化疗试剂例如全身细胞毒性化疗试剂,包括依托泊苷、顺铂、5-氟脲嘧啶、链脲佐菌素、阿霉素;血管内皮生长因子抑制剂、受体酪氨酸激酶抑制剂(例如,舒尼替尼、索拉非尼和瓦他拉尼),以及哺乳动物雷帕霉素靶标(mTOR)抑制剂(例如,西罗莫司和依维莫司),及其组合,例如,以治疗广泛性和/或低分化的疾病。其它治疗方法是众所周知的。
在一些实施方式中,所述检测和诊断方法与治疗联用,例如,通过每周或每月在治疗之前和/或之后实行所述方法。在一些方面,所述表达水平和谱与疾病进展、治疗的无效性或有效性和/或疾病的复发有无相关。在一些方面,所述表达信息指示优选不同的治疗策略。因此,本文提供治疗方法,其中所述GEP-NEN生物标志物检测方法在治疗前实行,并随后用于监测治疗效果。
在起始或恢复治疗后的不同时间点,所述生物标志物的表达水平或表达谱(例如,相较于治疗前,或治疗后的一些其它点,和/或相较于正常或参照样品中的表达或表达谱)的显著变化指示治疗策略是否成功,指示疾病复发或指示应该使用不同的治疗方法。在一些实施方式中,所述治疗策略在实施检测方法后变化,例如通过以额外或替代现有方法的方式添加不同的治疗介入,通过增加或减少现有方法的侵袭性或频率,或停止或重新建立所述治疗方案。
在另一个方面,所测生物标志物的表达水平或表达谱首次鉴定GEP-NEN疾病或提供首次确定的GEP-NEN疾病诊断或分类。例如,在一些方面,所述方法区分一种或多种GEP-NEN分类,例如WDNEC、WDNET、PDNEC、PDNET及其转移形式,和/或区分GEP-NEN和其它癌(包括其它肠癌)。在该实施方式的一些方面,基于表达水平或表达谱和/或确定的分类来设计治疗方法。所述方法包括反复的方法,由此在所述生物标志物检测之后开始或变换治疗介入,之后进行持续的定期监测、再评价,以及新治疗方法的变化、停止或添加(任选伴随持续的监测)。
在一些方面,所述方法和系统测定所测对象是否响应治疗,例如临床分类为疾病完全缓解或显示稳定疾病的患者。在一些方面,所述方法和系统测定所述对象是否为未受治疗(或初次接受治疗
Figure BDA0000406202150000581
即,从未接受治疗)或非响应性(即,临床上分类为“进行性”)。例如,提供方法用于区分治疗响应性和非响应性患者,并且用于区分患有稳定疾病的患者或完全缓解的那些患者和患有进行性疾病的那些患者。在不同的方面,所述方法和系统以至少或至少约65、70、75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100%的正确检出率(即,准确度)、特异度或敏感度来做出此类判定。
在一些方面,所述诊断性或预测性或预后性结果的敏感度或正确检出率大于(例如,显著大于)使用已知诊断或预后方法(例如,循环CgA或其它单一蛋白质的检测和测量)所得。
统计学分析、数学算法和预测模型
所述诊断、预后和预测方法通常包括统计学分析和数学建模。因此,提供基于本文所鉴定GEP-NEN生物标志物的用于构建预测模型的监督学习算法及其用于预测和分类GEP-NEN的方法和应用。
可以使用评价基因表达差异的众多熟知方法中的任何方法。所述方法从比较各群体平均表达水平(例如,使用ANOVA)(该方法受到变化关联性难以定量的限制)到基于拓扑学、基于模式识别的方案例如支持向量机(SVM)的数学分析(Noble WS.What is a support vector machine?(什么是支持向量机?)NatBiotechnol.2006;24(12):1565-7)。基于机器学习算法的技术通常是开发用于分析高维和多模态生物医学数据的高级算法、自动算法和/或目标算法所需的。
在一些示例中,SVM(所述监督学习算法的变体)与所述提供的方法和系统联用。SVM已被用来以>90%的准确度预测星形细胞瘤的分级,并以74-80%的准确度预测前列腺癌的分级(Glotsos D,Tohka J,Ravazoula P,Cavouras D,Nikiforidis G.Automated diagnosis of brain tumours astrocytomas using probabilistic neural networkclustering and support vector machines(使用概率神经网络聚类和支持向量机的脑肿瘤星形细胞瘤的自动化诊断).Int J Neural Syst2005;15(1-2):1-11;Glotsos D,Tohka J,Ravazoula P,Cavouras D,Nikiforidis G.Automated diagnosis of brain tumoursastrocytomas using probabilistic neural network clustering and support vectormachines(使用概率神经网络分簇和支持向量机的脑肿瘤星形细胞瘤的自动化诊断).Int J Neural Syst2005;15(1-2):1-11)。
与所提供方法和系统一起使用的其它算法包括线性判别分析(LDA)、朴素贝叶斯算法(NB)和K最近邻法(KNN)。所述方法可用于鉴定肿瘤病症中的单一或多变量变化(Drozdov I,Tsoka S,Ouzounis CA,Shah AM.Genome-wide expression patterns inphysiological cardiac hypertrophy(生理性心脏肥大中的全基因组表达模式).BMCGenomics.2010;11:55;Freeman TC,Goldovsky L,Brosch M等.Construction,visualisation,and clustering of transcription networks from microarray expressiondata(微阵列表达数据的转录网络的构建、显像和聚类).PLoS Comput Biol2007;3(10):2032-42;Zampetaki A,Kiechl S,Drozdov I等.Plasma microRNA profilingreveals loss of endothelial miR-126and other microRNAs in type2diabetes(血浆微小RNA谱显示2型糖尿病中缺乏内皮miR-126和其它微小RNA).CircRes.2010;107(6):810-7.Epub2010年7月22日;Dhawan M,Selvaraja S,DuanZH.Application of committee kNN classifiers for gene expression profileclassification(用于基因表达谱分类的分量kNN分类器的应用).Int J Bioinform ResAppl.2010;6(4):344-52;Kawarazaki S,Taniguchi K,Shirahata M等.Conversion of amolecular classifier obtained by gene expression profiling into a classifier based onreal-time PCR:a prognosis predictor for gliomas(通过基因表达谱分析将分子分类器转换成基于实时PCR的分类器:用于神经胶质瘤的预后预测器).BMC MedGenomics.2010;3:52;Vandebriel RJ,Van Loveren H,Meredith C.Altered cytokine(receptor)mRNA expression as a tool in immunotoxicology(改变的细胞因子(受体)mRNA表达作为免疫毒理学中的工具).Toxicology.1998;130(1):43-67;Urgard E,Vooder T,Vosa U等.Metagenes associated with survival in non-small cell lungcancer(集合基因与非小细胞肺癌中的存活相关).Cancer Inform.2011;10:175-83.Epub2011年6月2日;Pimentel M,Amichai M,Chua K,Braham L.Validating a NewGenomic Test for Irritable Bowel Syndrome(肠易激综合症的新基因组测试的验证).Gastroenterology2011;140(增刊1):S-798;Lawlor G,Rosenberg L,Ahmed A等.Increased Peripheral Blood GATA-3Expression in Asymptomatic Patients WithActive Ulcerative Colitis at Colonoscopy(结肠镜检患有急性溃疡性结肠炎的无症状患者中的外周血GATA-3表达增加).Gastroenterology2011;140(增刊1))。
在一些实施方式中,所提供的方法和系统分析GEP-NEN生物标志物组的表达,根据表达签名(例如,正常或参照样品和获自患有“GEP-NEN”的患者的样品间不同的表达签名或谱)给予输出。在所述实施方式中,通常使用模式识别法。所述方法可用于,例如,鉴定GEP-NEN肿瘤组织中的恶性签名和信号通路(例如,rozdov I,Kidd M,Nadler B等.Predicting neuroendocrine tumor(carcinoid)neoplasia using geneexpression profiling and supervised machine learning(使用基因表达谱分析和监督机器学习法预测神经内分泌肿瘤(癌)瘤形成)Cancer.2009;115(8):1638-50所述的那些),以及确定单个血浆样品是否获自正常对照或GEP-NEN(例如,如Modlin IM,Gustafsson BI,Drozdov I,Nadler B,Pfragner R,Kidd M.Principal component analysis,hierarchical clustering,and decision tree assessment of plasma mRNA and hormonelevels as an early detection strategy for small intestinal neuroendocrine(carcinoid)tumors(作为小肠神经内分泌(癌)肿瘤的早期检测策略的主成分分析、层次聚类以及血浆mRNA和激素水平的决策树评估).Ann Surg Oncol2009;16(2):487-98所述)。
使用所述预测算法和模型的方法采用统计学分析和数据压缩法,如本领域众所周知的那些。例如,表达数据可被转换(例如,自然对数(Ln)转换)并输入统计学分析程序例如Genomic Suite(“Partek,”
Figure BDA0000406202150000602
Genomics SuiteTM,修订版6.3圣路易斯:Partek公司(Partek Inc),2008))或相似程序。压缩数据并比较分析。
统计学分析包括确定单样本类型的基因表达水平的平均值(M)(例如,几何平均)、多样本类型的标准偏差(SD)、作为两组样品或值的几何平均比率计算的不同样本类型或条件间的几何差异倍数(FC)、通过双尾费歇尔检验或双样本t-检验比较表达水平,例如,用于鉴定不同样本和组织类型间差异表达的生物标志物基因。使用方差分析(ANOVA)来评价不同样本中表达之间的生物标志物表达水平和/或值的差异。在一个示例中,实施2因素不配对算法,例如通过确定所述两组的来自测试和正常样品的表达水平或参照值来实施。
表达水平、量或值中的差异是否视作显著性差异可通过众所周知的统计学方法来确定,通常是通过指定特定统计学参数的阈值来完成,所述阈值例如p-值阈值(例如,p<0.05)、S-值阈值(例如,±0.4,包括S<-0.4或S>0.4)或其它值,在所述阈值范围内则认为具有显著性,例如,此时在两个不同样品间如代表两种不同GEP-NEN亚型、肿瘤、阶段、位置、侵袭性或或GEP-NEN的其它方面或正常或参照样品的两种不同样品间的生物标志物表达被分别认为显著下调或上调。一方面,所述算法、预测模型和方法基于与调节基因型(即,粘连、迁移、增殖、凋亡和激素分泌)相关联的基因表达的生物标志物,所述调节基因型是不同GEP-NEN亚型的基础。
一方面,所述方法应用鉴定特定截止点(例如,表达水平或量)的数学公式、算法或模型,所述截止点区分正常样品和GEP-NEN样品,区分GEP-NEN和其它癌,以及区分不同亚型、阶段和疾病的其它方面或疾病转归。在另一个方面,所述方法用于预测、分类、预后和治疗监测及设计。一方面,所述预测性实施方式可用于鉴定预测生物性质的分子参数,并使用所述参数化预测不同GEP-NEN相关转归。在这些实施方式的一方面,使用机器学习法,例如,以开发用于分析高维和多模态生物医学数据的高级、自动和目标算法。
数据压缩和表达谱测定
为了比较表达水平或其它值并基于GEP-NEN生物标志物的表达鉴定表达谱(表达签名)或调节签名,压缩数据。压缩通常通过主成分分析(PCA)或用于描述和显像高维数据结构的相似技术来实行。PCA允许显像并比较GEP-NEN生物标志物的表达,并且测定和比较不同样品如正常或参照样品和测试样品间以及不同肿瘤类型间的表达谱(表达签名、表达模式)。
在一些实施方式中,获得表达水平数据(例如,通过实时PCR)并对所得数据进行简化或压缩,例如,缩减为主成分。
使用PCA来将数据(例如,所测表达值)的维度缩减成不相关的主成分(PC),所述主成分说明或代表所述数据中的主体差异,例如约50、60、70、75、80、85、90、95或99%的差异。
在一个示例中,所述PCA是3成分PCA,其中,使用集中代表大部分差异(例如,数据中的约75%、80%、85%、90%或更多差异)的三个PC(Jolliffe IT,“PrincipleComponent Anlysis(主成分分析)”Springer,1986)。
使用PCA作图,例如,3成分PCA作图将数据绘至三维空间以供显像,例如通过分别在x-、y-和z-轴上为第一(1st)、第二(2nd)和第三(3rd)PC赋值。
可使用PCA来确定不同样品中所述生物标志物的表达谱。例如,在PCA坐标系统中定位单个样品类型(例如,各肿瘤类型、亚型或级别,或正常样品类型)的经缩减表达数据,并使用定位数据来确定单个转录物表达谱或签名。
一方面,如针对生物标志物组的PCA所确定的,如主成分向量指定,通过绘图或确定质心(质量中心;平均表达)、对应或显示所述样品的个体转录物表达谱(调节签名)来测定各样品的表达谱。
通常,在该坐标系统中由相对较大距离分开的两个质心或定位点代表两个相对不同的转录物表达谱。同样,相对近的质心代表相对相似的谱。在该表现形式中,质心间的距离是不同样品的相似性度量的反向当量(越大距离=越小相似性),从而质心间的大距离或间隔指示样品具有不同的转录物表达签名。质心的接近指示样品间的相似性。例如,不同GEP-NEN肿瘤样品的质心之间相对距离代表其调节签名或转录物表达谱的相对相似性。
校正、线性关系和调控簇
一方面,所述统计学和比较分析包括测定两种生物标志物的表达水平或值的反相关。在一个示例中,使用该相关和单个表达向量间的三角余弦(较大角=较小相似性)来鉴定相关的基因表达簇(Gabriel KR,“The biplot graphic display of matriceswith application to principal component analysis(应用于主成分分析的矩阵双标图显示)”Biometrika1971;58(3):453)。
在一些实施方式中,两种或多种生物标志物,和/或GEP-NEN存在或缺失、亚型、阶段或其它转归之间的表达水平呈线性相关。一方面,在所提供的GEP-NEN生物标志物和所述生物样品的特性之间,例如生物标志物(及其表达水平)之间和不同GEP-NEN亚型(原发性或转移性)之间,正常样品和GEP-NEN样品之间,和/或原发性和转移性或侵袭性疾病之间呈表达依赖性相关。
可以使用皮尔森校正(PC)系数(R2)来评估例如不同生物样品(例如,肿瘤亚型)的生物标志物表达水平间以及生物标志物对之间数值对的线性关系(相关性)。可以使用该分析,通过计算生物标志物(在个体相似矩阵的x-和y-轴上作图)的个体对的PC系数来线性分离表达模式中的分布。可设定阈值以改变线性相关程度,例如高度线性相关阈值为(R2>0.50或0.40)。可以对该数据集应用线性分类器。在一个示例中,所述相关系数是1.0。
在一个实施方式中,调控簇由使用统计学分析构建相关性网络来确定,例如,以鉴定由生物标志物组的子集组成的调控簇。在一个示例中,确定PC相关系数并用于构建所述相关性网络。在一个示例中,所述网络通过绘制R2高于预定阈值的转录组对之间的边缘来鉴定。相关程度可提供再现性和稳健性的信息。
预测模型和监督学习算法
本文还提供目标算法、预测模型和拓扑学分析方法、及其使用方法,以分析高维和多模态生物医学数据,例如使用所提供的用于检测GEP-NEN生物标志物组表达的方法获得的数据。如上所述,所述目标算法、模型和分析方法包括基于拓扑学的数学分析、基于模式识别的方案(例如,支持向量机(SVM))(Noble WS.What isa support vector machine?(支持向量机是什么?)Nat Biotechnol.2006;24(12):1565-7)、线性判别分析(LDA)、朴素贝叶斯(NB)和K-最邻近(KNN)法,以及其它监督学习算法和模型,例如决策树、感知器,和正则化判别分析(RDA),以及本领域众所周知的相似模型和算法(Gallant SI,“Perceptron-based learning algorithms(基于感知器的学习算法)”Perceptron-based learning algorithms1990;1(2):179-91)。
在一些实施方式中,使用前馈型神经网络分析生物样品中的生物标志物表达数据;选择最佳转录物预测器。
在一些实施方式中,应用特征选择(FS)来去除数据集例如GEP-NEN生物标志物表达数据集中最冗余的特征。FS增强普遍化能力,加速学习进程,并改善模型解释能力。一方面,使用“贪心前向(greedy forward)”选择法应用FS,选择所述稳健学习模型的特征最相关子集。(Peng H,Long F,Ding C,“Feature selection based onmutual information:criteria of max-dependency,max-relevance,and min-redundancy(基于相互信息的特征选择:最大依赖性、最大相关性和最小冗余的标准)”IEEETransactions on Pattern Analysis and Machine Intelligence,2005;27(8):1226-38)。
在一些实施方式中,使用支持向量机(SVM)算法来通过增加n数据集间的边界对数据分类(Cristianini N,Shawe-Taylor J.An Introduction to Support VectorMachines and other kernel-based learning methods(支持向量机和其它基于核的学习法入门).剑桥:剑桥大学出版社(Cambridge University Press),2000)。
在一些实施方式中,所述预测模型包括决策树,其为一个项在其目标值结论上绘制观察结果(Zhang H,Singer B.“Recursive Partitioning in the Health Sciences(保健科学中的递归分区)”(Statistics for Biology and Health(《生物学与卫生统计学》)):施普林格(Springer),1999.)。所述树的叶子代表分类,而分支代表转变成该个体分类的特征关联。其已被有效应用(70-90%)来预测转移性乳腺癌的预后(Yu L等“TGF-beta receptor-activated p38MAP kinase mediates Smad-independent TGF-betaresponses(TGF-β受体活化的38MAP激酶介导Smad非依赖性TGF-β应答)”Embo J2002;21(14):3749-59),以及结肠癌(Zhang H等“Recursive partitioning for tumorclassification with gene expression microarray data(采用基因表达微阵列数据的肿瘤分类的递归分区)”Proc Natl Acad Sci U S A2001;98(12):6730-5.),以>90%的准确度预测星形细胞瘤的分级(Glotsos D等“Automated diagnosis of brain tumoursastrocytomas using probabilistic neural network clustering and support vectormachines(使用概率神经网络聚类和支持向量机的脑肿瘤星形细胞瘤的自动化诊断)”Int J Neural Syst2005;15(1-2):1-11.),以及以74-80%的准确度预测前列腺癌的分级(Mattfeldt T等“Classification of prostatic carcinoma with artificial neural networksusing comparative genomic hybridization and quantitative stereological data(采用人造神经网络,使用比较基因组杂交和定量立体数据对前列腺癌的分类)”Pathol ResPract2003;199(12):773-84.)。该技术的效率已通过10-倍交叉验证来测定(PiroozniaM等“A comparative study of different machine learning methods on microarray geneexpression data(用于微阵列基因表达数据的不同机器学习方法的比较研究)”BMCGenomics2008;9增刊1:S13.)。
所述预测模型和算法还包括感知器、形成前馈型神经网络并对二元分类器绘制输入变量的线性分类器(Gallant SI.“Perceptron-based learning algorithms(基于感知器的学习算法)”Perceptron-based learning algorithms1990;1(2):179-91)。其还用于预测乳腺癌的恶性(Markey MK等.“Perceptron error surface analysis:a case study inbreast cancer diagnosis(感知器误差表面分析:乳腺癌诊断的病例研究)”Comput BiolMed2002;32(2):99-109)。在该模型中,所述学习速率是调节学习速度的常数。较低的学习速率改善所述分类模型,同时增加处理变量的时间(Markey MK等.“Perceptron error surface analysis:a case study in breast cancer diagnosis(感知器误差表面分析:乳腺癌诊断的病例研究)”Comput Biol Med2002;32(2):99-109)。在一个示例中,使用0.05的学习速率。一方面,使用感知器算法来区分局部或原发性肿瘤和对应的转移性肿瘤。一方面,使用三数据扫描(three data scan)来生成将数据明确分类的决定边界。
所述预测模型和算法还包括正则化判别分析(RDA),其可用作其它数据挖掘技术的灵活替代,所述其它数据挖掘技术包括线性和二次判别分析(LDA、QDA)(Lilien RH,Farid H,Donald BR.“Probabilistic disease classification ofexpression-dependent proteomic data from mass spectrometry of human serum(来自人血清质谱的表达依赖性蛋白质组数据的概率疾病分类)”J Comput Biol2003;10(6):925-46.;Cappellen D,Luong-Nguyen NH,Bongiovanni S等.“Transcriptional program of mouse osteoclast differentiation governed by themacrophage colony-stimulating factor and the ligand for the receptor activator ofNFkappa B(由巨噬细胞群落刺激因子和NFkappa B受体激活剂的配体决定的小鼠破骨细胞分化转录程序)”J Biol Chem2002;277(24):21971-82.)。使用RDA的正则参数γ和λ,来设计LDA和QDA间的中间分类器。QDA在γ=0且λ=0时进行,而LDA在γ=0且λ=1时进行(Picon A,Gold LI,Wang J,Cohen A,Friedman E.A subset of metastatichuman colon cancers expresses elevated levels of transforming growth factor beta1(转移性人结肠癌子集表达水平升高的转化生长因子β1).Cancer Epidemiol BiomarkersPrev1998;7(6):497-504)。
为减少过拟合,选择RDA参数以使交叉验证误差最小化而不等于0.0001,因此强制使RDA产生处于LDA、QDA和L2之间的分类器(Pima I,Aladjem M.,“Regularized discriminant analysis for face recognition(脸部识别的正则化判别分析)”Pattern Recognition2003;37(9):1945-48)。最后,正则化本身已广泛用于克服机器学习中的过拟合(Evgeniou T,Pontil M,Poggio T.“Regularization Networks and SupportVector Machines(正则化网络和支持向量机)”Advances in Computational Math2000;13(1):1-50.;Ji S,Ye J.Kernel“Uncorrelated and Regularized DiscriminantAnalysis:A Theoretical and Computational Study(无关联和正则化判别分析:理论和计算研究)”IEEE Transactions on Knowledge and Data Engineering2000;20(10):1311-21.)。
在一个示例中,将正则化参数确定为γ=0.002且λ=0。在一个示例中,对于各分类对,对全部转录物赋S值,然后通过降低S值来排列所述转录物。进行RDA(例如,21次),使第N次反复由最高N得分转录物组成。可通过所述RDA分类器的10倍交叉验证进行误差估计。这可通过将组织数据集划分为互补子集,进行一个子集(称为训练集)的分析,并验证另一个子集(称为验证集或测试集)的分析来完成。
计算错误分类误差
在一个示例中,计算错误分类误差平均值以减少整体预测评估中的变化性,这相较于其它方法能提供误差轨迹的更准确方法,所述其它方法包括拔靴法和留一法交叉验证(Kohavi R.“A study of cross-validation and bootstrap for accuracyestimation and model selection(用于准确估计和模型选择的交叉验证和拔靴法的研究)”Proceedings of the Fourteenth International Joint Conference on ArtificialIntelligence,(国际人工智能联合大会会议记录)1995;2(12):1137–43.)。
在一个示例中,进行组织分类的选择,例如,通过计算各基因和各分类对的等级分数(S):
S = | &mu; C 2 - &mu; C 1 | &sigma; C 1 + &sigma; C 2
其中μC1和μC2分别代表第一和第二分类的均值,而σC1和σC2是类间标准偏差。大的S值指示各类中的显著差异表达(“倍数变化”)和低标准偏差(“转录物稳定性”)。可通过降低S值来分选基因,并作为正则化判别分析算法(RDA)的输入使用。
可评价、验证和交叉验证所述算法和模型,例如,验证所述模型的预测和分类能力,并评价特异度和敏感度。在一个示例中,使用径向基函数作为核,使用10倍交叉验证来测量分类的敏感度(Cristianini N,Shawe-Taylor J.“An Introduction toSupport Vector Machines and other kernel-based learning methods(支持向量机和其它基于核的学习法入门)”剑桥:剑桥大学出版社,2000.)。可通过提供的方法比较不同的分类模型和算法,例如,使用本文提供的训练和交叉验证来比较所述预测模型预测特定转归的性能。
所提供的方法、系统和预测模型的实施方式是可再现的,具有高动态范围,能检测数据中的小变化,并且使用简单方法以低成本实施,例如,用于在临床实验室中执行。
F.试剂盒
提供用于上文所述或建议的诊断、预后、预测和治疗应用的试剂盒和其它制品。在一些实施方式中,所述试剂盒包括载体、包装或经划分以置放一个或多个容器(例如,小瓶、管、盘和孔)的填充物,其中各容器包括用于本文提供方法的单独元件之一,在一些方面还包括标签或插入使用说明书(例如本文所述的应用)。在一个示例中,所述单个容器包括用于检测本文所提供GEP-NEN生物标志物的单一试剂;在一些示例中,单个容器包括用于检测管家基因和/或用于标准化的试剂。
例如,所述容器可包含试剂例如探针或引物,所述试剂是或能进行可检测标记。若所述方法采用核酸杂交来检测,所述试剂盒还可具有包含扩增靶核酸序列所用核苷酸的容器。试剂盒可包括含有报道因子的容器,所述报道因子例如生物素结合蛋白,如结合报道分子的抗生物素蛋白或抗生蛋白链菌素,所述报道分子例如酶标签、荧光标签或放射性同位素标签;所述报道因子可与例如核酸或抗体联用。
所述试剂盒一般包含上述容器和一个或多个其所附的容器,该容器包含从商业和使用者立场来看可能需要的物质,包括缓冲剂、稀释剂、填充剂、针、注射器;载体、包装、容器、列出内含物和/或使用说明的小瓶和/或管标签,含有使用说明的说明书。
标签可存在于容器上或和容器放在一起以标示组合物是用于特定治疗或非治疗性应用,例如预后、预防、诊断或实验室应用,并且也可标示体内或体外使用(例如本文所述的应用)指南。指南和/或其它说明也可包括在和试剂盒一起或试剂盒上的插页或标签中。该标签可在容器上或为该容器所附带。当形成标签的字母、数字或其它字符模塑或蚀刻到容器本身中,标签可在容器上;当容器存在容纳该容器的接收容器或载体中,标签可与该容器附在一起,例如说明书。所述标签可指示所述组合物用于病症例如GEP-NEN的诊断、治疗、预防或预后。
在另一个实施方式中,提供包括组合物的制品,例如一种或多种氨基酸序列、一种或多种小分子、一种或多种核酸序列和/或一种或多种抗体,例如,用于GEP-NEN诊断、预后或治疗的材料。制品一般包括至少一个容器和至少一个标签。合适的容器包括例如,大瓶、小瓶、注射器和试管。该容器可由各种材料如玻璃、金属或塑料制成。该容器可容纳氨基酸序列、小分子、核酸序列、细胞群和/或抗体。在一个实施方式中,所述容器含有用于检测细胞的mRNA表达谱的多核苷酸以及用于该目的的试剂。在另一实施方式中,容器包含用于评估细胞和组织中GEP-NEN生物标志物的蛋白表达,或相关实验室、预后、诊断、预防和治疗目的的抗体、其结合片段或特异性结合蛋白;该应用的标示和/或指南可置于容器上或和容器放在一起,如用于该目的的试剂和其它组合物或工具。
该制品可还包括含有药学上可接受缓冲剂如磷酸盐缓冲盐水、林格溶液和/或右旋糖溶液的第二容器。还可包括从商业和使用者立场来看需要的其他材料,包括其他缓冲剂、稀释剂、填充剂、搅拌物、针、注射器和/或具有标示和/或使用说明的说明书。
实施例
通过以下几个实施例对本发明各方面做进一步说明和展示,这些实施例不意在限制本发明范围。
实施例1:GEP-NEN和正常样品中生物标志物表达水平的检测和测定
样品制备、RNA提取、实时PCR
获得用于通过实时PCR检测和测定GEP-NEN生物标志物表达水平的正常和肿瘤样品。正常样品包括二十七(27)种正常小肠(SI)黏膜样品(NML),和十三(13)种正常人肠嗜铬细胞(EC)细胞制备物(NML_EC;通过正常黏膜的荧光活化细胞分选(FACS)获得;纯度>98%的EC细胞(Modlin IM等,“The functional characterization ofnormal and neoplastic human enterochromaffin cells(正常和肿瘤人肠嗜铬细胞的功能特性)”J Clin Endocrinol Metab2006;91(6):2340-8)。
肿瘤样品包括五十三(53)种原发性SI GEP-NEN和二十一(21)种收集自冷冻生物银行(biobank)的对应肝转移(全部组织都经显微切割)。所述GEP-NEN样品按照耶鲁大学机构审查委员会认可的方案从登记患者获得。以纯度高于80%的肿瘤细胞且对TPH1呈阳性将各样品分类为有功能,确定其为EC细胞源性(Modlin IM等,“Thefunctional characterization of normal and neoplastic human enterochromaffin cells(正常和肿瘤人肠嗜铬细胞的功能特性)”J Clin Endocrinol Metab2006;91(6):2340-8)。患者样品还从乳腺癌(n=53)、结肠腺癌(n=21)和胰腺癌(n=16)收集。
按照2000世界卫生组织(WHO)标准对原发性GEP-NEN进行病理学分类,分类为高分化NET((WDNET)(n=26)(良性状态或不确定恶性可能));高分化神经内分泌癌((WDNEC)(n=20)(低级恶性));低分化神经内分泌肿瘤((PDNET)(n=5)(中级恶性));和低分化(通常为小细胞)神经内分泌癌((PDNEC)(n=2)(高级恶性))。使用相似标准对转移性GEP-NEN组织样品(转移;MET)(从来自对应肿瘤类型的肝切除物收集)进行分类:WDNET MET(n=6)、WDNEC MET(n=12)和PDNEC MET(n=3)。使用相同方法对转移性PDNET(PDNET MET)进行分类。
就实时PCR而言,使用试剂(即用型,苯酚和异硫氰酸胍的单相溶液;InvitrogenTM,加利福尼亚州卡尔斯巴德(Carlsbad))从多个正常和肿瘤样品(27个正常SI黏膜样品,13个正常人EC细胞制备物,53个原发性SI GEP-NEN,21个对应肝转移,和53个腺癌样品)提取RNA。
通过实时PCR,按照生产商说明使用Assays-on-DemandTM基因表达产物和ABI7900序列检测系统(皆来自应用生物系统公司(Applied Biosystems))检测转录物的表达水平(Kidd M等,“Microsatellite instability and gene mutations in transforminggrowth factor-beta type II receptor are absent in small bowel carcinoid tumors(小肠癌肿瘤中无转化生长因子βII型受体的微卫星不稳定性和基因突变)”Cancer2005;103(2):229-36)。使用
Figure BDA0000406202150000682
通用PCR预混方案(应用生物系统公司(Applied Biosystems))在标准条件下进行循环。
通过实时PCR,使用多核苷酸引物对的群来检测GEP-NEN生物标志物并测量表达水平,其中,设计各包含引物对的群以特异性结合并扩增GEP-NEN生物标志物组。所述GEP-NEN生物标志物组包括参与典型原发性和转移性GEP-NEN表型的基因产物(转录物),例如,涉及粘连、迁移、增殖、凋亡、转移和激素分泌的基因,以及神经内分泌标志物基因。还检测管家基因(ALG9、TFCP2和ZNF410)的表达水平。
使用geNorm算法和管家基因表达水平对生物标志物表达的原始ΔCT值进行标准化(Vandesompele J等,“Accurate normalization of real-time quantitative RT-PCRdata by geometric averaging of multiple internal control genes(通过多个内部对照基因的几何平均对实时定量RT-PCR数据进行准确标准化)”Genome Biol2002;3(7):RESEARCH0034)。
经标准化的数据进行自然对数(Ln)转换以供压缩,并输入
Figure BDA0000406202150000691
GenomicSuite(Partek,
Figure BDA0000406202150000692
Genomics SuiteTM”,修订版6.3圣路易斯:Partek公司,2008))。计算各种生物标志物转录物的平均基因表达水平(M)和标准偏差(SD)。所有统计学计算结使用R2.9语言进行以供统计学计算(R开发核心团队.R,“Alanguage and environment for statistical computing(一种用于统计计算的语言和环境)”奥地利维也纳:R Foundation for Statistical Computing(统计计算的R基础),2008)。
9-生物标志物组的转录物表达水平的检测和测定
如上所述通过实时PCR,使用对九种GEP-NEN生物标志物(MAGE-D2、MTA1、NAP1L1、Ki-67、生存素、FZD7、Kiss1、NRP2和CgA(参见Kidd M等,“The role ofgenetic markers--NAP1L1,MAGE-D2,and MTA1--in defining small-intestinalcarcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62;Kidd M等,“Q RT-PCR detection ofchromogranin A:a new standard in the identification of neuroendocrine tumordisease(嗜铬粒蛋白的Q RT-PCR检测:神经内分泌肿瘤疾病的鉴定新标准)”AnnSurg2006;243(2):273-80)转录物组具有特异性的引物对的群测定表达水平。所述引物对序列列于下表1A,引物对的其它信息列在表1B中。检测原发性SI GEP-NEN(AKA SI NET)(n=53)、对应的肝转移(n=21)和正常EC细胞制备物(n=13)样品中所述九种生物标志物(转录物)的表达。比较肿瘤样品中各生物标志物的表达水平和正常肠嗜铬细胞(EC)细胞制备物中的对应平均表达水平。基于该比较,将所述肿瘤样品中的表达水平分类为上调、下调或基线。
表1:针对GEP-NEN生物标志物和管家基因的引物群
表1A:引物序列
Figure BDA0000406202150000711
Figure BDA0000406202150000721
Figure BDA0000406202150000731
Figure BDA0000406202150000741
Figure BDA0000406202150000751
表1B:其它信息
Figure BDA0000406202150000761
Figure BDA0000406202150000781
Figure BDA0000406202150000791
Figure BDA0000406202150000801
Figure BDA0000406202150000811
Figure BDA0000406202150000821
Figure BDA0000406202150000831
Figure BDA0000406202150000841
结果示于图1,其中九组图各显示正常EC(左)、恶性/转移性(中)和局部(右)样品中的单一生物标志物平均表达水平。椭圆对应于±2个标准偏差(SD)的阈值。所有p值:p<0.05。该结果证明SI GEP-NEN(AKA SI NET)中MAGE-D2、MTA1、NAP1L1、Ki-67、FZD7、CgA和NRP2的表达水平显著较高,而生存素和Kiss1的表达水平下降,证实相较于正常细胞,以及在不同GEP-NEN肿瘤等级之间,GEP-NEN样品中的这些GEP-NEN生物标志物差异表达。
21-生物标志物组的转录物的检测和表达水平测定
如上所述进行定量实时PCR(QPCR),使用引物对的群检测含21个基因的GEP-NEN生物标志物组(包括MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph1)的转录物表达水平。所述引物序列和信息列于上表1A和1B。检测167个人组织样品中所述21种生物标志物的表达,所述样品包括正常EC细胞(n=13)、正常SI黏膜(n=27)和原发性(n=53)及转移性(n=21肝MET)GEP-NEN亚型和53个腺癌(结肠、乳腺和胰腺)样品。该研究证明,所述21种生物标志物在GEP-NEN肿瘤样品中各自显著差异表达。
就各21种生物标志物而言,计算检测转录物水平的GEP-NEN样品和腺癌样品比例,并用双尾费歇尔检验进行比较(GraphPad Prizm4;图8B:*p<0.002SIGEP-NEN相比腺癌(费歇尔精确检验))。如图8B所示,相较于腺癌,该研究中有显著较高比例(>95%)的GEP-NEN样本表达了(即,呈阳性)所述21种生物标志物基因中的16种(76%)(p<0.002)。在两种肿瘤类型中皆高度表达的基因包括CTGF、FZD7、NRP2、PNMA2和生存素。
与不同GEP-NEN亚型相反,多种正常EC细胞样品显示同质性转录物表达,样品间转录物变化低(57%)。不同的瘤SI GEP-NEN(也称为SI NET)亚型显示转录物水平异质性,说明不同GEP-NEN亚型可通过在所述21-生物标志物组中检测和测定转录物表达水平来区分。
实施例2:主成分分析(PCA)
经过自然对数(ln)转换,并输入
Figure BDA0000406202150000861
Genomic Suite之后,进行主成分分析(PCA)以描述高维表达数据的结构。PCA能呈现和比较多种样品间的转录物表达模式(例如,正常、肿瘤、GEP-NEN相比其它肿瘤、GEP-NEN亚型、原发性相比转移性/恶性)。PCA减少所述表达数据的维数—各采用9-生物标志物和21-生物标志物组获得—至解释最多变化的三个无关联主成分(PC)(Jolliffe IT,“Principle ComponentAnlysis(主成分分析)”施普林格,1986.)。PCA作图是在三维空间可视化,分别在x-、y-和z-轴上对第一(1st)、第二(2nd)和第三(3rd)主成分赋值。
就所述9和21基因组而言,多种样品的平均表达数据在该PCA坐标系统中迭加。如所示主成分向量指定,各样品的质心(质量中心(平均表达))代表其个体转录物表达谱(调节签名)。在该表现形式中,质心间的距离与相似性度量逆等价(越大距离=越小相似性)。因此,质心间的大距离或间隔说明样品具有不同的转录物表达签名;质心的接近说明样品间具有相似性。例如,不同肿瘤类型样品的质心间距离代表其调节签名(转录物表达水平)的相对相似性。
9-生物标志物组
如上所述对所述9-基因生物标志物组(MAGE-D2、MTA1、NAP1L1、Ki-67、生存素、FZD7、Kiss1、NRP2和CgA)的实时PCR表达数据进行PCA。三个PC(PC#1、PC#2、PC#3)反映原发性SI GEP-NEN、正常EC细胞制备物和各转移之间的最大表达变化。将缩减的数据绘至三维空间(图2)。如图2所示,就原发性SI GEP-NEN和正常EC细胞制备物而言,PC#1、PC#2和PC#3分别代表31.7%、26.5%和17.4%的变化;总体而言,所示三个PC代表75.6%的变化。
所示三个PC显示,就原发性肿瘤亚型和正常EC细胞制备物而言有75.6%的变化(图2A),而原发性GEP-NEN肿瘤亚型和对应转移有73.2%的变化(图2C)。就转移而言,PC#1、PC#2和PC#3分别代表40.4%、19.9%和12.9%的变化;总而言之,全部3个PC代表数据中73.2%的变化(图2C)。
使用生物标志物表达水平和个体表达向量间三角余弦之间的逆相关(越大角=越小相似性)来鉴定相关的基因表达簇。图2B显示原发性SI GEP-NEN的簇((1)CgA、NRP2、NAP1L1、FZD7;(2)MAGE-D2、MTA1、Kiss1;和(3)Ki-67、生存素))而图2D显示对应转移的簇((1)NAP1L1、FZD7、CgA、生存素、Ki-67、Kiss1;(2)MTA1、MAGE-D2、NRP2)(Gabriel KR,“The biplot graphic display of matrices withapplication to principal component analysis(应用于主成分分析的矩阵双标图显示)”Biometrika1971;58(3):453)。
21-生物标志物组PCA
如上所述还针对所述21-生物标志物组(MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph1)进行PCA。三个主成分捕获该数据集中的大部分变化(83%)。将缩减的数据绘至三维空间。
图8A显示GEP-NEN(包括不同原发性和转移性亚型)、腺癌(亚型)和正常组织(EC和SI)的表达谱比较。如图所示,所述三种腺癌类型的质心与正常SI黏膜和瘤GEP-NEN组织亚型的那些质心分开。该观察结果证实所述其它(上皮)肿瘤类型的表达水平显著差异,使用上述费歇尔精确检验显示(图8B)。所述不同瘤(SI GEP-NEN)亚型显示异质性表达谱,显示可使用该生物标志物组对其进行区分。
所有正常EC制备物显示同质性转录物表达(样品间变化低(57%))。此外,相较于其它组织类型(包括正常SI黏膜),正常样品表达谱有本质不同。相较于正常SI黏膜和瘤组织,正常EC细胞的遗传谱有本质不同。
该结果证明原发性SI GEP-NEN肿瘤亚型、正常EC细胞制备物和SI GEP-NEN转移在GEP-NEN生物标志物表达谱和独特调节表达标签方面的差异。该研究证实检测所述21种生物标志物的表达能够成功区分GEP-NEN亚型、腺瘤类型、正常SI黏膜、正常EC细胞,以及原发性和转移性GEP-NEN亚型。
实施例3:肿瘤谱和分析。
对如上所述获自所述9-和21-生物标志物组的经转换表达数据进行统计学分析和肿瘤谱分析。
9-生物标志物组
针对原发性肿瘤亚型和正常EC细胞制备物,计算所述9-生物标志物组的平均(M)转录物表达水平和标准偏差(SD)。所述生物标志物的平均正常表达为:CgA(M正常=-9.2,SD=4.2),Ki-67(M正常=-4.5,SD正常=1.1),Kiss1(M正常=-4.0,SD正常=3.2),NAP1L1(M正常=-8.3,SD正常=1.1),NRP2(M正常=-9.3,SD=3.8)和生存素(M正常=-6.0,SD正常=1.0),不论总体(全部肿瘤)还是在个体亚型之间都与原发性肿瘤中的平均表达显著不同。参见下表2中所列的p值和倍数变化(FC)。再次评价样品子集(n=35)中的转录物表达水平检测。所述数据高度相关(R2=0.93,p=0.001),显示该方法具有高度再现性和稳健性。
进行方差分析(ANOVA)来评价肿瘤和正常样品间,以及正常样品和个体肿瘤亚型样品间的生物标志物表达水平差异。具体而言,ANOVA比较正常EC细胞制备物和原发性肿瘤组织,以及正常EC细胞制备物和个体原发性肿瘤类型之间的表达(表2)。采用确定两组的肿瘤样品数据(总体或个体亚型)和正常样品表达数据,实行2因素不配对算法。由于所述数据集内没有缺失值,没有必要进行填补。针对各生物标志物转录物,以肿瘤组和正常组的几何平均比计算几何倍数变化(FC)。
正常和肿瘤组之间的生物标志物基因表达经计算存在差异,p<0.05,认为其显著改变。p<0.05且绝对FC≥2.0的转录物在两组间差异表达。WDNET中的CgA、FZD7、Ki-67、NAP1L1、NRP2和生存素相较正常EC细胞制备物显著改变。WDNEC中,CgA、Ki-67、MAGE-D2和NRP2的转录物水平显著改变。PDNET显示另外的CgA、Ki-67、NAP1L1、NRP2和生存素表达水平。最后,PDNEC仅在NAP1L1和NRP2表达中显示差异。
表2:
ANOVA比较SI-GEP-NEN与个体SI-GEP-NEN亚型的生物标志物表达水平和正常EC细胞样品中的表达水平
WDNET=高分化神经内分泌肿瘤,WDNEC=高分化神经内分泌癌,PDNET=低分化神经内分泌肿瘤,PDNEC=低分化神经内分泌癌;NS=p≥0.05,FC=倍数变化
计算9-生物标志物组的皮尔森相关(PC)系数(R2)以评估生物标志物对之间和肿瘤亚型分化和生物标志物表达之间的线性关系。原发性GEP-NEN亚型和正常EC样品中的生物标志物表达分布通过计算各对生物标志物的PC系数而线性分离(在图3所示的个体相似性矩阵的x-轴和y-轴上作图)。该研究确定四对生物标志物的表达呈高度线性(R2>0.50)相关(MTA1:MAGE-D2,MTA1:Kiss1,FZD7:NAP1L1和生存素:Ki-67(高度相关(R2>0.50))。此外,WDNET、WDNEC和PDNET的表达谱分布与Kiss1:生存素、FZD7:NAP1L1、生存素:MTA1和MTA1:MAGE-D2的成对表达呈线性相关,说明可对该数据集应用线性分类器。该数据还显示所述生物标志物和原发性肿瘤亚型之间的表达依赖性相关。
21-生物标志物组
使用皮尔森相关(PC)系数来鉴定所述21-基因组中生物标志物表达水平之间的线性关系。计算全部组织类型中每对21种生物标志物的PC系数(图9A)。图9显示热图结果,其中,分别以黑、深灰和浅灰指示最低(-0.03)、中等(0.4)和最高(1)相关的对。该21-生物标志物组包含27个高度相关(R2>0.40)的转录物对,在MTA1、NRP2和Kiss1之间有最高相关系数(R2=1.00)。
由这些数据通过在R2高于预定阈值(R2>0.40)的任何转录物对之间绘制边缘来构建相关性网络(图9B,实际R2值迭加在各边缘上)。如图9B所示,在该网络中鉴定出五个不同调节簇,各具独有的生物标志物组:(1)MAGE-D2、NRP2、Kiss1、MTA1和CgA(最紧密连接簇(各R2值>0.79));(2)GRIA2、OR51E1、SPOCK1和SCG5;(3)CXCL14、NKX2-3、HOXC6、CTGF、PTPRN2;(4)NAP1L1、FZD7和PNMA2;以及(5)生存素和Tph1。在图9B中,在个体边缘上迭加R2值。各簇中的最低R2值是0.40;最高值为1.0。该结果证明,生物标志物组的表达水平与GEP-NEN在生物学上相关。
使用双样本t检验计算来确定以下样品之间差异表达的生物标志物基因:1)EC细胞、正常SI黏膜和原发性及转移性组织;2)原发性GEP-NEN亚型;以及3)转移性GEP-NEN亚型(图10)。
计算-1.4~1.1范围的各亚基的S值。基于基因数量(n=21)和样本大小(n=114),设S值的统计学显著性阈值为±0.4(Nadler B,“Discussion of"On consistency andsparsity for principal component analysis in high dimensions"(关于高维主成分分析的一致性和稀疏性的讨论)”Journal of the American Statistical Association2009;104:694-97)。S<-0.4或S>0.4且p<0.05的转录物分别视作显著下调或上调。图10中的结果以基因等级火山图和t检验显著性(p)值显示。
图10A显示正常SI黏膜、正常EC细胞和SI GEP-NEN间的比较。相较于正常黏膜,SI GEP-NEN样品内经典神经内分泌标志物Tph1的转录物表达显著较高(p<0.001,S=0.7;图10A)。相较于正常SI黏膜,肿瘤组织表达更高转录物水平的CgA和GRIA2(图10B);肿瘤组织和正常EC细胞之间的CgA表达没有显著变化(p=0.07,S=0.39)。
图10B显示全部GEP-NEN(肿瘤)样品和全部正常样品,全部转移性GEP-NEN样品和全部正常样品,以及全部转移性GEP-NEN样品和全部原发性GEP-NEN样品的比较。相较于作为一组分析的整体原发性GEP-NEN样品,整体转移GEP-NEN样品作为一个完整组分析时,其中的所述生物标志物转录物无差异表达。
图10C显示原发性GEP-NEN亚型和作为一组的全部转移之间的比较。PDNET样品相较PDNEC样品(PDNET-PDNEC)或WDNET样品相较PDNEC(WDNET-PDNEC)样品,没有生物标志物转录物的差异表达。在WDNEC和PDNEC间(WDNEC-PDNEC),MAGE-D2是唯一具有显著差异的标志物(p=0.009,S=1.03;图10C)。
图10D显示原发性肿瘤和转移性亚型间的比较。CgA、Kiss1、NRP2和Tph1在所有转移性亚型间差异表达(图10D)。
实施例4:分类GEP-NEN的预测模型
用监督学习算法和模型进一步分析本研究实施例1-4获得的GEP-NEN生物标志物表达水平,所述算法和模型包括支持向量机(SVM)、决策树、感知器和正则化判别分析RDA(Gallant SI,“Perceptron-based learning algorithms(基于感知器的学习算法)”Perceptron-based learning algorithms1990;1(2):179-91))。
实施例4A:用所测9-生物标志物组表达的预测和建模
使用特征选择(FS)分类模型分析所述9-生物标志物研究中获得的表达数据。使用“贪心前向”选择法,选择所述稳健学习模型的最相关特征子集来应用所述模型,如以下文献所述:Peng H,Long F,Ding C,“Feature selection based on mutualinformation:criteria of max-dependency,max-relevance,and min-redundancy(基于突变信息的特征选择:最大依赖性、最大相关性和最小冗余的标准)”IEEE Transactionson Pattern Analysis and Machine Intelligence,2005;27(8):1226-38。
经FS确定,该研究中NAP1L1、FZD7、Kiss1和MAGE-D2的表达水平是SVM分类的最佳变量(所述9个生物标志物中)。因此,通过比较正常EC细胞制备物(n=13)和原发性SI-GEP-NEN(n=36)中这些生物标志物的表达水平来进行SVM。对于SVM,使用径向基函数作为核,使用10倍交叉验证来检测分类的敏感度。参见Cristofanilli M等.“Circulating tumor cells,disease progression,and survival inmetastatic breast cancer(转移性乳腺癌中的循环肿瘤细胞、疾病进展和存活)”N EnglJ Med2004。结果示于下表3和图4。如所示,该研究中,SMV预测SI GEP-NEN,敏感度为100%,种特异度为92%;准确预测正常EC细胞制备物,敏感度为77%,种特异度为100%。
表3:通过支持向量机分类模型,使用NAP1L1、FZD7、Kiss1和MAGE-D2的转录物表达水平产生的分类预测。
真正常 真肿瘤 分类查准率
预测的正常 10 0 100%
预测的肿瘤 3 36 92%
分类查全率 77% 100%
图4中的密度图显示SI GEP-NEN和正常EC细胞之间的分布,对样品密度着色生成取决于个体基因表达的差异区域。由特征选择算法鉴定的NRP2、MAGE-D2、Kiss1和FZD7转录物的表达水平对X-和Y-轴作图。正常和肿瘤样品数据根据其各自基因对表达而分散。对样品间基于平均欧氏距离(表达差异)的分布密度着绿色(正常)和红色(瘤)。蓝色区域指示正常组和肿瘤组间的转变区域。正常EC细胞和原发性小肠肿瘤之间的明显距离说明所选转录物作为恶性标志物的有效性。
特征选择作为决策树分类器中的原则鉴别器鉴定NAP1L1和Ki-67表达水平。基于该结果,就个体原发性SI GEP-NEN亚型的表达数据通过关联NAP1L1与Ki-67表达水平值和如上文所确定原发性肿瘤亚型的对应表达水平值构建决策树分类模型。结果示于图5,其中树叶代表分类,分支代表特征转变成所述个体分类的特征连接。使用10倍交叉验证来检测该技术的有效性,如以下文献所述:Pirooznia M等,“Acomparative study of different machine learning methods on microarray gene expressiondata(用于微阵列基因表达数据的不同机器学习方法的比较研究)”BMC Genomics2008;9增刊1:S13。图5中圆括号所示的百分数指示原发性SI GEP-NEN亚型的出现频率。如下表4所示,决策树分类预测该研究中的WDNET,敏感度为78%,特异度为82%;预测该研究中的WDNEC,敏感度为78%,特异度为64%;并且预测该研究中的PDNET,敏感度为71%,特异度为63%。就该9种生物标志物组而言,该研究中PDNEC被错分类为WDNET或PDNET。(图5;表4)。
表4:通过决策树分类,使用Ki-67和NAP1L1转录物表达生成的分类预测。
Figure BDA0000406202150000921
实施ANOVA来鉴定原发性SI GEP-NEN亚型和对应转移中差异表达的转录物(图5)。全部肿瘤亚型中Kiss1的显著增加(p<0.005)都与转移相关联。
表5:小肠神经内分泌肿瘤亚型和对应转移中的ANOVA结果。
Figure BDA0000406202150000922
MET=转移;FC=倍数变化;“p”=p值;NS=p≥0.05
使用SVM构建分类器,分析原发性和对应转移性WDNET的所测MAGE-D2、NAP1L1和Kiss1表达水平(如FS鉴定)。为评价相较于原发性肿瘤转移潜力的生物标志物表达,样品与所选基因表达水平相关联作图,对所述分布密度着色以描述原发性和转移性样品的分离(图6A)。
WDNET和转移性WDNET结果按照其各自基因对表达分散,分布密度基于蓝色样品(原发性肿瘤)和红色样品(转移)之间的平均欧氏距离(表达差异),绿色区域表示原发性和转移性肿瘤间的转换区域。如图所示,预测了WDNET和WDNET MET,敏感度和特异度为100%。可预测WDNET会转移,条件是1)NAP1L1的转录物水平>-2.71且Kiss1的转录物水平>-2.50;2)NAP1L1的转录物水平>-3.82且MAGE-D2的转录物水平>-4.42;3)MAGE-D2的转录物水平>-3.21且Kiss1的转录物水平>-2.12。
使用0.05的感知器分类器(Markey MK等,“Perceptron error surface analysis:acase study in breast cancer diagnosis(感知器误差表面分析:乳腺癌诊断中的病例研究)”Comput Biol Med2002;32(2):99-109)以区分局部肿瘤和对应转移。显示该方法有效预测乳腺癌恶性(Markey MK等.“Perceptron error surface analysis:a case study inbreast cancer diagnosis(感知器误差表面分析:乳腺癌诊断中的病例研究)”ComputBiol Med2002;32(2):99-109)。使用感知器分类器(使用三数据扫描以生成将数据明确归类的决策边界,学习速率为0.05)预测WDNEC和PDNEC的转移。
所述FS算法预测NAP1L1和Kiss1在WDNEC MET中特异性高表达,并且CgA在PDNEC MET中特异性高表达。通过就特征基因的表达作图,并对原发性肿瘤及其转移的分布密度着色来使原发性肿瘤的转移潜力直观化。图6B和图6C中的数据显示来自原发性肿瘤亚型和各转移的数据按照其各自基因对表达分散,分布密度基于蓝色(原发性肿瘤)和红色(转移)样品间的平均欧氏距离(差异表达),绿色区域表示原发性肿瘤亚型和相应转移之间的转换区域。预测WDNEC会转移的值是NAP1L1>-5.28且Kiss1>-2.83,而当CgA>-3.5时预测PDNEC可能转移。这些结果显示原发性SI GEP-NEN亚型和各自转移的明显分离,证明所提供的生物标志物作为转移标志物的有效性。
实施例4B:评价9-生物标志物组的分类和预测能力
为评价使用所述9-生物标志物组的分类和预测能力,对获自SI GEP=NEN组织(n=37)(包括正常EC细胞制备物(n=17),局部SI GEP-NEN(n=8)和恶性SIGEP-NEN(n=12))独立集的样品进行实时PCR以检测所述标志物基因转录物表达。认为所有WDNET是“局部的”,而认为其它肿瘤亚型是“恶性的”。鉴于MTA1:MAGE-D2、MTA1:Kiss1、FZD7:NAP1L1和生存素:Ki-67转录物对高度相关(R2>0.50),线性相关的转录物对的评估确定与所述训练集类似的模式。应用训练的SVM模型来区分正常EC细胞制备物和瘤形成,准确度为76%。
结果(示于图7)说明在该研究中(使用所述9-生物标志物组的子集),交叉验证正常EC细胞仅具77%准确度,而独立测试集中的预测具有76%的准确度(p=0.84)。局部GEP-NET的交叉验证准确度仅为78%,而在测试集中的预测准确度为63%(p=0.25)。恶性GEP-NET的交叉验证准确度仅为83%,而在独立集中的预测准确度为83%(p=0.80)。所述决策树模型能预测局部和恶性GEP-NEN,准确度分别为仅63%和83%(图7)。计算F检验统计以确定该训练集和独立集的分类结果无显著差异。正常、局部、恶性亚组的p值分别为0.84、0.25和0.80。
实施例4C:使用21-生物标志物组表达水平的预测和建模
如上所述,对所述21种生物标志物组(MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph1)表达数据设计和应用正则化判别分析(RDA)算法。通过计算各基因和各分类对的等级分数(S)进行组织分类的基因选择:
S = | &mu; C 2 - &mu; C 1 | &sigma; C 1 + &sigma; C 2
其中μC1和μC2分别代表第一和第二分类的均值,且σC1和σC2是类间标准偏差。大的S值指示各类中显著不同的表达(“倍数变化”)和低标准偏差(“转录物稳定性”)。通过降低S值分选基因并用作所述RDA的输入。
使用RDA正则化参数γ和λ来设计LDA(当γ=0且λ=1时执行)和QDA(当γ=0且λ=0时执行)之间的中间分类器(Picon A,Gold LI,Wang J,Cohen A,Friedman E.Asubset of metastatic human colon cancers expresses elevated levels of transforminggrowth factor beta1(转移性人结肠癌子集表达水平升高的转化生长因子β1).CancerEpidemiol Biomarkers Prev1998;7(6):497-504)。为减少过拟合,选择RDA参数以使交叉验证误差最小化而不等于0.0001,因此强制使RDA产生处于LDA、QDA和L2之间的分类器(Pima I,Aladjem M.,“Regularized discriminant analysis for facerecognition(脸部识别的正则化判别分析)”Pattern Recognition2003;37(9):1945-48)。
确定正则化参数为γ=0.002且λ=0。对各分类对的个体转录物表达数据赋S值,然后按降低S值排列。执行RDA21次,使第N次反复由最高N得分转录物组成。误差估计通过所述RDA分类器的10倍交叉验证,通过将组织数据集划分为互补子集,进行一个子集(称为训练集)的分析,并验证另一个子集(称为验证集或测试集)的分析来完成。对测试-训练集的全部排列执行该操作,并对错误分类误差求平均以减少总体预测评估中的变化。
实施例4D:使用21-生物标志物组表达数据的未知组织和GEP-NEN的敏感、准 确的数学分类,GEP-NEN亚型的区分和GEP-NEN的分期
对如上所述获自21-生物标志物组(MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph1)的表达数据应用该RDA算法。使用该算法区分未知组织类型(EC(正常肠嗜铬细胞);“正常”(正常小肠黏膜);“肿瘤”(原发性和转移性GEP-NEN和癌(NET/NEC)的集合);以及原发性WDNET;WDNEC;PDNET;PDNEC)的样品,以供GEP-NEN的如下数学分类。
就各样品而言,首先确定该组织是否是正常或肿瘤组织。随后评估视作肿瘤的组织以确定其是否是原发性或转移性的。然后表征GEP-NEN亚型(原发性或转移性)。在每一步骤应用所述RDA算法,使用相同的学习参数(γ=0.002且λ=0)集。通过计算错误分类率(任何两类间假阳性的整体比例)来检测该分类器的性能。
结果示于表6A-C(列出错误分类率和所测基因(生物标志物)转录物数量,各区分由最高排名的转录物开始)。
表6A:错误分类率对比所测转录物数量
(正常对比GEP-NEN;原发性对比转移)
Figure BDA0000406202150000961
表6B:错误分类率对比所测转录物数量(原发性GEP-NEN)
Figure BDA0000406202150000971
表6C:错误分类率对比所测转录物数量(转移性GEP-NEN)
Figure BDA0000406202150000981
如表6A-C所示,所示方法和RDA算法能检测所述存在、阶段和分类(亚型),在正常EC细胞、正常小肠黏膜和GEP-NEN亚型的成对范围迭代间的错误分类率为零。
如表6A中所示,所示RDA算法区分正常EC细胞和肿瘤组织。仅检测和分析单一最高等排名的生物标志物转录物(PNMA2)的表达水平就能够进行该区分,错误分类率为0.08;检测和分析各单一最高等排名的生物标志物(CgA)能够区别正常SI黏膜和肿瘤组织,错误分类率为0.21(表6A)。
将该方法应用于多种生物标志物数据(检测生物标志物组的表达水平并对所述数据应用该RDA算法)能够检测并区分GEP-NEN和正常样品,错误分类为零。使用八(8)种生物标志物转录物组实现EC细胞和肿瘤组织的区分,错误分类率为零。使用二十(20)种生物标志物转录物组实现正常SI黏膜和肿瘤组织的区分,错误分类率为零(表7)。在该研究中,转录物越少,错误分类率越高。这些结果证明所述生物标志物对不同组织组具有特异性,并证实本方法以高特异度检测GEP-NEN疾病并区分GEP-NEN组织和不同正常组织类型的能力。
同样,对生物标志物组的表达水平应用该RDA算法能以100%的准确度确定未知组织样品是否为原发性或转移性。就该测定而言,检测十八(18)种生物标志物转录物的表达水平,并将该数据纳入所述RDA模型(表7),其中,所用转录物越少,错误分类率越高。仅检测最高等排名的转录物(MAGE-D2)表达水平并对其应用所述算法区分了原发性和转移性样品,错误分类率为0.28。(表6A).
使用该RDA算法还能以100%的准确率区分原发性GEP-NEN亚型。仅检测单一最高排名的转录物时,错误分类率范围从0.07(PTPRN2,用于区分PDNEC和WDNEC)至0.37(NRP2,用于区分WDNEC和WDNET)。对全部21种生物标志物转录物的表达水平应用RDA算法,该方法以零错误分类率区分WDNET和WDNEC(表6B),其中,所用生物标志物越少,错误分类率越高。
如表6C中所示,该RDA算法还用于以100%的准确度区分转移性GEP-NEN亚型。仅单一最高排名转录物的错误分类率分别为0.22(CXCL14,用于区分WDNETMET和WDNEC MET)、0.2(NAP1L1,用于区分PDNEC MET和WDNEC MET)和0.17(NRP2,用于区分PDNEC MET和WDNET MET)(表6C)。
表7.用不同数量转录物检测;实现最小错误分类;SVM、决策树(DT)和多层感知器(MLP)分类器的错误分类率。
Figure BDA0000406202150001001
“正常”=正常小肠黏膜;
“肿瘤”=原发性和转移性NET和癌的集合(NET/NEC)
表8总结在该实施例中使用所述RDA算法能够区分指示样品的NET生物标志物。在该实施例中,全部21种生物标志物以零错误分类区分WDNEC和WDNET(转录物越少,错误分类越高)。相反,少至两种生物标志物即可以零错误分类区分PDNEC和WDNET(MAGE-D2、CXCL14),PDNEC和PDNET(PTPRN2、MTA1)。在该实施例中,11种生物标志物以零错误分类区分正常肠嗜铬细胞(EC)和正常SI黏膜(PNMA2、CXCL14、PTPRN2、Tph1、FZD7、CTGF、X2BTB48、NKX2-3、SCG5、Kiss1、SPOCK1,使用生物标志物越少,错误分类率越高)。较少转录物可区分正常EC细胞和肿瘤组织(n=8,PNMA2、Tph1、PTPRN2、SCG5、SPOCK1、X2BTB48、GRIA2、OR51E1)。所述生物标志物中二十种(除了CXCL14)的表达能以零错误分类区分正常SI黏膜和肿瘤组织(转录物越少,错误分类率越高)。
表8:用于以零错误分类率通过RDA成对区分的生物标志物转录物数量
区分 实现零错误分类率的转录物数量
EC对比正常 11
EC对比肿瘤 8
正常对比肿瘤 20
原发性对比转移性 18
PDNEC对比WDNET 3
PDNEC对比WDNEC 2
PDNEC对比PDNET 2
PDNET对比WDNET 4
PDNET对比WDNEC 4
WDNEC对比WDNET 21
WDNEC MET对比WDNET MET 3
PDNEC MET对比WDNEC MET 4
PDNEC MET对比WDNET MET 6
最终,如上所述应用SVM、决策树(DT)和MLP分类器,以类似RDA的方式使用所述二十一种生物标志物组的转录物数据。就通过检测所述二十一种生物标志物组表达的GEP-NEN亚型分类而言,比较RDA的性能和SVM、决策树和多层感知器(MLP)的性能。对全部分类器进行实施例4A所述的训练和交叉验证法。计算错误分类率(表7)。SVM能够实现零错误分类以区分PDNET和WDNEC。决策树以0.03(区分EC和肿瘤样品)-0.33(区分WDNEC MET和WDNET MET,以及PDNEC MET和WDNET MET)的错误分类率做出区分。与RDA在一定程度上相当,所述MLP分类器以7/13的重复、高总体准确度产生零错误分类率。在该实施例中,就所述21个标志物基因的组而言,所述RDA法最为可靠,在全部重复中实现零错误分类率。
实施例5:循环GEP-NEN细胞(CNC)的检测和血浆生物标志物转录物(mRNA) 的鉴定
使用所提供的方法和生物标志物检测人血中的循环GEP-NEN细胞(CNC)。对于该过程,获得人血样品(血浆、棕黄层和全血)并对其进行染色、细胞分选和实时PCR(以检测GEP-NEN生物标志物和管家基因)。
实施例5A:从血浆、棕黄层和全血制备样品并分离RNA
在下列检测人血浆和暗黄层中生物标志物的研究中,从血液数据库,从健康对照(n=85)或已经过GEP-NEN疾病治疗的患者(n=195)获得人血样品(厄普萨拉或柏林的耶鲁纽黑文医院)。参见Kidd M等,“CTGF,intestinal stellate cells andcarcinoid fibrogenesis(CTGF、肠星形细胞和癌纤维化)”World J Gastroenterol2007;13(39):5208-16。在含有乙二胺四乙酸(EDTA)的管中收集5mL血液。离心两个循环(2,000rpm,5分钟)后从棕黄层分离血浆,然后贮存于-80℃,随后进行核酸分离和/或激素(CgA)分析。
从不同血液样品分离RNA
为了从棕黄层分离RNA,样品与
Figure BDA0000406202150001021
一起孵育,然后清洁RNA。使RNA溶于焦碳酸二乙酯水中并用分光光度法测量,并在生物分析仪(加利福尼亚州帕洛阿尔托的安捷伦科技公司(Agilent Technologies))上分析等分试样以评估所述RNA的质量(Kidd M等.“The role of genetic markers--NAP1L1,MAGE-D2,and MTA1--indefining small-intestinal carcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。
使用QIAamp RNA血液迷你试剂盒从GEP-NEN患者和对照血浆分离RNA(图11A),该研究中允许实时PCR相较于
Figure BDA0000406202150001022
法检测显著更多样品中的管家基因(图11B)(8/15对比2/15,p=0.05)。使用QIAamp RNA血液迷你试剂盒,按照生产商指南从全血直接分离RNA。
样品的稳定性和再现性
所述血液测试基于鉴定收集在EDTA管的1mL全血中的GEP-NEN分子签名。确定所述基因签名在冷冻前稳定至多四小时(放血后冷藏于4-8℃)(图13)。空腹/进食无影响。分析组间再现性(相同样品于不同日期处理)范围为98.8-99.6%,而组内再现性为99.1-99.6%。
这些研究鉴定所述基因签名具有高再现性(约99%),冷藏稳定至多四小时(冷冻前),并且不受空腹/进食影响。
实时PCR
如上所述获自血浆、棕黄层和全血的总RNA用高容量cDNA库试剂盒(加利福尼亚州福斯特城的应用生物系统公司(ABI))按照生产商建议的方案进行逆转录。简言之,使内含2微克总RNA的50微升水与含有逆转录缓冲液、脱氧核苷酸三磷酸盐溶液、随机引物和Multiscribe逆转录酶的50uL2XRT混合液混合。所述RT反应按以下条件在热循环仪中进行:25℃10分钟,然后37℃120分钟,如以下文献所述:Kidd M等,“The role of genetic markers--NAP1L1,MAGE-D2,and MTA1--in definingsmall-intestinal carcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。按照生产商的建议使用Assays-on-DemandTM产品和ABI7900序列检测系统检测所述标志物基因的转录物水平(参见Kidd M,Eick G,Shapiro MD等.Microsatellite instability and genemutations in transforming growth factor-beta type II receptor are absent in small bowelcarcinoid tumors(小肠类癌瘤中缺乏转化生长因子-βII型受体内的微卫星不稳定性和基因突变).Cancer2005;103(2):229-36)。
使用
Figure BDA0000406202150001031
通用PCR预混方案在标准条件下进行循环。简言之,使内含互补DNA的7.2uL水与0.8uL的20·Assays-on-Demand引物和探针混合液及8uL2XTaqMan通用预混液在384孔光学反应板上混合。使用以下PCR条件:50℃2分钟,然后95℃10分钟,随后是50个循环的95℃15分钟和60℃1分钟,如以下文献所述:Kidd M等,“The role of genetic markers--NAP1L1,MAGE-D2,and MTA1--in definingsmall-intestinal carcinoid neoplasia(遗传标志物NAP1L1、MAGE-D2和MTA1在确定小肠类癌瘤形成中的作用)”Ann Surg Oncol2006;13(2):253-62)。原始ΔCT(ΔCT=循环时间随扩增的变化)使用geNorm(参见Vandesompele J,De Preter K,Pattyn F等,Accurate normalization of real-time quantitative RT-PCR data by geometric averagingof multiple internal control genes(通过多重内部对照基因的几何平均使实时定量RT-PCR数据准确标准化).Genome Biol2002;3(7):RESEARCH0034)以及管家基因ALG9、TFCP2和ZNF410的表达进行标准化。参见Kidd M等,“GeneChip,geNorm,andgastrointestinal tumors:novel reference genes for real-time PCR(基因芯片、geNorm和胃肠肿瘤:用于实时PCR的新参照基因)”Physiol Genomics2007;30(3):363-70。将标准化数据进行自然对数(ln)转换以供压缩。使用ALG-9作为管家基因,检测其表达并用于使GEP-NEN生物标志物表达数据标准化。
为了统计学分析,全部计算使用R2.9语言进行以供统计学计算。参见R开发核心团队.R:A language and environment for statistical computing(一种用于统计学计算的语言和环境)奥地利维也纳:统计学计算的R基础,2008。GraphPad(Prizm4)和SPSS16.0通过接受者操作特征(ROC)曲线、费歇尔精确检验和/或ANOVA用于全部统计学分析,使用双尾检验,p<0.05时认为是显著的。
实施例5B:管家基因的检测和全血中的检测
在使用上述
Figure BDA0000406202150001041
法从五个健康供者的棕黄层分离的mRNA中测定三(3)种管家基因(ALG9、TFCP2和ZNF410)的转录物表达水平。检测全部三种基因,ΔCT水平为30-35。示例性引物对的序列和信息列于表1A和1B。
在制备自三个健康供者的全血(正常样品)的mRNA中评价相同的三种管家基因和11种GEP-NEN生物标志物基因的转录物表达水平。对于该过程,分离mRNA,合成cDNA,然后由不同的人在不同日期使用不同日期独立制备的试剂在分开的板上进行PCR。样品间的所测基因表达水平高度相关(图11C;R>0.99,p<0.0001)。
通过实时PCR对使用
Figure BDA0000406202150001042
从来自五个健康供者的全血样品分离的mRNA检测5种管家基因(18S、ALG9、GAPDH、TFCP2和ZNF410)的表达。引物对列于表1A和1B。在该研究中,ALG9表达在样品间变化最小(变异系数=1.6%)(图13A)。在进食后三十分钟间隔之前或当时通过实时PCR对从五个健康对照患者的全血分离的RNA测定ALG9转录物水平。所述结果显示,ALG9的表达水平在进食后至多4小时无显著变化(通过nANOVA:p>0.05确定)(图13B)。这些结果证明,按照所提供的方法检测基因产物生成恒定结果且可用于比较在不同日期由不同研究者获得并制备的患者样品数据。
管家基因的描述
为了鉴定用于标准化的最有用管家基因,测试候选标志物(n=19)组,所述组包含鉴定自GEP-NEN组织的标志物(n=9)以及通过GEP-NEN血液转录组筛选的标志物(n=10)。为了选择“管家基因”标志物,使用以下多种标准:对血液相互作用组(7,000个基因,50,000相互作用)_ENREF_3作图时的拓扑学重要性、实时PCR后的稳定性(M值)以及血液中的转录功效。此外,检测所述靶基因和所述管家基因之间的功效存在。该相关性支持用于计算的基于相对定量的算法。所述分析中包括的19种基因为组织源性:18S、GAPDH、ALG9、SLC25A3、VAPA、TXNIP、ADD3、DAZAP2、ACTG1,以及血液微阵列源性:ACTB、ACTG4B、ARF1、HUWE1、MORF4L1RHOA、SERP1、SKP1、TPT1和TOX4。被认为是合适管家基因的靶标显示>3个特性。
血液微阵列中的拓扑重要性
测试三种拓扑特征:“度”=各基因中的连接数量;“介数”=基因在信号转导中的重要性,以及“聚类”=可使基因邻居相互连接的聚类系数或程度。高“度”指示许多连接/基因,高“介数”指示在所述相互作用组内的信息流动中有更重要作用,而“高”聚类系数指有更多基因邻居彼此连接。最合适基因就度、介数和聚类而言会具有低值。满足全部这些特点的基因包括ACTB、TOX4、TPT1和TXNIP(图14A-C)。基因顺序如下:
TXNIP=ACTB=TOX4=TPT1>ALG9=ARF1>GAPDH>DAZAP2>VAPA=ATG4B=HWE1=MORF4L1=RHOA=SERP1>ADD3。
变异性(变异系数和M值)
使用两种方法评估管家基因表达中的变化,通过geNorm先检测变异性再检测稳健性(所述“M”值)。检测原始CT值的变异性(图15)以及表达是否通过达戈斯提诺(D’Agostino)和皮尔森正态性检验(表9)。
表9.候选管家基因和表达正态性
Figure BDA0000406202150001061
CV=变异系数,DP=达戈斯提诺和皮尔森综合正态性检验。N=非正态分布,Y=通过正态性检验。
变异性分析确定,ALG9、ARF1、ATG4B、RHDA和SKP1是最小差异基因。图16中指示由geNorm选择的显示样品间最小变化(因而最大稳定性或稳健性表达)的基因。“M”值是基因稳定性的度量,并且被定义为特定基因与全部其它潜在参照基因的平均成对变化。最稳定基因包括:ALG9、ACTB、ARF1、ATG4B、HUWE4、MORF4L1、RHDA、SKP1、TPT1和TOX4。
PCR效率
检测PCR效率以评价哪个候选管家基因满足适当扩增标准。这通过在两个独立样品中使用标准曲线来实行(稀释:2000-0.01ng/ul)。所述PCR效率用Fink等式计算:
效率=10^(-1/斜率)-1
分析确定18S和ALG9是最有效转录的组织源性基因,而TPT1是最有效转录的血液源性候选管家基因(图17)。
相较于靶基因的扩增功效
最后检测所述靶标和参照基因的扩增动力学的相似性。这是任何合适PCR扩增方案的必要先决条件,否则定量算法中需要关联因子以处理过度估计的表达计算。这同样对任何比较CT法(例如ΔΔCT)重要,尤其是来自原始数据的估计比标准曲线的估计更加准确。
总而言之,若系列稀释间的靶标-参照基因的CT差异<0.1,则管家基因被认为是合适的。经确定与靶标基因共有相似PCR功效的一个管家基因是ALG9(图18)。
血液微阵列源性的候选管家基因无一显示作为管家基因所必需的合适特征。相反,显示低变异性(M值和DP检验)、合适拓扑特征的ALG9(组织源性候选管家基因)有效转录,并与感兴趣的靶标基因共有相似扩增特性。因此,选择该基因作为合适的管家基因以使循环肿瘤转录物标准化。
靶标标准化
有两种主要方法使靶标基因表达标准化:绝对和相对定量。所述前者需要标准曲线(并因此消耗平面空间),更加耗费劳力且比基于原始CT值的方案准确度低。该研究集中在相对定量方法。已开发许多算法用于相对定量,包括Gentle模型、Pfaffl模型、基于扩增图的模型、Q-Gene和geNorm。所述方法的主体包括估计PCR效率差异,使用多种管家(例如,geNorm)的机制,或可仅从市售获得(例如,来自Biogazelle公司的qBasePLUS)。易于使用且不需要估计因子的一种方法是ΔΔCT方案。这是以实验和校准器样品间的相对差异倍数计算基因表达变化的数学模型。其取决于所述管家和靶标基因的相似扩增效率(就ALG9鉴定的特征),需要小PCR产物的扩增(<150bprs-应用生物系统公司(Applied Biosystems)Taqman的特点)和经优化的PCR方法(例如,已建立起始靶标的浓度)。选择所述ΔΔCT法使所述外周血中的51种候选基因标准化。比较该方法(使用ALG9的ΔΔCT标准化)和geNorm(使用18S、ALG9和GAPDH的标准化)时,证明了该方法的有用性(图19)。
采用ALG9标准化后,使用ΔΔCT法的对照样品中靶标基因表达变化显著较低(p<0.004对比geNorm),而多数靶标显示正常分布(62%对比0%,达戈斯提诺和皮尔森综合正态性检验)。已显示ΔΔCT法(采用ALG9)使GEP-NEN肿瘤组织中的靶标表达成功标准化。确定使用ALG9作为管家基因的的ΔΔCT法是用于所述51种候选GEP-NEN标志物基因的最合适标准化方法。因此,选择该方法来描述血液样品中的转录物表达谱。
候选肿瘤标志物基因的鉴定
为鉴定可能的标志物基因,基于组织和基于血液的组织微阵列皆以GEP-NEN样品为资源以检测候选标志物基因。通过应用和开发多种生物数学算法来优化基因选择。
起初,分析GEP-NEN(获自小肠)转录组并将该转录组与正常小肠黏膜(U133A芯片,n=8个肿瘤和n=4个对照)作比较。使用dCHIP(倍数变化下界≥1.2倍,不配对t检验以及基于皮尔森相关的层次聚类)鉴定肿瘤样品中的1,451个上调基因。基于上调水平(>3倍,例如NAP1L1)、已知的生物过程(增殖,例如Ki67;存活,例如生存素)和临床意义(例如,抑生长素受体表达,CgA)选择32个候选标志物。在分开的研究中,确认肿瘤组织中九种所述候选标志物的基于PCR的表达具有GEP-NEN恶性预测性。在该研究中,进一步检测所述32种候选基因,而17种包括在最终基因组中。
作为第二策略,使用两个肿瘤组织微阵列数据集(HUGE和U133A,总共n=30个肿瘤和n=10个对照),并比较GEP-NEN(获自小肠位点)和其它肿瘤(乳腺癌、结肠癌、前列腺癌和肝癌)(来自公开可用的数据库)。还评估来自克罗恩氏病的小肠材料(已知该疾病扰乱局部神经内分泌细胞活性并与SI-NEN风险相关)以进一步描述总体GEP-NEN基因前景并帮助确定候选标志物。为了评估所涉及基因的关系,构建基因共表达网络的图示理论分析。该方法确定所述“GEP-NEN”基因网络(由整合两个平台U133A和HUGE生成)由6,244个基因和46,948个连接组成。该基因网络高度模块化(即,基因趋于组织成相互连接的集体),并因而包含功能上相关的基因(由于其出现在共同集体中)。无偏差集体检测算法确定各含>20个基因的20个集体(相关基因的集合)。用于生物过程的各基因集体富集确定的术语包括‘氧化还原’(簇1/2),‘免疫响应’(簇5)以及‘细胞周期’(簇18)。确定所述GEP-NEN网络在拓扑学上区别其它常见癌(但共有相似性)对克罗恩氏病是重要的(图20A)。所述后者可反映克罗恩氏病中神经内分泌细胞的已知增殖。
所述拓扑学区别反映相互作用组中各基因的独特的连通性模式,所述相互作用组提供基因组或基因相互作用可具有肿瘤(GEP-NEN)特异性的信息。所述肿瘤特异性签名通过从所述GEP-NEN基因网络排除乳腺癌、结肠癌、前列腺癌和肝癌基因网络中发现的基因-基因相互作用来生成。所得GEP-NEN特异性签名产生124个基因和150个相互作用(图20B)。
使这些124个GEp-NEN特异性基因回到所述U133A基于组织的微阵列上作图确定41个基因差异表达,其中21个上调(图20C)且可以区分GEP-NEN和对照(图20D)。进一步检测这21个上调基因,并将12个包括在最终的基因组中。
作为第三个策略,检测循环GEP-NEN转录组以鉴定额外的候选标志物。就这些研究而言,比较外周血转录组(n=7个对照,n=7个GEP-NEN)和“内部(In-house)”组织阵列(n=3个对照,n=9个GEP-NEN[来自小肠])和一个来自ArrayExpress数据库的公开阵列(登录号:E-TABM-389:n=6个对照,n=3个原发性中肠NEN,和n=3个GEP-NEN转移[MET])。
清楚地区分肿瘤样本和对照(图21A-C)并且鉴定各组差异表达的基因:血液(n=2,354),“内部”(n=1,976)和公开数据集(n=4,353)(图21D-F)。
如同预期,所述“内部”和公开组织数据集的基因表达变化高度相关(R=0.59,图22A)。而血液和“内部”及公开数据集之间的相关性低(R分别=-0.11和-0.05)(图22A,B),483个显著变化基因中有157个(33%)(“内部”/血液)是正相关的,947个显著变化的基因中有423个(45%)(公开/血液)是正相关的。
总体而言,在所述血液、“内部”和公开数据集之间,有85个基因在血液和组织中相关,而196个基因逆相关或反相关(图23A)。所述相关的基因编码诸如细胞内信号转导、细胞死亡和转录调控等过程(图23B)而所述反相关基因编码诸如端粒维持、神经管发育和蛋白复合物组装等过程(图23C)。
所述85个一致表达基因中的39个(46%)在血液和组织中上调,而46个转录物下调。所述上调基因的分析确定22个有0-3个直接同源物并且以>3倍的水平表达。这些基因与血液相互作用组的整合证实它们是高度相互连接的(所述相互作用组中处于更中心位置),证明了其在GEP-NEN背景下的“假定”生物相关性(图24)。
这些方法包括肿瘤组织和循环外周血转录物的分析和整合,使鉴定与GEP-NEN相关联的75种候选标志物基因的组成为可能。然后,研究外周血样品中这些基因鉴定GEP-NEN的效果。
循环GEP-NEN指纹(51个标志物基因的组)
为了建立可用标志物的组,检测分离自77个血液样品(对照:n=49;GEP-NEN:n=28)的mRNA中75种候选标志物各自的转录物水平。开发2步法(RNA分离,cDNA生成和PCR),因为其比1步法更加准确。2步法的再现性高(皮尔森相关>0.97;所述2步法的相关性为0.987-0.996)。在初步研究中,从血液样品分离mRNA的优选方法是所述迷你血液试剂盒(恰根公司(Qiagen):RNA质量>1.8A260:280比率,RIN>5.0,适合PCR应用 37 ),cDNA使用高容量逆转录酶试剂盒(应用生物系统公司(AppliedBiosystems):cDNA产量2000-2500ng/ul)生成。实时PCR一贯使用200ng/ul的cDNA在HT-7900仪器上使用384孔板和16ul试剂/孔(快速通用PCR预混试剂,应用生物系统公司)来进行。PCR检测极限定为40循环(200ng/ul cDNA在95.3±0.2%例中阳性扩增)。将循环数增加至45-50个循环确定了在<1%的目标样品中阳性表达;使用CT截止为40计算的假阴性率为0.8%。该循环数比公认的用于白血病检测的欧洲法更加严谨,但与其它基于PCR的检测方法一致。引物是跨度使基因组DNA扩增最小化的外显子,所述引物<150bprs。使用市售可得的应用生物系统公司引物(5’-核酸酶测定)。RNA分离、cDNA合成和实时PCR的一致性参数提供靶标基因和管家基因分析的稳定平台。
所述75种候选标志物中的51种被鉴定为产生血液中可检测的产物(CT<40循环)。该51种基因的组包括:AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3。这51种标志物基因中的十三种先前已与GEP-NEN相关联(之前研究的或其它的那些)。
确定了可能有用的标志物基因组之后,检测GEP-NEN转录组资源以鉴定优选的管家基因并确定用于使所得数据标准化的优选方法。确定合适的管家基因并应用标准化方法将促进所述51种候选转录物的各自定量,并检测其是否代表GEP-NEN标志物基因组。
实施例5C:全血中循环GEP-NEN细胞和生物标志物表达的检测
使用实时PCR、流式细胞术和荧光活化细胞分选(FACS)-分选,鉴定CD164为可检测全血中循环GEP-NEN细胞的标志物。通过实时PCR检测CD164转录物表达水平证明,该生物标志物相较于正常EC细胞和白细胞在GEP-NEN患者样品(29/29个GEP-NEN细胞和4个GEP-NEN细胞系)中恒定高表达(300-10,000x),证明可以使用CD164作为鉴定人样品(例如,全血)中GEP-NEN细胞的生物标志物。
对获自10位GEP-NEN患者和十个年龄和性别匹配对照的全血样品进行多参数流式细胞术分析。GEP-NEN细胞大小的细胞群(图25A)对吖啶橙(AO)-PE-CY7呈双阳性,并且在GEP-NEN样品中检测到CD164-APC,但在正常对照样品中无CD164-APC(图25B)。收集这些细胞并对其就TPH表达进行免疫染色,确认所述细胞为血清素阳性GEP-NEN细胞(图25C,插页)。
在采用AO和CD164双重标记之后,3-12的GEP-NEN细胞/mL血液通过FACS分选并收集。经实时PCR鉴定,上述21种GEP-NEN生物标志物(MAGE-D2、MTA1、NAP1L1、Ki67、生存素、FZD7、Kiss1、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、PNMA2、SPOCK1、HOXC6、CTGF、PTPRN2、SCG5和Tph1)的表达水平针对管家基因标准化之后相较于正常全血样品是升高的(>2倍,p<0.03),确认这些细胞是GEP-NEN肿瘤细胞。在获自六位转移疾病患者的样品中鉴定出与四位局部疾病患者相比显著较高的表达水平(3-5倍,p<0.05)。
通过对由获自12位患者的全血直接制备的RNA进行实时PCR,检测13种GEP-NEN生物标志物组的表达。为了比较,对由FACS纯化的循环血液GEP-NEN细胞(如上所述)和12位来自相同研究患者的肿瘤黏膜纯化的RNA平行进行PCR。全血中测得的所述生物标志物转录物的表达水平与纯化的循环GEP-NEN细胞(R2=0.6,p<0.0001)(图26A)和肿瘤组织(R2=0.81,p<0.0001)(图26B)中测得的水平高度相关。
这些结果证实,血液中存在循环GEP-NEN细胞(CNC),并且可使用从全血和其它血液样品制备的RNA通过PCR来检测,以供采用本文所提供方法和组合物的检测、分期、预后和预测。
实施例5D:使用全血样品的GEP-NEN生物标志物表达的检测和统计学分析
通过上述实时PCR,对来自3组人样品的全血样品测定单独生物标志物转录物(VMAT2、NAP1L1和PNMA2)的表达水平,以及十三(13)种GEP-NEN生物标志物(APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT2)组的叠加表达水平,所述样品分别获自:1)来自耶鲁纽黑文医院的训练组,包括55位GEP-NEN患者(所有参加者,包括患有高水平疾病和那些被认为无疾病的患者)和47位对照患者,2)来自柏林的独立测试组(n=144(n=120个患者,n=24个对照))以及3)来自乌普萨拉的独立测试组(n=34(n=20个患者;n=14个对照)))。所述引物对序列和关于引物的其它信息列于表1A和1B。
为了便于呈现,所述13种生物标志物转录物的经检测表达水平进行向量迭加(>+1=Σ过表达基因;>-1=Σ表达减少的基因)并作图。
使用ROC曲线策略来鉴定组(1)样品中的GEP-NEN。结果显示,GEP-NEN患者样品中,所述三种单独生物标志物转录物的曲线下区域(AUC)范围为0.66-0.90(0.92为叠加的转录物(V1:p<0.0001))(图27,显示各自的ROC)。使用所述叠加的转录物表达水平来测定GEP-NEN疾病的敏感度、特异度、阳性预测值和阴性预测值分别为96.1%、90.2%、83.3%和97.9%。在两个独立测试集(2)和(3)中测试预测截止值的应用。V1的敏感度和特异度范围为95-97%和81-87%。还观察到性别与血液中所测的转录物表达(曼-惠特尼(Mann Whitney)分数=0.11,p=0.19)水平不相关。在-80℃贮存对所测13种生物标志物的转录物表达水平无显著影响(R=0.987-0.996,p<0.0001)。
在29个对照和患者样品(耶鲁和柏林)中检测管家基因和叠加的GEP-NEN生物标志物转录物水平,所述检测在不同日期于两个分开的PCR运行中进行。当在不同日期检测时,所述ALG9管家基因和所述FZD7GEP-NEN标志物的表达各自高度相关:两个分开运行中R2:0.92-0.97,p<0.0001(图28A-B)且在不同日期的对照和肿瘤样品中的标准化FZD7之间没有出现显著差异(图28C-D)。FDZ7的组内和组间检测的再现性高(C.V.=2.28-3.95%),证明靶标基因的血液检测是高度可重复的。所述结果对获自全血的RNA使用实时PCR检测来证明管家基因和GEP-NEN生物标志物的组内和组间再现性。
这些数据证明,检测全血中的GEP-NEN生物标志物转录物表达水平可用于鉴定循环GEP-NEN细胞(CNC),全血中的所测表达水平与组织表达水平良好相关,并且能以高敏感度和特异度鉴定GEP-NEN患者,并且具有高再现性。
实施例5E:病灶和治疗反应的检测
为了评价所述51种标志物基因的组作为循环GEP-NEN签名以检测这些病灶和治疗反应的技术的效用,建立含130个样品(对照:n=67,GEP-NEN:n=63[未治疗疾病,n=28,经治疗的,n=35])的测试集。对全部标志物进行PCR,并针对ALG9进行值的标准化(ΔΔCT),使用所述对照组作为群对照(校准样品)。用于鉴定所述标志物组的效用的工作流包括标准化(ANOVA鉴定在全部3个集内,51个基因中的39个差异表达)和基于支持机(support-machine)的基因表达数学评估。
使用所述四种算法,确定88%的平均正确检出率(图29),而所述性能指标包括在表10内。区分正常样品和GEP-NEN(治疗的和未治疗的)分子测试数据如下:总体敏感度(94.0%),特异度(85.7%),阳性预测值(PPV)(87.5%)和阴性预测值(NPV)(93.1%)。
表10.区分正常样品和GEP-NEN的性能评价
正常(真) GEP-NENs(真)
正常(预测的) 63 9
GEP-NENs(预测的) 4 54
使用相同基因组,测定经治疗和未治疗的GEP-NEN可采用以下性能指标(表11)来区分:敏感度=85.7%,特异度=85.7%,PPV=88.2%和NPV=82.8%。
表11.区分经治疗GEP-NEN和未治疗GEP-NEN的性能评价
经治疗的GEP-NEN(真) 未治疗的GEP-NEN(真)
经治疗的GEP-NEN(预测) 30 4
未治疗的GEP-NEN(预测) 5 24
就作为区分NEN和对照的测试的总体性能而言,其检出率为94%,而鉴定经治疗样品的能力为85%。
这些结果说明能够分析51种候选标志物(作为组)的表达的模式识别方案具有区分“正常”或“GEP-NEN”的效用。这证实,方法(例如,用于肿瘤组织的SVM)可应用于外周血转录物分析和神经内分泌肿瘤疾病的鉴定。
实施例5F:作为GEP-NEN预测器的分子指纹的评价
在四个独立数据集中检测所述51种标志物基因的组作为潜在测试的功效以确定其是否正确鉴定GEP-NEN和对照。建立四个独立集:独立集1包括35个GEP-NEN和36个对照;独立集2包括33个GEP-NEN和31个对照;独立集3包括47个GEP-NEN和24个对照;以及独立集4包括89个GEP-NEN和零个对照。
评估所述四种算法:SVM、LDA、KNN和贝叶斯在测定各独立集内的血液样品是GEP-NEN或是对照的效用。表中所列的结果鉴定整体正确检出率(正确鉴定GEP-NEN和对照)的范围是56-68%(独立集1)、53-78%(集2)、82-92%(集3)和48-74%(集4)(表12)。就SVM、LDA和贝叶斯而言全部集的平均率为67-69%;KNN分数较高:73%。
表12.各算法在各独立集内的整体检出率(百分数)
SVM LDA KNN 贝叶斯
集1 56 57 68 59
集2 78 77 70 53
集3 90 92 89 82
集4 48 48 65 74
平均(%) 68 69 73 67
所述判定的其它分析鉴定所述正确检出率是否响应鉴定对照或肿瘤样品13)。就对照而言最一致的正确检出是SVM(90%总体)和LDA(91%)算法。GEP-NEN而言最高的正确检出率由贝叶斯算法鉴定(85%)。
表13.各独立集内针对各组、对照或GEP-NEN的检出率(百分数)
Figure BDA0000406202150001141
NA=不适用(在该集内不包括对照)
计算各算法在所述3个独立集内的敏感度、特异度、阳性预测值和阴性预测值,示于表14。
表14.各算法在各独立集内的性能指标
Figure BDA0000406202150001151
A=敏感度,B=特异度,C=阳性预测值,D=阴性预测值。集4无对照。
所述贝叶斯算法就检测GEP-NEN而言性能最好(敏感度=83%),而所述SVM算法就检测对照而言性能最好(特异度=96%)。贝叶斯的弱点是假阳性高;SVM的弱点是其在显示大部分良好治疗(完全缓解/稳定疾病)样品的样品集内执行不充分。
就作为区分NEN和对照的测试的总体性能而言,算法SVM、LDA和KNN具有约90%的阳性预测值和70%的阴性预测值。
实施例5G:用于GEP-NEN鉴定的51个标志物基因的组
为了证实所述51个标志物基因的组是有效的,将所述组的正确检出率与各独立集作比较(表12),并将其与13个标志物和25个标志物的亚集作比较。所述13个标志物亚集限于经证实对组织中GEP-NEN恶性具预测性的基因;所述25个标志物组包括这些基因以及额外12个图20D中鉴定的GEP-NEN特异性基因。检测所述4个独立集各自的正确检出,鉴定所述51个标志物组的表现显著优于所述13或25个标志物组(图30)。
这些结果说明,基于该51个候选标志物基因的许多模式识别方案能够以高效率和敏感度区分对照样品和GEP-NEN。
实施例5H:检测全血中GEP-NEN生物标志物表达水平以评价治疗响应性和转 移预测性(与CgA比较)
在治疗介入(切除和长效奥曲肽)之前和之后检测全血中加和的GEP-NEN生物标志物转录物表达水平(13个生物标志物组),证明所提供方法和系统的实施方式的临床效用。此外,与CgA单独表达检测的比较证明所提供的方法在GEP-NEN检测、风险测定和治疗反应监测中的敏感度有所改善。CgA是60-80%的GEP NEN中存在的SI GEP-NEN标志物,如以下文献所述:Modlin IM等,Chromogranin A-BiologicalFunction and Clinical Utility in Neuro Endocrine Tumor Disease(嗜铬粒蛋白A-神经内分泌肿瘤疾病中的生物功能和临床效用),Ann Surg Oncol.2010年9月;17(9):2427-43.Epub2010年3月9日。
在手术介入后检测GEP-NEN生物标志物
九位患者接受了小肠和肝转移切除(使得肿瘤体积减少大约90%)。如上所述对从全血样品制备的(所述样品在手术前1天和手术后两周获取)样品使用实时PCR来测定所述13个叠加的GEP-NEN生物标志物转录物(APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT2)的表达水平。
所得结果示于图31(水平短线表示手术之前和之后的平均表达水平)。手术后两周,GEP-NEN生物标志物水平的加和表达水平(如上所述)显著减少(从手术前的平均84至手术后的平均19,减少大于75%,p<0.02)(图31A)。如图31B所示,单独CgA表达水平的检测没有显示显著减少(平均表达减少20%)。
这些结果证明,用所提供的方法和系统检测的生物标志物表达水平准确反映肿瘤去除,并且可用于评价手术介入的反应性和功效。
抑生长素类似物(Sandostatin (醋酸奥曲肽注射液))药物治疗后的 GEP-NEN生物标志物检测
还在采用抑生长素类似物Sandostatin
Figure BDA0000406202150001162
(醋酸奥曲肽注射液)治疗之前、治疗一个月后和两个月后通过实时PCR在八个患者样品中检测所述十三种生物标志物的加和表达水平(如上所述)。所得结果示于图32。
结果显示持续治疗一个月之后,加和的生物标志物转录物的表达显著(p=0.017)减少。持续治疗六个月之后,转录物水平又额外减少50%(p=0.06对比1个月),并且在正常范围内(图32A)。相反,
Figure BDA0000406202150001163
治疗后一个月没有观察到CgA单独表达水平的显著变化(图32B);此研究中所测CgA单独表达水平仅在6个月的时间点有所减少。这些结果显示,就手术介入而言,所提供的用于生物标志物检测的系统和方法能够用于监测治疗,相较于单一GEP-NEN生物标志物(例如,CgA)的单独检测提供了更高的敏感度。
少量微转移的早期检测和个体患者内治疗功效的评价
监测所述加和的13个GEP-NEN生物标志物表达水平(如上所述)来评价两位个体患者内的治疗功效和预测风险,所述患者分别用冷冻消融和肝转移切除处理。
患者SK(63岁男性,患有转移性小肠(SI)GEP-NEN),经立体定位放射术(SRS)/计算机断层成像(CT)评价为正常,并认为是无疾病的。如上所述使用实时PCR评价全血中转录物的加和表达。示于图33的结果显示CgA的表达水平正常。相反,所述13个GEP-NEN生物标志物组(APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT2)组的加和表达水平(“PCR(+)”)升高(图33)。基于该信息,所述患者在瑞典经历11C-PET-CT,证明他有约0.5cm的肝转移。随后,该患者经历了冷冻消融,其释放GEP-NEN组织进入血液,诱导了症状,如以下文献所述:Mazzaglia PJ等,“radiofrequency ablation of neuroendocrineliver metastases:a10-year experience evaluating predictors of survival(神经内分泌肝转移的腹腔镜射频消融:评价存活预测器的10年经验)”Surgery2007;142(1):10-9。
冷冻消融后,通过对全血制备的RNA进行实时PCR来每月监测表达水平,持续六个月。所得结果证明,冷冻消融后,所述生物标志物组的表达水平升高,但单独CgA无升高。在冷冻消融后的四个月-五个月,鉴定了骨微转移;PCR证明这些微转移的出现与升高的GEP-NEN生物标志物组转录物表达水平相关;CgA单独表达检测为正常。在
Figure BDA0000406202150001171
治疗之后(该治疗阻断GEP-NEN细胞的分泌和增殖),血液中生物标志物组的表达水平测定为标准化(实时PCR)。
该研究证明,通过所提供的方法检测GEP-NEN生物标志物组可准确地反映急性GEP-NEN相关事件,证明在预后和预测分析以及治疗功效的评价、复发或早期疾病的检测中,特别是在疾病限于稀有微转移时,所提供的用于检测GEP-NEN生物标志物的方法(例如,相较于现有生物标志物即单独CgA的检测)和系统具有改善的敏感度。
患者BG(69岁女性,患有转移性小肠GEP-NEN,级别T2N1M1)经历小肠和肝转移的手术切除,随后采用奥曲肽
Figure BDA0000406202150001172
治疗9个月。在手术前,手术后两周以及每月一次持续十二个月,如上所述通过对全血样品进行实时PCR来监测CgA和所述13-GEP-NEN生物标志物的表达水平(“PCR(+)”)。治疗十二个月后全部症状得到解决。如图34所示,CgA单独表达水平的检测显示惊人的波动,与治疗或症状减少不相关。相反,生物标志物组的表达水平(“PCR(+)”)在手术肿瘤切除后两周检测为显著减少,且在
Figure BDA0000406202150001173
治疗后显著减少,持续减少至十二个月(在该时间点,全部症状保持在消除状态)。
该研究证明,通过所提供的方法检测GEP-NEN生物标志物组能敏感地反映疾病严重性和治疗反应,提供了优于现有生物标志物检测方法的改善。所提供的方法和系统可用于监测治疗反应和复发,并能以高保真度检测GEP-NEN疾病的存在(图33)和不存在(图34)。这些结果证明,所提供的血液中生物标志物的检测提供额外的诊断和治疗价值,例如,作为治疗功效的替代标志物以监测手术(去除肿瘤)或靶向医学治疗的效果(肿瘤分泌/增殖的抑制)。参见Arnold R等,“Placebo-controlled,double-blind,prospective,randomized study of the effect of octreotide LAR in thecontrol of tumor growth in patients with metastatic neuroendocrine midgut tumors:Areport from the PROMID study group(患有转移性神经内分泌中肠肿瘤的患者内控制肿瘤生长的奥曲肽LAR的安慰剂控制、双盲、前瞻性、随机研究:来自PROMID研究组的报告)”ASCO2009,胃肠道癌症研讨会(Gastrointestinal Cancers Symposium),摘要号121.2009。
实施例6:分子指纹作为治疗功效指示器的评价
在所述四个独立数据集中检测该51个标志物基因的组作为潜在测试的功效以确定其是否能区分治疗反应性肿瘤(临床上分类为完全缓解或显示稳定疾病的那些)和未经处理的肿瘤(初次接受治疗)或非反应性(临床上分类为“进行性”)肿瘤。此外,评价所述51个标志物基因组的13个标志物亚集以确定其是否可用于提供关于治疗反应的额外信息,特别是其是否能够提供关于进行性、未治疗疾病相较于稳定疾病的更特异性信息。
独立集1包括35个GEP-NEN。所有患者可获得全部临床细节;所述样品中的33个被认为完全缓解或具有稳定疾病。60%的样品处于治疗中(主要LAR:96%)。
独立集2包括32个GEP-NEN。所有患者可获得全部临床细节;所述样品中的28个被认为完全缓解或具有稳定疾病。84%的样品处于治疗中(LAR:约40%,手术约25%)。
独立集3包括47个NEN。所有患者可获得全部临床细节;所述样品中的30个被认为完全缓解或具有稳定疾病。56%的样品处于治疗中(LAR:约75%)。
独立集4包括89个GEP-NEN。所有患者可获得全部临床细节;所述样品中的71个被认为完全缓解或具有稳定疾病。46%的样品处于治疗中(主要LAR:85%)。
评估所述四种算法:SVM、LDA、KNN和贝叶斯在确定血液样品是否与“经处理的”表型(临床反应性/稳定疾病)相关联或可鉴定未经处理的/进行性疾病中的效用。判定为“正常”或“经处理的”肿瘤样品视作显示“经处理的”或临床反应性“应答者”表型。那些视作“未经处理的”的被分类为无反应(或“非应答者”)。检测所述算法作为一组(“表决”算法)的效用和并包括来自四种算法中最佳三种的正确检出率。
表中所列的结果指示,整体正确检出率(鉴定合适的经治疗样品和无反应样品)是73-94%(独立集1)、81-89%(集2)、82-94%(集3)和72-94%(集4)(表15)。所述各算法的平均率是83-88%。最佳的“四中之三”组合产生相似(88%)正确检出率。
表15.各算法在各独立集内的整体检出率(%)
SVM LDA KNN 贝叶斯 4种中最佳的3种
集1 89 89 94 94 94
集2 88 88 88 88 88
集3 83 85 89 72 88
集4 73 81 82 82 82
AVE(%) 83 86 88 84 88
所述判定的其它分析确定所述正确检出率是否与临床反应性患者或对治疗无反应的那些个体样品的鉴定相关联(表16)。
表16.各独立集中针对各组、临床响应性或无响应的检出率(%)
Figure BDA0000406202150001191
*=从分析中排出,因为这两个集内各自仅有两个或四个患者被分类为“无响应”。
就“响应”而言,采用KNN算法确定最一致的正确检出(约97%)。就“无响应”而言,最高正确检出率为SVM和LDA算法(约80%)。
计算各算法在所述3个独立集内的敏感度、特异度、阳性预测值和阴性预测值,示于表17。
表17.各算法在各独立集内的性能指标
Figure BDA0000406202150001201
SENS=敏感度,SPEC=特异度,PPV=阳性预测值,NPV=阴性预测值,*空值(无法计算)
SVM、LDA和KNN算法在用于检测被认为完全缓解或显示稳定疾病的患者时表现最佳(敏感度=93-95%)。SVM算法也是检测患有未经处理或进行性疾病个体的最敏感算法(80%)。所述最佳的“4种中3种”组合在测定缓解/疾病稳定性中获得平均99%的正确检出率,在检测未经处理或进行性疾病中获得75%的正确检出率。
区分治疗反应性样品和被分类为无响应的那些的最佳算法是LDA和KNN,其PPV为约98%且NPV为约92%。
此后,检测临床描述与基于PCR的得分的关联。为描述个体组,使用以下描述符:
“完全缓解”=所有研究呈阴性;
“手术后稳定疾病”=研究异常但系列评价中无变化;以及
“手术+LAR后稳定疾病”=研究异常但系列评价中无变化。
由临床标准(检测、生物化学、扫描)分析作为一组的4个独立集的全部经处理样品鉴定:
1)认为患者完全缓解(即,通过该算法正确鉴定100%病例的手术去除阑尾肿瘤(n=3)或半结肠切除术切除<1.5cm回盲肠交界处的NEN之后无淋巴结转移(n=8)或<2个淋巴结转移(n=2)(图35))。全部13个样品被该算法判定为“正常”。
2)认为患者疾病稳定(95%的病例(40/42)在手术去除肿瘤(半结肠切除:n=24,胃切除:n=1,阑尾切除:n=3,半结肠切除和肝切除:n=7,回肠/结肠切除:n=3,半结肠切除、肝切除和淋巴结切剖:n=2,栓塞:n=2)之后被正确判定(通过所述数学算法判定肿瘤为“经处理的”)(图35)。
3)认为患者在药物治疗后疾病稳定(在90%的病例(70/78)中正确判定长期作用的抑生长素类似物(SI-NEN=72,PNEN=13,直肠NEN=2,胃NEN=2),帕瑞肽(SI-NEN=1)或RAD001(SI-NEN=4)(图35))。
实施例7:13种标志物组基因的组的子集在评价疾病反应性中的应用
评价与未经处理的、进行性疾病高度相关的基因子集以测定其是否能用于进一步确定患者分组,以及用于提供关于治疗反应的额外信息,特别是对于正经历治疗但被认为“进行性”的患者。
所述测试集内临床样品的分析鉴定了相较于认为具有稳定疾病的那些,在未经处理的、进行性组中有13种基因选择性地过表达。这些已鉴定的基因是:AKAP8L、BRAF、CD59、COMMD9、Ki67、MORF4L2、OAZ2、RAF1、SST1、SST3、TECPR2、ZFHX3和ZXDC。在算法中包括这些基因可在所述测试集的约73%病例中产生区分稳定疾病和进展性疾病的正确检出率(图36)。
独立集1-4中该基因组的分析(作为一组;进行性疾病–无关治疗:n=26[50%的患者正经历治疗,50%的治疗停止因为被认为无法治疗];稳定疾病:n=143)鉴定对来自视作具有“进行性”疾病的患者样品的正确检出率为65%(KNN)。该组中,所述四种不同算法的敏感度、特异度、PPV和NPV分别为34-65%、96-100%、64-100%和89-94%。用于检测“进行性”疾病的最佳算法是KNN;用于检测“稳定性”疾病的最佳算法为SVM。这说明13个标志物组的子集可作为所述51个标志物组的辅助使用,尤其是用于鉴定对治疗无反应的GEP-NEN和被认为临床上“进行性”的GEP-NEN。
这些方法证明,可以通过所述51个标志物组在90-100%范围内准确确定治疗反应性为。被认为临床上具进行性并因而对治疗(例如,LAR或依维莫司)无反应的样品可在65-80%范围内鉴定。
实施例8:比较所述51-标志物基因组和血浆嗜铬粒蛋白A水平以供疾病预测
将所述基于PCR方法的效用与血浆中所测嗜铬粒蛋白A水平作比较,以供鉴定GEP-NEN以及区分经处理和未经处理的样品。
人们广泛使用CgA作为广谱NEN标志物,通常认为其水平升高是GEP-NEN的敏感性、约70-90%准确的标志物。然而,这种肽的检测是不具特异性的(10-35%特异度),因为其在其它肿瘤例如胰腺肿瘤和小细胞肺肿瘤以及前列腺癌和多种心脏病和炎性疾病、质子泵抑制剂的使用和肾衰竭中也有升高。CgA是神经内分泌细胞分泌的成分(非增殖),并因而使用其作为肿瘤生长的替代物具有明显显著的限制。一般而言,该生物标志物预测GEP-NEN的敏感度依赖于肿瘤分化的程度、肿瘤的位置和肿瘤是否具有转移性。即便CgA水平和肝肿瘤负荷间有适度关联,检测转移的低敏感度(<60%)、美国检测标准化的缺乏,以及FDA不认可CgA作为可支持的生物标志物,目前仍使用该唯一标志物“常规地”评价治疗功效(手术、肝移植、生物/化学治疗、化学-/栓塞、射频消融)。因而CgA水平被用作“金标准”的最佳现有等价物,对照该水平来评估基于PCR的测试。
对开发所述51个标志物基因的组所用的130个样品的初始测试集(对照:n=67,GEP-NEN:n=63[未经处理的疾病,n=28,经处理的疾病,n=35])使用DAKO ELISA试剂盒检测CgA的值。本领域认可所述DAKO试剂盒检测来自GEP-NEN的血浆样品中的CgA。
使用学生t检验(图37A)或非参数检验(图37B)显示在未经处理的GEP-NEN和经处理的GEP-NEN中,CgA水平皆有升高(63%,未经处理;32%,经处理)。
相较于对照,CgA鉴定GEP-NEN的功效确定74%的正确检出率(表18)。正确鉴定GEP-NEN的功效(无关治疗)较低,为约45%。
表18:CgA水平区分对照和所有GEP-NEN(经处理和未经处理)的诊断能力。
正常(真) GEP-NEN(真)
正常(预测) 65 30
GEP-NEN(预测) 2 26
该测试的性能指标为:敏感度=97%,特异度=46%,PPV=68%和NPV=93%。
DAKO使用19单位/L作为正常上限的截止值。使用该值,相较于67个对照中的1个(1.4%),56个GEP-NEN中总共有25个(45%)被认为是阳性的,性能指标为:敏感度=45%,特异度=98%,PPV=96%以及NPV=68%(图38)。对于该截止值的正确检出率为70%。
然后使用RCP转录物表达(51个标志物组)的CgA水平评价对预测提供额外值的能力。CgA水平的纳入并不能增加所述标志物基因的预测能力,反而降低功效,尤其是KNN分类器的功效(图39A-B)。推断CgA水平的纳入并不改善所述候选标志物基因组的质量。
这些结果证明,循环多重转录物分子签名(肿瘤转录物)的定量比单独循环蛋白质(CgA)的检测更敏感。所述分子指纹中,CgA检测的纳入并不提供“额外的”预测价值。
实施例9:比较所述51-标志物基因组和血浆嗜铬粒蛋白A水平以供疾病功效的 评估
将所述基于PCR方法的效用与血浆中所测CgA水平直接作比较,以供鉴定GEP-NEN以及区分经处理和未经处理的样品。分析CgA区分经处理和未经处理GEP-NEN的功效鉴定了正确检出率为66%(表19)。性能指标为:敏感度=69%,特异度=63%,PPV=67%和NPV=65%。
表19:CgA水平区分未经处理和经处理GEP-NEN样品的诊断能力
经处理的(真) 未经处理的(真)
经处理的(预测) 20 10
未经处理的(预测) 9 17
说明性情况
为了便于临床使用,基于来自所述数学算法的判定来开发打分系统。其中,“距离”分数检测未知样品到不同判定“正常”与“肿瘤”,以及“经处理的”和“未经处理的”的基因表达谱的欧氏距离。低分:0-25转换为“正常”,26-50为“肿瘤-经处理的”(或稳定的),而51-100为“肿瘤-未经处理的”。这提供医师友好型呈现,因为它清楚显示个体患者的值落在该疾病谱的何处(诊断“正常”和“肿瘤”以及临床说明“经处理的”和“未经处理的”)。这还提供以图表示治疗如何影响疾病转录物指数的机会。图40中提供了一个示例。这些项目和分数用于下文提供的个体、说明性病例。
指示病例1:附带鉴定阑尾NEN,随后发展肠系膜转移
JPP(45岁男性患有高血压并在先前切除脾[1998]),因为脓肿和穿孔接受过左半结肠切除术[12/2009]。手术时,鉴定具有淋巴侵入和扩散至中部阑尾的高分化0.8cm NEN。该肿瘤显示低增殖性:Ki67<2%且有丝分裂计数<1/10HPF。后续的MRI扫描(1/2010)鉴定了残余的肠系膜植入物,并就结肠造口闭合术采取重复手术(4/2010)。此时去除肠系膜淋巴结转移(<1cm)(Ki67<2%)。
表20
PCR分数:0-100(0-25=正常,26-50=经处理的;51-100=未经处理的疾病);诊断=正常或肿瘤,说明=经处理和未经处理。CgA值:单位/升(U/L)(DAKO ELISA)
ABNML=异常(升高的);NML=正常范围
该PCR测试在鉴定残留(未经处理)疾病方面(诊断=“肿瘤”,说明=“未经处理”,PCR分数68)和证明手术去除转移方面(诊断=“肿瘤”,说明=“经处理的”,PCR分数40)比CgA更加敏感。对于手术切除后血液PCR测试不回复至“正常”判定的鉴定说明残留转移性疾病的存在(PCR分数保持高于正常:约40)。由于所述PCR值对于“未经处理的”表型而言在2010到2011间未变化,可能是该疾病在临床上“稳定”。
指示病例2:SI-NEN,手术切除。
BA(65岁女性,冠状动脉疾病史,II型糖尿病,以及青光眼伴随贫血出现于1996和2006年。结肠镜检和CT扫描鉴定末端回肠NEN[5/2009]。她接受了右半结肠切除术(2/2010)以去除显示淋巴侵袭但无淋巴结呈阳性的1cm SI-NEN[T1N0M0]。肿瘤显示低增殖指数:Ki67=2%且有丝分裂分数<2/10HPF)。
表21
Figure BDA0000406202150001251
PCR分数:0-100(0-25=正常,26-50=经处理的;51-100=未经处理的疾病);诊断=正常或肿瘤,说明=经处理的和未经处理的。CgA值:单位/升(U/L)(DAKOELISA)
ABNML=异常(升高的);NML=正常范围
所述PCR测试鉴定小肿块,低增殖小肠NEN(诊断=“肿瘤”,说明=“未经处理的”,PCR分数61)。对于手术切除后血液PCR测试不回复至“正常”判定的鉴定说明残留疾病的存在(PCR分数26-30),提示不完全切除(非R0)。
指示病例3:转移性直肠NEN(内窥镜检查去除),全-部分肝转移,采用LAR治疗
AJ(47岁男性,附带鉴定为直肠NEN(非内窥镜检-5/2010))。随访时发现大量全-部分肝转移(CT/MRI扫描6/2010)。开始善得宁处理[7/2011]。手术切除残留疾病(原发性和直肠淋巴结转移),进行2处肝转移的去除[10/2010]。鉴定1.5cm直肠淋巴结转移),Ki67<15%。所述肝转移具有约3%的Ki67(T2N1M1)。进行后续手术[2/2011]以闭合回肠造口并去除额外的肝转移。系列MRI扫描证明肝负荷无变化。继续善得定处理。
表22
Figure BDA0000406202150001261
PCR分数:0-100(0-25=正常,26-50=经处理的;51-100=未经处理的疾病);诊断=正常或肿瘤,说明=经处理的和未经处理的。CgA值:单位/升(U/L)(DAKOELISA)
ABNML=异常(升高的);NML=正常范围
该PCR测试鉴定肝转移和来自无功能(非分泌)病灶(诊断=“肿瘤”,说明=“未经处理的”,PCR分数78)的残留疾病。就鉴定所述疾病和监测治疗反应而言,所述PCR测试比CgA更有效。该PCR测试在回复至判定“正常”上的失败与肝转移的存在相一致。所述值对“未经处理的”表型而言在2010到2011间未改变,说明该疾病是“稳定的”。这个发现(PCR分数:26-44)与现有的证明稳定非进行性疾病的成像法相一致。
指示病例4:转移性SI-NEN,全-部分肝转移,采用半结肠切除术、淋巴结剖 切和肝切除以及LAR治疗
BG(71岁女性,最初经鉴定患有肝结节和约4cm的肠系膜肿块(由奥曲肽扫描为阳性)证实有高分化神经内分泌癌(通过肝活检)[9/2008])。接受回肠和肝楔形切除术[12/2008]。去除8cm肠系膜结节为1.5cm的NEN,而6/9的淋巴结呈转移阳性。该肿瘤增殖能力低,有丝分裂计数=2/10hpf,Ki67<2%(T2N1M1)。在2/2009开始奥曲肽处理,对症状有一些控制,但发现右上腹有增加的不舒适感。奥曲肽扫描[4/2010]鉴定一些小型肝部病灶,2/2011证实了额外的病灶(奥曲肽扫描)。接受ERCP和括约
肌切开术[4/2011]以及胆囊切除术[6/2011]。
表23
Figure BDA0000406202150001271
PCR分数:0-100(0-25=正常,26-50=经处理的;51-100=未经处理的疾病);诊断=正常或肿瘤,说明=经处理的和未经处理的。CgA值:单位/升(U/L)(DAKOELISA)
ABNML=异常(升高的);NML=正常范围
所述PCR测试鉴定广泛疾病(诊断=“肿瘤”,说明=“未经处理的”,PCR分数70)。由于所述血液PCR测试(PCR分数27-35)在手术后不回复至“正常”,该结果与残留转移一致。就鉴定所述疾病和监测治疗反应而言,CgA结果不如所述PCR测试有效。
指示病例5:复发肝转移(肝切除术后),采用LAR和栓塞治疗
SK(64岁男性,有心房颤动、高血脂和肾结石史)。在出现潮红现象后被诊断为SI-NEN[12/2001]。他接受了回肠肿瘤和肝转移切除。后续手术包括肠系膜淋巴结肿块[3/2005]和淋巴结[9/2006]的再切除。在[12/2008]针对肝转移进行冷冻消融。PET扫描[4/2009]鉴定小型肝结节和骨病灶。开始善得定处理[6/2009],重复扫描[PET和MRI]鉴定无新病灶。
表24
Figure BDA0000406202150001281
PCR分数:0-100(0-25=正常,26-50=经处理的;51-100=未经处理的疾病);诊断=正常或肿瘤,说明=经处理的和未经处理的。CgA值:单位/升(U/L)(DAKOELISA)
ABNML=异常(升高的);NML=正常范围
该PCR测试鉴定所述疾病的复发(诊断=“肿瘤”,说明=“未经处理的”,PCR分数63),证明冷冻消融的功效和所测残留疾病。因为所述血液PCR测试没有回复到“正常”的判定,该结果被认为是转移的证据,所述转移通过13C-PET确定(PCR分数49)。就鉴定所述疾病和监测治疗反应而言,CgA结果不如PCR所述测试有效。
实施例10:所述分子签名区分GEP-NEN亚型(小肠和胰腺NEN)的效用
使用所述51个标志物基因的组来检测区分GEP-NEN和对照,以及区分样品是否相较于无响应或初次接受处理个体来自治疗响应性患者的能力。围绕源于小肠NEN组织和血液微阵列的信息开发所述标志物组。虽然所述性能指标显著好于CgAELISA,本工作的目标是确定所述测试是否能区分来自两个不同位点(即小肠和胰腺)的GEP-NEN。这与未知原发性位置的肿瘤情况相关,并且因为肿瘤根据其来源位点具有显著不同的预后,这还具有另一种意义。SI-NEN的5年存活率为约80%,死亡率为约50%,无疾病特异性。相反,PNEN的5年存活率为约40%,有约95%的患者死于该疾病。因此,鉴定未知原发疾病的位置是确定治疗中的重要变量;已证明抑生长素类似物在SI-NEN9中的效用,而舒尼替尼和依维莫司在PNEN_ENREF_10中具有效用。
检测所述51种标志物基因的组确定其显示大很多的表达变化(0.54±0.4对比SI-NEN中的0.38±0.14),说明该组中选定基因对PNEN的特异性不如SI-NEN。对表达作图确定肿瘤是空间分离的(图41A)。
此外,该组的表达可以92%的准确度区分两种肿瘤位点(图41B)。因此,该测试能够准确地区分胰腺肿瘤和小肠肿瘤。
实施例11:所述51-标志物基因组区分GEP-NEN和胃肠癌的能力
为了进一步评价该基于PCR的方法的效用,检测了胃肠腺癌例如胃癌和肝癌(食道:n=2,胰腺:n=11,胆囊:n=3,结肠:n=10,直肠:n=7)中的分子指纹。进行该实验以评估一些基因(例如,KRAS、BRAF、Ki67)是否在胃肠腺癌中过表达,以及纳入所述组中是否可能干扰准确度。
检测所述51种标志物基因的组确定其显示较大表达变化(0.5±0.25对比GEP-NEN中的0.44±0.17),表明该组中所选的NEN特异性基因对胃肠癌的特异性低于GEP-NEN。PCA鉴定肿瘤是空间分离的(图42A),并且所述NEN组能够以83%的准确度区分GEP-NEN和胃肠癌(图42B)。
因此,所述测试具有区分GEP-NEN和胃肠癌的能力,并且NEN的循环分子签名与胃肠腺癌的循环分子签名不同。少数的重叠与具有神经内分泌元件的约40%胃肠腺癌相一致。
所述分子测试和CgA ELISA的直接比较确定了所述基于PCR的方法相较于CgA水平检测具有显著更高的准确检出率(χ2=12.3,p<0.0005)(图43)。
虽然敏感度与检测GEP-NEN相似(94%对比97%),但是所述PCR测试的特异度高于CgA(85%对比46%)。就区分经处理和未经处理的样品而言,所述基于PCR的测试显示更高的性能指标(85%对比约65%)。
在确定GEP-NEN的“治疗”方面,CgA不如循环分子指纹有用。这反映以下事实:所述蛋白质(CgA)是所有神经内分泌细胞持续分泌的产物,并且对神经内分泌肿瘤及其增殖率或其转移不具有特异性生物关联。
本申请中通篇引用了各种网站数据内容、出版物、专利申请和专利。(可通过其统一资源定位符或万维网URL地址引用网站。)这些文献中每篇文献的公开内容在此通过引用全文纳入本文。
本发明不局限于本文所述实施方式的范围,这些实施方式仅旨在说明本发明的单独方面,任何功能等同形式也在本发明范围内。本文所述以外的对发明模型和方法的各种改良通过以上描述和教导对本领域技术人员显而易见,所述改良同样旨在落入本发明的范围内。可以实施此类改良或其它实施方式而不偏离本发明的真实范围和精神。
Figure IDA0000406202210000011
Figure IDA0000406202210000031
Figure IDA0000406202210000041
Figure IDA0000406202210000051
Figure IDA0000406202210000081
Figure IDA0000406202210000091
Figure IDA0000406202210000101
Figure IDA0000406202210000111
Figure IDA0000406202210000121
Figure IDA0000406202210000131
Figure IDA0000406202210000141
Figure IDA0000406202210000151
Figure IDA0000406202210000191
Figure IDA0000406202210000201
Figure IDA0000406202210000211
Figure IDA0000406202210000221
Figure IDA0000406202210000231
Figure IDA0000406202210000251
Figure IDA0000406202210000261
Figure IDA0000406202210000271
Figure IDA0000406202210000281
Figure IDA0000406202210000291
Figure IDA0000406202210000301
Figure IDA0000406202210000311
Figure IDA0000406202210000321
Figure IDA0000406202210000341
Figure IDA0000406202210000351
Figure IDA0000406202210000361
Figure IDA0000406202210000381
Figure IDA0000406202210000401
Figure IDA0000406202210000411
Figure IDA0000406202210000431
Figure IDA0000406202210000451
Figure IDA0000406202210000461
Figure IDA0000406202210000471
Figure IDA0000406202210000481
Figure IDA0000406202210000491
Figure IDA0000406202210000501
Figure IDA0000406202210000511
Figure IDA0000406202210000521
Figure IDA0000406202210000531
Figure IDA0000406202210000551
Figure IDA0000406202210000561
Figure IDA0000406202210000571
Figure IDA0000406202210000581
Figure IDA0000406202210000591
Figure IDA0000406202210000601
Figure IDA0000406202210000611
Figure IDA0000406202210000621
Figure IDA0000406202210000631
Figure IDA0000406202210000641
Figure IDA0000406202210000651
Figure IDA0000406202210000661
Figure IDA0000406202210000671
Figure IDA0000406202210000681
Figure IDA0000406202210000691
Figure IDA0000406202210000711
Figure IDA0000406202210000721
Figure IDA0000406202210000731
Figure IDA0000406202210000751
Figure IDA0000406202210000761
Figure IDA0000406202210000771
Figure IDA0000406202210000781
Figure IDA0000406202210000791
Figure IDA0000406202210000801
Figure IDA0000406202210000811
Figure IDA0000406202210000821
Figure IDA0000406202210000831
Figure IDA0000406202210000841
Figure IDA0000406202210000851
Figure IDA0000406202210000861
Figure IDA0000406202210000871
Figure IDA0000406202210000891
Figure IDA0000406202210000901
Figure IDA0000406202210000911
Figure IDA0000406202210000921
Figure IDA0000406202210000931
Figure IDA0000406202210000941
Figure IDA0000406202210000951
Figure IDA0000406202210000971
Figure IDA0000406202210000981
Figure IDA0000406202210000991
Figure IDA0000406202210001001
Figure IDA0000406202210001011
Figure IDA0000406202210001021
Figure IDA0000406202210001031
Figure IDA0000406202210001041
Figure IDA0000406202210001051
Figure IDA0000406202210001061
Figure IDA0000406202210001071
Figure IDA0000406202210001081
Figure IDA0000406202210001101
Figure IDA0000406202210001111
Figure IDA0000406202210001131
Figure IDA0000406202210001141
Figure IDA0000406202210001161
Figure IDA0000406202210001171
Figure IDA0000406202210001181
Figure IDA0000406202210001191
Figure IDA0000406202210001211
Figure IDA0000406202210001221
Figure IDA0000406202210001231
Figure IDA0000406202210001241
Figure IDA0000406202210001271
Figure IDA0000406202210001281
Figure IDA0000406202210001291
Figure IDA0000406202210001301
Figure IDA0000406202210001321
Figure IDA0000406202210001351
Figure IDA0000406202210001361
Figure IDA0000406202210001371
Figure IDA0000406202210001381
Figure IDA0000406202210001391
Figure IDA0000406202210001411
Figure IDA0000406202210001421
Figure IDA0000406202210001431
Figure IDA0000406202210001441
Figure IDA0000406202210001451
Figure IDA0000406202210001471
Figure IDA0000406202210001481
Figure IDA0000406202210001501
Figure IDA0000406202210001511
Figure IDA0000406202210001521
Figure IDA0000406202210001531
Figure IDA0000406202210001551
Figure IDA0000406202210001561
Figure IDA0000406202210001571
Figure IDA0000406202210001581
Figure IDA0000406202210001591
Figure IDA0000406202210001621
Figure IDA0000406202210001631
Figure IDA0000406202210001641
Figure IDA0000406202210001651
Figure IDA0000406202210001661
Figure IDA0000406202210001681
Figure IDA0000406202210001691
Figure IDA0000406202210001701
Figure IDA0000406202210001711
Figure IDA0000406202210001721
Figure IDA0000406202210001731
Figure IDA0000406202210001741
Figure IDA0000406202210001751
Figure IDA0000406202210001771
Figure IDA0000406202210001781
Figure IDA0000406202210001791
Figure IDA0000406202210001801
Figure IDA0000406202210001811
Figure IDA0000406202210001821
Figure IDA0000406202210001831
Figure IDA0000406202210001841
Figure IDA0000406202210001851
Figure IDA0000406202210001861
Figure IDA0000406202210001871
Figure IDA0000406202210001881

Claims (76)

1.一种用于胃肠胰神经内分泌瘤(GEP-NEN)诊断或预后的系统,所述系统包括:与GEP-NEN生物标志物组特异性杂交或结合的分离的多核苷酸或分离的多肽的群,其中,所述组包含多种GEP-NEN生物标志物,包括选自下组的基因产物:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3、APLP2、CD59、ARAF1、BRAF1、KRAS和RAF1基因产物。
2.如权利要求1所述的系统,其特征在于,所述GEP-NEN生物标志物组包括选自下组的基因产物:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
3.如权利要求1或权利要求2所述的系统,其特征在于,所述GEP-NEN生物标志物组包括以下生物标志物中的至少三种:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
4.如权利要求1-3中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包含至少3种、至少11种、至少13种、至少20种、至少21种、至少29种、至少37种、至少51种或至少75种生物标志物。
5.如权利要求4所述的系统,其特征在于,所述GEP-NEN生物标志物组包含至少51种生物标志物。
6.如权利要求1-5中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包括:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
7.如权利要求1-6中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包括:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
8.如权利要求1-7中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包括:AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
9.如权利要求1-8中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包括:APLP2基因产物、CD59基因产物、ARAF1基因产物、BRAF1基因产物、KRAS基因产物或RAF1基因产物。
10.如权利要求1-9中任一项所述的系统,其特征在于:
所述GEP-NEN生物标志物组包括:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;或
所述GEP-NEN生物标志物组包括:APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物。
11.如权利要求1-10中任一项所述的系统,其特征在于:
所述GEP-NEN生物标志物组还包括选自下组的基因产物:MAGE-D2、MTA1、生存素、Kiss1、HOXC6、NRP2、X2BTB48、CXCL14、GRIA2、NKX2-3、OR51E1、CTGF、PTPRN2、SPOCK1和SCG5基因产物。
12.一种用于GEP-NEN诊断或预后的系统,所述系统包括:与GEP-NEN生物标志物组特异性杂交或结合的分离的多核苷酸或分离的多肽的群,所述组包含至少21种GEP-NEN生物标志物,其中,所述系统能够分类或检测人血样品中的GEP-NEN。
13.如权利要求12所述的系统,其特征在于,所述组包含至少51种GEP-NEN生物标志物。
14.如权利要求1-13中任一项所述的系统,其特征在于,所述系统能够以至少80%的特异度和敏感度鉴定人血样品中的GEP-NEN。
15.如权利要求1-14中任一项所述的系统,其特征在于,所述系统能区分患有GEP-NEN的对象和患有另一种胃肠(GI)癌的对象,或者能够区分患有小肠NEN的对象和患有胰腺NEN的对象。
16.如权利要求1-15中任一项所述的系统,其特征在于,所述系统能以至少90%的准确度预测对手术介入或抑生长素类似物治疗的治疗反应,或测定患者在手术介入或抑生长素类似物治疗后是否变得临床稳定,或对手术介入或抑生长素类似物治疗有反应或无反应。
17.如权利要求1-16中任一项所述的系统,其特征在于,所述系统能以至少85%的敏感度和特异度区分经治疗的GEP-NEN和未经治疗的GEP-NEN。
18.如权利要求1-18中任一项所述的系统,其特征在于,所述系统能测定先前诊断患有GEP-NEN的对象是否完全缓解。
19.如权利要求13-18中任一项所述的系统,其特征在于,所述系统相较于循环CgA水平检测能够以更高敏感度、特异度或准确度鉴定、区分或预测。
20.如权利要求1-19中任一项所述的系统,其特征在于,所述系统还包含与管家基因产物特异性结合的分离的多核苷酸或多肽。
21.如权利要求20所述的系统,其特征在于,所述管家基因产物选自下组:ACTB、TOX4、TPT1和TXNIP基因产物。
22.如权利要求20或21所述的系统,其特征在于,所述管家基因产物选自下组:18S、GAPDH、ALG9、SLC25A3、VAPA、TXNIP、ADD3、DAZAP2、ACTG1、ACTB、ACTG4B、ARF1、HUWE1、MORF4L1RHOA、SERP1、SKP1、TPT1、TOX4、TFCP2和ZNF410基因产物。
23.如权利要求22所述的系统,其特征在于,所述管家基因产物选自下组:18S、GAPDH、ALG9、SLC25A3、VAPA、TXNIP、ADD3、DAZAP2、ACTG1、ACTB、ACTG4B、ARF1、HUWE1、MORF4L1RHOA、SERP1、SKP1、TPT1和TOX4基因产物。
24.如权利要求1-23中任一项所述的系统,其特征在于,所述GEP-NEN生物标志物组包含具有与选自下组的序列有至少90%相同性的核苷酸序列的基因产物:SEQ ID NO:1-29、105、201、204-213、215、217-225、227-229、232-240和243-246。
25.如权利要求1-24中任一项所述的系统,其特征在于,所述系统区分GEP-NEN亚型,并且所述生物标志物组包含生物标志物群,其中,
(i)所述生物标志物群在原发性PDNEC和原发性WDNET中的表达谱有显著差异,并且所述群包含CXCL14和MAGE-D2基因产物;
(ii)所述生物标志物群在原发性PDNEC和原发性WDNEC中的表达谱有显著差异,并且所述群包含三种生物标志物,包括PTPRN2基因产物;
(iii)所述生物标志物群在原发性PDNEC和原发性PDNET中的表达谱有显著差异,并且所述群包含MTA1和PNMA2基因产物;
(iv)所述生物标志物群在原发性PDNET和原发性WDNET中或者在原发性PDNET和原发性WDNEC中的表达谱有显著差异,并且所述群包含至少4种生物标志物;
(v)所述生物标志物群在原发性WDNEC和原发性WDNET中的表达谱有显著差异,并且所述群包含21种生物标志物;
(vi)所述生物标志物群在转移性WDNEC和转移性WDNET中的表达谱有显著差异,并且所述群包含至少3种生物标志物,包括CXCL14基因产物;
(vii)所述生物标志物群在转移性PDNEC和转移性WDNEC中的表达谱有显著差异,并且所述群包含至少4种生物标志物,包括NAP1L1基因产物;或者
(viii)所述生物标志物群在转移性PDNEC和转移性WDNET中的表达谱有显著差异,并且所述群包含至少6种生物标志物,包括NRP2基因产物。
26.一种用于检测、诊断、分类或预测胃肠胰神经内分泌瘤(GEP-NEN)、GEP-NEN细胞或相关病症的转归的方法,所述方法包括:
(a)获得生物测试样品;和
(b)检测含至少两种GEP-NEN生物标志物的组的存在、缺失、表达水平或表达谱,其中,所述组包括选自下组的基因产物:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC、ZZZ3、APLP2、CD59、ARAF1、BRAF1、KRAS和RAF1基因产物。
27.如权利要求26所述的方法,其特征在于,所述组包括选自下组的基因产物:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
28.如权利要求27或28所述的方法,其特征在于,所述组包括:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
29.如权利要求26-28中任一项所述的方法,其特征在于,所述组包含至少3种、至少11种、至少13种、至少20种、至少21种、至少29种、至少37种、至少51种或至少75种生物标志物。
30.如权利要求29所述的方法,其特征在于,所述组包含至少51种生物标志物。
31.如权利要求26-30中任一项所述的方法,其特征在于,所述组包括:AKAP8L、ATP6V1H、BNIP3L、C21orf7、COMMD9、ENPP4、FAM13A、FLJ10357、GLT8D1、HDAC9、HSF2、LEO1、MORF4L2、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PQBP1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TRMT112、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
32.如权利要求26-31中任一项所述的方法,其特征在于,所述组包括:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1、VMAT1和VMAT2基因产物。
33.如权利要求26-32中任一项所述的方法,其特征在于,所述组包括:AKAP8L、APLP2、ARAF1、ATP6V1H、BNIP3L、BRAF、C21orf7、CD59、COMMD9、CTGF、ENPP4、FAM13A、FLJ10357、FZD7、GLT8D1、HDAC9、HSF2、Ki67、KRAS、LEO1、MORF4L2、NAP1L1、NOL3、NUDT3、OAZ2、PANK2、PHF21A、PKD1、PLD3、PNMA2、PQBP1、RAF1、RNF41、RSF1、RTN2、SMARCD3、SPATA7、SST1、SST3、SST4、SST5、TECPR2、TPH1、TRMT112、VMAT1、VMAT2、VPS13C、WDFY3、ZFHX3、ZXDC和ZZZ3基因产物。
34.如权利要求26-33中任一项所述的方法,其特征在于,所述组包含APLP2基因产物、CD59基因产物、ARAF1基因产物、BRAF1基因产物、KRAS基因产物或RAF1基因产物。
35.如权利要求26-34中任一项所述的方法,其特征在于:
所述多种GEP-NEN生物标志物包括:APLP2、ARAF1、BRAF、CD59、CTGF、FZD7、Ki67、KRAS、NAP1L1、PNMA2、RAF1、TPH1和VMAT2基因产物;或
所述GEP-NEN生物标志物组包括:APLP2、ARAF1、BRAF1、CD59、KRAS、RAF1、CXCL14、GRIA2、HOXC6、NKX2-3、OR51E1、PNMA2、PTPRN2、SCG5、SPOCK1、X2BTB48、CgA、CTGF、FZD7、Ki-67、Kiss1、MAGE-D2、MTA1、NAP1L1、NRP2、Tph1、VMAT1、VMAT2和生存素基因产物。
36.如权利要求26-35中任一项所述的方法,其特征在于,所述生物测试样品是血液、血浆、血清、组织、唾液、血清、尿液或精液样品。
37.如权利要求36所述的方法,其特征在于,所述生物测试样品来自血液。
38.如权利要求26-37中任一项所述的方法,其特征在于,步骤(b)中的检测使用权利要求1-25中任一项所述的系统进行。
39.如权利要求26-38中任一项所述的方法,其特征在于,所述测试样品取自GEP-NEN患者。
40.如权利要求26-39中任一项所述的方法,其特征在于,所述方法还包括将所述测试生物样品中检测的所述生物标志物的表达水平或表达谱与正常或参照表达水平或者正常或参照表达谱比较。
41.如权利要求40所述的方法,其特征在于,所述方法还包括在所述比较之前,获得正常或参照样品;和检测所述正常样品中所述GEP-NEN生物标志物组的存在、缺失、表达水平或表达谱,由此确定在所述比较中使用的所述正常或参照表达水平或表达谱。
42.如权利要求26-41中任一项所述的方法,其特征在于:
步骤(b)中的所述检测包括使所述测试样品接触特异性结合所述GEP-NEN生物标志物组的多核苷酸群。
43.如权利要求42所述的方法,其特征在于,所述多核苷酸群包含DNA、RNA、cDNA、PNA、基因组DNA或合成的寡核苷酸。
44.如权利要求42或43所述的方法,其特征在于,所述多核苷酸包含正义和反义引物,并且步骤(b)中的所述检测通过以下方式进行:(i)通过逆转录从所述测试样品生成cDNA;(ii)使用正义和反义引物对扩增所生成的cDNA,所述引物对与所述GEP-NEN生物标志物组特异性杂交;和(iii)检测所述扩增产物。
45.如权利要求26-44中任一项所述的方法,其特征在于,所述存在、缺失、表达水平或表达谱指示所述GEP-NEN的存在、缺失、分类、预后、风险、治疗反应性、侵袭性、严重性或转移,或者GEP-NEN对象是否经治疗或未经治疗,是否完全缓解,或临床稳定,或者指示GEP-NEN治疗的功效。
46.如权利要求26-45中任一项所述的方法,其特征在于,所述方法以至少80%的特异度或敏感度分类或检测人血液样品中的GEP-NEN。
47.如权利要求26-46中任一项所述的方法,其特征在于,所述方法区分患有GEP-NEN的对象和患有其它类型胃肠(GI)癌的对象,或区分患有小肠NEN的对象和患有胰腺NEN的对象。
48.如权利要求26-47中任一项所述的方法,其特征在于,所述方法以至少90%的准确度预测对手术介入或抑生长素类似物治疗的治疗反应,或确定患者是否在手术介入或抑生长素类似物治疗后临床稳定,或对手术介入或抑生长素类似物治疗有反应或无反应。
49.如权利要求26-48中任一项所述的方法,其特征在于,所述方法以至少85%的敏感度和特异度区分经治疗的GEP-NEN和未经治疗的GEP-NEN。
50.如权利要求26-49中任一项所述的方法,其特征在于,所述方法测定诊断患有GEP-NEN的对象是否完全缓解。
51.如权利要求26-50中任一项所述的方法,其特征在于,所述测试样品是血液样品,并且所述方法检测至少或至少约3个GEP-NEN细胞/毫升(mL)全血。
52.如权利要求26-51中任一项所述的方法,其特征在于,所述方法还包括计算所述测试生物样品中所述GEP-NEN生物标志物组的平均表达水平。
53.如权利要求52所述的方法,其特征在于,所述计算通过向量加和所测多种GEP-NEN生物标志物各自的表达水平来进行。
54.如权利要求41所述的方法,其特征在于:
所述测试生物样品来自治疗后的GEP-NEN患者,并且所述参照样品来自治疗前的相同GEP-NEN患者;
所述参照样品来自不含GEP-NEN细胞的组织或液体;
所述参照样品来自健康个体;
所述参照样品来自GEP-NEN以外的癌;
所述参照样品来自EC细胞或SI组织;
所述测试生物样品来自转移性GEP-NEN,并且所述参照样品来自非转移性GEP-NEN;或者
所述参照样品来自与提供所述测试生物样品的GEP-NEN患者相比分类不同的GEP-NEN。
55.如权利要求26-54中任一项所述的方法,其特征在于,所述方法以80%-100%的预测值、敏感度或特异度鉴定GEP-NEN的存在或缺失、分类或分期。
56.如权利要求26-55中任一项所述的方法,其特征在于,所述方法还包括压缩来自所述测试生物样品的所测表达水平,从而确定表达谱。
57.如权利要求26-56中任一项所述的方法,其特征在于,所述测试生物样品是来自GEP-NEN患者的全血或唾液样品,并且,对所述测试生物样品检测或测定的GEP-NEN生物标志物表达水平或表达谱与对同一患者提供的GEP-NEN组织样品或经纯化GEP-NEN细胞样品检测或测定的相同GEP-NEN生物标志物表达水平或表达谱相关联,所述关联的R2为至少约0.4。
58.如权利要求26-57中任一项所述的方法,其特征在于,所述方法还包括使用预测算法分析数据。
59.如权利要求58所述的方法,其特征在于,所述预测算法选自下组:支持向量机(SVM)、线性判别分析(LDA)、K-最近邻(KNN)和朴素贝叶斯(NB)。
60.如权利要求58所述的方法,其特征在于,所述预测算法选自下组:决策树、SVM、RDA和感知器。
61.一种用于检测血液中神经内分泌肿瘤细胞的方法,其特征在于,所述方法包括:
获得血液样品;并且使所述血液样品接触特异性结合GEP-NEN生物标志物组的一种或多种试剂,所述GEP-NEN生物标志物组包含至少两种GEP-NEN生物标志物,其中,所述方法检测至少或至少约一个、两个或三个GEP-NEN细胞/mL血液。
62.如权利要求61所述的方法,其特征在于,所述试剂包含权利要求1-25中任一项所述的系统。
63.一种用于从细胞混合物中富集或分离神经内分泌肿瘤细胞的方法,其特征在于,所述方法包括:使所述细胞混合物接触特异性结合CD164的试剂;并且纯化由该试剂结合的细胞。
64.如权利要求63所述的方法,其特征在于,所述接触还包括使所述细胞接触另一试剂,所述另一试剂为GEP-NEN特异性试剂。
65.如权利要求63或64所述的方法,其特征在于,所述细胞混合物是细胞培养物或血液样品或其它生物液体。
66.如权利要求63-65中任一项所述的方法,其特征在于,所述方法富集或分离至少或至少约3个细胞/mL血液。
67.一种治疗方法,所述方法包括:
(a)对GEP-NEN患者提供治疗;
(b)从所述GEP-NEN患者获得样品,并检测该样品中GEP-NEN生物标志物组的表达水平。
68.如权利要求67所述的方法,其特征在于,步骤(a)还包括在提供治疗之前测定患者样品中GEP-NEN生物标志物组的治疗前表达水平。
69.如权利要求68所述的方法,其特征在于,所述方法还包括步骤(c):比较所述治疗前表达水平和步骤(b)中检测的表达水平。
70.如权利要求69所述的方法,其特征在于,所述方法还包括测定治疗前表达水平和步骤(b)中的表达水平间的表达水平差异,该差异指示所述治疗的功效。
71.如权利要求67-70中任一项所述的方法,其特征在于,所述方法还包括在后续时间测定所述GEP-NEN患者内所述生物标志物的表达水平,并将该表达水平与步骤(b)中的表达水平作比较,其中,所述表达水平之间的差异指示复发或缺乏治疗反应。
72.如权利要求67-71中任一项所述的方法,其特征在于,所述表达水平使用权利要求1-25中任一项所述的系统检测。
73.如权利要求67-72中任一项所述的方法,其特征在于,所述步骤(b)的患者样品中CgA的表达水平相较于治疗前CgA表达水平或稍后时间的CgA表达水平无显著差异。
74.如权利要求67-73中任一项所述的方法,其特征在于,所述方法还包括中断或改进向所述患者提供的所述治疗。
75.如权利要求67-74中任一项所述的方法,其特征在于,所述检测指示所述患者中GEP-NEN微转移的存在。
76.如权利要求75所述的方法,其特征在于,所述步骤(b)中的样品、所述治疗前的样品或所述在后续时间获取的样品通过组织学或单独CgA检测确定为无GEP-NEN、GEP-NEN转移或GEP-NEN复发。
CN201280021361.3A 2011-03-01 2012-03-01 胃肠胰神经内分泌肿瘤(gep-nen)的预测 Active CN103502473B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161448137P 2011-03-01 2011-03-01
US61/448,137 2011-03-01
PCT/US2012/027351 WO2012119013A1 (en) 2011-03-01 2012-03-01 PREDICTING GASTROENTEROPANCREATIC NEUROENDOCRINE NEOPLASMS (GEP-NENs)

Publications (2)

Publication Number Publication Date
CN103502473A true CN103502473A (zh) 2014-01-08
CN103502473B CN103502473B (zh) 2016-03-09

Family

ID=45852725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280021361.3A Active CN103502473B (zh) 2011-03-01 2012-03-01 胃肠胰神经内分泌肿瘤(gep-nen)的预测

Country Status (14)

Country Link
US (1) US9988684B2 (zh)
EP (1) EP2681333B1 (zh)
JP (2) JP6159662B2 (zh)
KR (2) KR102114412B1 (zh)
CN (1) CN103502473B (zh)
AU (2) AU2012223288B2 (zh)
CA (1) CA2828878C (zh)
DK (1) DK2681333T3 (zh)
ES (1) ES2656487T3 (zh)
IL (1) IL228224A (zh)
MX (1) MX351779B (zh)
PL (1) PL2681333T3 (zh)
WO (1) WO2012119013A1 (zh)
ZA (1) ZA201306686B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938521A (zh) * 2016-07-04 2016-09-14 苏州大学附属儿童医院 一种强直性脊柱炎预警模型建立方法及装置
CN107194137A (zh) * 2016-01-31 2017-09-22 青岛睿帮信息技术有限公司 一种基于医疗数据建模的坏死性小肠结肠炎分类预测方法
CN107208132A (zh) * 2014-09-15 2017-09-26 克里夫顿生命科学有限责任公司 用于诊断胃肠胰神经内分泌瘤的组合物、方法和试剂盒
CN108048564A (zh) * 2018-02-09 2018-05-18 中国科学院昆明动物研究所 人glt8d1基因的新用途
CN109190713A (zh) * 2018-09-29 2019-01-11 王海燕 基于血清质谱自适应稀疏特征选择的卵巢癌微创快检技术
CN109652550A (zh) * 2019-01-21 2019-04-19 首都医科大学附属北京朝阳医院 circ-HUWE1作为胃癌和结直肠癌诊断生物标志物和治疗靶点的应用
CN109949268A (zh) * 2019-01-24 2019-06-28 郑州大学第一附属医院 一种基于机器学习的肝细胞癌分化水平分级方法
CN111479931A (zh) * 2017-11-30 2020-07-31 液体活检研究有限责任公司 使用基因表达测定预测肽受体放射治疗
CN112313497A (zh) * 2018-04-27 2021-02-02 纳诺斯迪科公司 使用微流式细胞术诊断疾病的方法
CN113637750A (zh) * 2021-07-16 2021-11-12 宁波市第一医院 急性髓系白血病的辅助诊断、预后诊断或危险度分层标记物及其应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2892308A1 (en) 2012-10-09 2014-04-17 Five3 Genomics, Llc Systems and methods for tumor clonality analysis
WO2018160925A1 (en) * 2017-03-02 2018-09-07 President And Fellows Of Harvard College Methods and systems for predicting treatment responses in subjects
WO2018214249A1 (zh) * 2017-05-22 2018-11-29 立森印迹诊断技术(无锡)有限公司 一种印记基因分级模型及其组成的系统和应用
WO2019126395A1 (en) * 2017-12-19 2019-06-27 Chase Therapeutics Corporation Methods for developing pharmaceuticals for treating neurodegenerative conditions
JP7061768B2 (ja) * 2018-03-09 2022-05-02 国立大学法人 東京大学 生物応答の解析方法、解析プログラム、及び解析装置
KR102141246B1 (ko) * 2018-05-25 2020-08-04 주식회사 엠디헬스케어 qPCR 분석을 통한 대장암 진단방법
WO2019226035A1 (ko) * 2018-05-25 2019-11-28 주식회사 엠디헬스케어 Qpcr 분석을 통한 대장암 진단방법
JP7133411B2 (ja) 2018-09-19 2022-09-08 テルモ株式会社 Ctc採取システム及びctc採取システムの作動方法
WO2020142551A1 (en) 2018-12-31 2020-07-09 Tempus Labs A method and process for predicting and analyzing patient cohort response, progression, and survival
US11875903B2 (en) 2018-12-31 2024-01-16 Tempus Labs, Inc. Method and process for predicting and analyzing patient cohort response, progression, and survival
US20200320131A1 (en) * 2019-04-02 2020-10-08 Aspen Technology, Inc. Validation Of Operating Plans And Schedules Using Machine Learning
AU2020363786A1 (en) 2019-10-10 2022-05-12 Liquid Biopsy Research LLC Compositions, methods and kits for biological sample and RNA stabilization
US20230272390A1 (en) * 2020-07-29 2023-08-31 The Children's Hospital Of Philadelphia Compositions and methods for hemoglobin production
KR102519913B1 (ko) * 2021-06-15 2023-04-10 재단법인 아산사회복지재단 췌장 신경내분비 종양 진단용 바이오마커 조성물 및 이를 이용한 췌장 신경내분비 종양 진단에 필요한 정보를 제공하는 방법
KR102438608B1 (ko) * 2021-06-15 2022-08-31 재단법인 아산사회복지재단 췌장 신경내분비 종양 감별진단용 바이오마커 조성물 및 이를 이용한 췌장 신경내분비 종양 감별진단에 필요한 정보를 제공하는 방법
WO2024073652A1 (en) * 2022-09-30 2024-04-04 Liquid Biopsy Research LLC Methods for neuroendocrine cancer detection in saliva

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020795A2 (en) * 2003-08-25 2005-03-10 The Johns Hopkins University Method of diagnosis and treatment of pancreatic endocrine neoplasms based on differntial gene expression analysis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194265A1 (en) 2001-10-23 2006-08-31 Morris David W Novel therapeutic targets in cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020795A2 (en) * 2003-08-25 2005-03-10 The Johns Hopkins University Method of diagnosis and treatment of pancreatic endocrine neoplasms based on differntial gene expression analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AFFYMETRIX: "Affymetrix GeneChip Human Genome U133 Array Set HG-U133A", 《GEO》 *
E M DUERR等: "Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis", 《ENDOCRINE RELATED CANCER》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208132A (zh) * 2014-09-15 2017-09-26 克里夫顿生命科学有限责任公司 用于诊断胃肠胰神经内分泌瘤的组合物、方法和试剂盒
CN107194137A (zh) * 2016-01-31 2017-09-22 青岛睿帮信息技术有限公司 一种基于医疗数据建模的坏死性小肠结肠炎分类预测方法
CN107194137B (zh) * 2016-01-31 2023-05-23 北京万灵盘古科技有限公司 一种基于医疗数据建模的坏死性小肠结肠炎分类预测方法
CN105938521A (zh) * 2016-07-04 2016-09-14 苏州大学附属儿童医院 一种强直性脊柱炎预警模型建立方法及装置
CN111479931A (zh) * 2017-11-30 2020-07-31 液体活检研究有限责任公司 使用基因表达测定预测肽受体放射治疗
CN108048564B (zh) * 2018-02-09 2021-03-05 中国科学院昆明动物研究所 人glt8d1基因的新用途
CN108048564A (zh) * 2018-02-09 2018-05-18 中国科学院昆明动物研究所 人glt8d1基因的新用途
CN112313497A (zh) * 2018-04-27 2021-02-02 纳诺斯迪科公司 使用微流式细胞术诊断疾病的方法
CN109190713A (zh) * 2018-09-29 2019-01-11 王海燕 基于血清质谱自适应稀疏特征选择的卵巢癌微创快检技术
CN109652550A (zh) * 2019-01-21 2019-04-19 首都医科大学附属北京朝阳医院 circ-HUWE1作为胃癌和结直肠癌诊断生物标志物和治疗靶点的应用
CN109652550B (zh) * 2019-01-21 2022-08-02 首都医科大学附属北京朝阳医院 circ-HUWE1作为胃癌和结直肠癌诊断生物标志物和治疗靶点的应用
CN109949268A (zh) * 2019-01-24 2019-06-28 郑州大学第一附属医院 一种基于机器学习的肝细胞癌分化水平分级方法
CN113637750A (zh) * 2021-07-16 2021-11-12 宁波市第一医院 急性髓系白血病的辅助诊断、预后诊断或危险度分层标记物及其应用

Also Published As

Publication number Publication date
DK2681333T3 (en) 2018-01-08
WO2012119013A1 (en) 2012-09-07
CA2828878A1 (en) 2012-09-07
KR102114412B1 (ko) 2020-06-18
KR20180116483A (ko) 2018-10-24
KR20140042793A (ko) 2014-04-07
ZA201306686B (en) 2015-03-25
AU2017204086A1 (en) 2017-07-06
MX351779B (es) 2017-10-27
US20140066328A1 (en) 2014-03-06
JP6159662B2 (ja) 2017-07-05
KR102023584B1 (ko) 2019-09-24
JP6321233B2 (ja) 2018-05-09
AU2012223288B2 (en) 2017-03-30
JP2017104116A (ja) 2017-06-15
EP2681333B1 (en) 2017-11-15
US9988684B2 (en) 2018-06-05
PL2681333T3 (pl) 2018-03-30
MX2013010035A (es) 2014-08-27
AU2017204086B2 (en) 2019-05-16
JP2014512172A (ja) 2014-05-22
IL228224A0 (en) 2013-12-31
ES2656487T3 (es) 2018-02-27
IL228224A (en) 2017-11-30
AU2012223288A1 (en) 2013-09-19
CA2828878C (en) 2020-08-25
CN103502473B (zh) 2016-03-09
EP2681333A1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN103502473B (zh) 胃肠胰神经内分泌肿瘤(gep-nen)的预测
Peneder et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden
US10494677B2 (en) Predicting cancer outcome
JP5405110B2 (ja) 原発不明がんの原発巣を同定するための方法および材料
AU2021212151B2 (en) Compositions, methods and kits for diagnosis of a gastroenteropancreatic neuroendocrine neoplasm
JP2011515666A (ja) トリプルネガティブ乳がんに関連するdna修復タンパク質およびその使用法
CN110168106A (zh) 预测进展期胃癌患者的术后预后或抗癌药物适合性的系统
US20150294062A1 (en) Method for Identifying a Target Molecular Profile Associated with a Target Cell Population
Noushmehr et al. Detection of glioma and prognostic subtypes by non-invasive circulating cell-free DNA methylation markers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant