CN103488807A - 用于半导体装置的模拟器和模拟方法 - Google Patents

用于半导体装置的模拟器和模拟方法 Download PDF

Info

Publication number
CN103488807A
CN103488807A CN201310228401.8A CN201310228401A CN103488807A CN 103488807 A CN103488807 A CN 103488807A CN 201310228401 A CN201310228401 A CN 201310228401A CN 103488807 A CN103488807 A CN 103488807A
Authority
CN
China
Prior art keywords
sensor
circuit
semiconductor device
amplifier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310228401.8A
Other languages
English (en)
Inventor
古贺安博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN103488807A publication Critical patent/CN103488807A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及用于半导体装置的模拟器和模拟方法。用于模拟包括其电路构成可以被修改的AFE单元的半导体装置的模拟器包括:电路构成配置单元,用于根据与AFE单元耦合的传感器来配置AFE单元的电路构成;输入图案选择单元,用于选择要向传感器输入的信号的波形图案;以及,模拟执行单元,用于使用所选择的波形图案作为输入条件来对于传感器和具有所配置的电路构成的AFE单元的组合执行模拟。

Description

用于半导体装置的模拟器和模拟方法
对于相关申请的交叉引用
将在2012年6月8日提交的日本专利申请No.2012-131368的公开,包括说明书、附图和摘要,在此整体并入。
技术领域
本发明涉及用于半导体装置的模拟器、模拟方法和存储模拟程序的计算机可读介质,并且可以被有益地被应用到例如用于包括模拟前端电路的半导体装置的模拟器、模拟方法和存储模拟程序的计算机可读介质。
背景技术
近些年来,传感器已经被广泛地用于在诸如家庭、工业和医疗用途的许多领域中的各种装置,以满足提高装置的用户友好性、开发具有高的经济效率的系统、提高保健和加强安全等的需要。该趋势已经被下述情况支持:已经提高了传感器的用户友好性,并且用于实现传感器功能不可缺少的模拟电路已经变得能够在低电压和低功耗下操作,这导致各种系统的尺寸减小和成本降低。存在许多种类的传感器,诸如温度传感器、红外线传感器、光学传感器和冲击传感器等。根据它们本身的操作原理,在处理被感测的信号的电路中包括相应的传感器,并且它们被调整以发挥它们本身的功能。
在使用这些传感器的这样的装置中,诸如微计算机的控制装置根据从传感器获得的测量结果来执行控制处理。因为从传感器输出的测量信号不能直接地被诸如微计算机的控制装置处理,所以模拟前端(AFE)电路执行一些种类的前端处理,诸如将被测量的信号放大到特定电平、从测量信号滤除噪声。为了执行该前端处理,需要根据要使用的传感器的操作原理和特性来设计前端电路,使得需要对于模拟电路特定的设计诀窍。因此,基于要使用的传感器的操作原理和特性的更好理解,已经开发了用于单独的特定传感器的专用AFE电路或专用IC。
在现有技术中,已经将电路模拟器(以下简称为模拟器)用作设计辅助工具,以便设计这样的AFE电路。已经广泛使用了几种类型的电路模拟器,诸如:独立型模拟器,其在独立计算机上执行模拟;以及,网络服务器模拟器,其在在线网络服务器(Web服务器)上执行模拟(网络服务器模拟器以下被称为网络模拟器)。例如,作为现有技术的网络模拟器,已知可从Texas Instruments Incorporated获得的“WEBENCH Designer(在线)”(参见URL:在2012年5月29时的http//www.tij.co.jp/tihome/jp/docs/homepage.tsp)。
“WEBENCH Designer”是用于半导体装置的网络模拟器,该半导体装置包括用于传感器的AFE电路。在“WEBENCH Designer”中。用户可以选择要被耦合到AFE电路的传感器,并且可以配置由该传感器检测的物理量,以便执行模拟。另外,在“WEBENCH Designer”中,用户可以参考模拟结果来调整在AFE电路中嵌入的放大器的增益。
另外,作为现有技术的模拟电路模拟器,也已知在日本未审查专利申请公布No.2004-145410中公开的模拟器。
发明内容
在上述的“WEBENCH Designer”中,用户输入由传感器检测的物理量的值,并且“WEBENCH Designer”根据该物理量来执行关于传感器和AFE电路的操作的模拟。
实际上,诸如AFE电路的模拟电路需要被设计为使得诸如其响应特性和其频率特性等的其依赖于时间的特性满足所需的设计规格。
然而,在诸如“WEBENCH Designer”的现有技术的模拟器中,因为要向传感器输入的物理量可以被配置仅一个数值,所以难以执行适合于检验依赖于时间的特性等的模拟。换句话说,现有技术的模拟器具有不能有效地执行适当的模拟的问题。
将根据关于本发明的本说明书和以下的附图的描述来披露现有技术的其他问题和本发明的新特征。
根据本发明的一个方面的用于半导体装置的模拟器是用于包括电路构成(circuitry)前端电路的半导体装置的模拟器,该前端电路的电路可以被修改。该模拟器包括输入图案存储单元、电路构成配置单元、输入图案显示单元、输入图案选择单元和模拟执行单元。输入图案存储单元存储要向传感器输入的信号的多个波形图案。电路构成配置单元根据与模拟前端电路耦合的传感器来配置模拟前端电路的电路构成。输入图案显示单元显示在输入图案存储单元中存储的多个波形图案。输入图案选择单元根据用户操作从显示的多个波形图案中选择要向传感器输入的波形图案。模拟执行单元使用所选择的波形图案作为输入条件来对于传感器和具有配置电路构成的模拟前端电路的组合执行模拟。
根据本发明的方面,可以有效地执行传感器和模拟前端电路的模拟。
附图说明
图1是根据实施例的传感器系统的框图;
图2是根据该实施例的半导体装置的电路框图;
图3是示出在根据该实施例的半导体装置的电路之间的耦合关系的图;
图4是示出根据该实施例的半导体装置的电路的一个耦合示例的图;
图5是示出根据该实施例的半导体装置的电路的另一个耦合示例的图;
图6是示出根据该实施例的半导体装置的电路的一个耦合示例的图;
图7是示出根据该实施例的半导体装置的电路的另一个耦合示例的图;
图8是示出根据该实施例的半导体装置的电路的电路构成的电路图;
图9是示出根据该实施例的半导体装置的电路的修改电路构成的一个示例的电路图;
图10是示出根据该实施例的半导体装置的电路的修改电路构成的另一个示例的电路图;
图11是示出根据该实施例的半导体装置的电路的修改电路构成的另一个示例的电路图;
图12是示出根据该实施例的半导体装置的电路的修改电路构成的另一个示例的电路图;
图13是示出根据该实施例的半导体装置的电路的修改电路构成的另一个示例的电路图;
图14是示出根据该实施例的半导体装置的电路的修改电路构成的另一个示例的电路图;
图15是示出根据该实施例的半导体装置的电路构成的电路图;
图16是示出根据该实施例的半导体装置的操作的时序图;
图17是示出根据该实施例的半导体装置的电路构成的电路图;
图18是示出根据该实施例的半导体装置的电路构成的电路图;
图19是示出根据该实施例的半导体装置的电路构成的电路图;
图20是示出根据该实施例的半导体装置的电路构成的电路图;
图21是根据该实施例的另一个半导体装置的电路框图;
图22是示出根据该实施例的半导体装置的电路之间的耦合关系的图;
图23是根据该实施例的另一个半导体装置的电路框图;
图24是示出根据该实施例的半导体装置的电路之间的耦合关系的图;
图25是示出根据该实施例的半导体装置的电路的电路构成的电路图;
图26是根据该实施例的模拟系统的框图;
图27是根据该实施例的模拟系统中包括的硬件的框图;
图28A是根据该实施例的网络模拟器的功能框图;
图28B是根据该实施例的网络模拟器的功能框图;
图28C是根据该实施例的网络模拟器的功能框图;
图29是示出根据该实施例的网络模拟器的模拟方法的流程图;
图30是示出根据该实施例的网络模拟器的模拟方法的流程图;
图31是示出根据该实施例的网络模拟器的模拟方法的流程图;
图32是用于描述根据该实施例的网络模拟器的模拟方法的电路图;
图33是用于描述根据该实施例的网络模拟器的模拟方法的电路图;
图34是示出根据该实施例的网络模拟器的模拟方法的流程图;
图35是示出根据该实施例的网络模拟器的模拟方法的流程图;
图36是示出根据该实施例的网络模拟器的模拟方法的流程图;
图37是示出根据该实施例的网络模拟器的模拟方法的流程图;
图38是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图39是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图40是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图41是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图42是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图43是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图44是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图45是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图46是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图47是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图48是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图49是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图50是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图51是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图52是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图53是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图54是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图55是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图56是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图57是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图58是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图59是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图60A是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图60B是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图60C是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图61A是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图61B是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图61C是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图61D是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图62是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图63是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64A是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64B是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64C是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64D是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64E是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64F是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图64G是用于根据该实施例的网络模拟器的模拟方法的显示屏幕的显示图像图;
图65是根据该实施例的半导体装置的配置系统的框图;以及
图66是示出根据该实施例的半导体装置的配置方法的流程图。
具体实施方式
以下,将参考附图描述本发明的实施例。在这个实施例中,为了向半导体装置最佳地配置可变的电路构成和电路特性,对于等同于半导体装置的电路执行模拟。
为了更好地理解根据这个实施例的模拟器,将首先描述包括模拟目标电路的半导体装置。图1示出根据该实施例的包括半导体装置的传感器系统的配置。
如图1中所示,该系统包括传感器2与耦合到传感器2的半导体1。
作为传感器2,可以使用各种传感器,诸如:电流输出型传感器,其输出与检测结果对应的电流;电压输出型传感器,其输出与检测结果对应的电压;以及,输出与检测结果对应的弱差分信号的传感器;等等。
半导体装置1包括MCU单元200和AFE单元100。例如,半导体装置1是SoC(芯片上系统),其上安装了MCU单元200的半导体芯片和AFE单元100的半导体芯片。替代地,半导体装置1可以被在制造为包括MCU单元200和AFE单元100两者的单芯片半导体装置。另外,半导体装置1可以是仅包括MCU单元200的半导体装置和仅包括AFE单元100的半导体装置的组合。传感器2和在半导体装置1中包括的AFE单元100的组合是根据该实施例的下述模拟器的模拟目标。以下,将存在将包括AFE单元100和MCU单元200的装置称为半导体装置1的情况,并且将存在将仅包括AFE单元100的装置称为半导体装置1的另一种情况。
MCU单元(控制单元)200是微计算机,其将经由AFE单元100输入的传感器2的测量信号(检测信号)A/D转换,并且根据检测结果来执行控制处理。另外,MCU单元200向AFE单元100输出用于修改AFE单元100的电路构成和特性的配置的控制信号。
AFE单元(模拟输入单元)100是如下模拟电路,其执行模拟前端处理,诸如放大、对于从传感器2输出的测量信号的滤波,使得测量信号变为可以被MCU单元200处理的信号。另外,如图1中所示,可以修改AFE单元100的拓扑(电路构成),并且,也可以修改AFE单元100的参数(电路特性)。
如图1中所示,通过配置包括一个或多个运算放大器的电路,可以将该电路改变为I/V放大器、减法(差分)放大器、加法放大器、反相放大器、非反相放大器和仪表放大器中的任何一种。另外,通过修改作为运算放大器的示例的、在右下所示的非反相放大器的参数,可以改变运算放大器的操作点和增益,并且,可以调整运算放大器的偏移。
根据该实施例的半导体装置1可以被改变为多个类型(以下称为类型0、类型1等)的半导体装置之一,该多个类型的半导体装置1通过配置AFE单元100的内部电路而良好地适应于不同的用途。将参考图2至图20来描述被指定用于通用系统的类型0的半导体装置1,将参考图21和图22来描述被指定用于一般的测量仪表的类型1的半导体装置1,并且参考图23至图25来描述被指定用于电机控制的类型2的半导体装置1。另外,存在将类型0至类型2的半导体装置1的任何一种仅称为半导体装置1的情况。
图2示出类型0的半导体装置1的电路框图。如图2中所示,MCU单元200包括CPU核心210、存储器220、振荡器230、定时器240、I/O端口250、A/D转换器260,和SPI(串行外围接口)接口270。另外,MCU单元200包括其他电路,诸如DMA和各种计算电路,以便实现微控制器功能。
CPU核心210执行在存储器220中存储的程序,并且根据该程序来执行控制处理。存储器220存储由CPU核心210执行的程序和各种数据。振荡器230产生用于MCU单元200的操作时钟,并且如果必要则向AFE单元100提供操作时钟。定时器240用于由MCU单元200执行的控制操作。
I/O端口250作为用于在半导体装置1和外部装置之间的数据等的输入和输出的接口,并且例如,它使得半导体装置1能够耦合到外部计算机装置等,如下所述。
A/D转换器260将经由AFE单元100输入的传感器2的测量信号A/D转换。在此,从AFE单元100供应由A/D转换器260使用的电力。
SPI(串行外围接口)接口270是用于MCU单元200的接口,用于从AFE单元100输入和向AFE单元100输出数据等。另外,SPI接口270是通用串行接口,从而它使得其他微控制器/微计算机能够耦合到AFE单元100,只要它们的接口支持SPI接口。
在图2中所示的类型0的半导体装置1被配置为接受通用应用。具体而言,类型0的半导体装置1在其上安装完整的一组AFE电路,以便使得半导体装置1能够耦合到具有各种类型和特性的传感器。换句话说,AFE单元100包括可配置放大器110、同步检测支持增益放大器(也称为增益放大器)120、SC类型低通滤波器(也称为低通滤波器)130、SC类型高通滤波器(也称为高通滤波器)140、可变调节器150、温度传感器160、通用放大器170和SPI接口180。
可配置放大器110是放大电路,其放大从诸如传感器2的外部装置输入的信号,并且能够根据从MCU单元200发出的控制来配置其电路构成、其特性和其操作。可配置放大器110是三通道放大器。换句话说,可配置放大器110包括三个放大器。因为这三个放大器,所以可配置放大器110可以实现各种电路构成。
增益放大器120是同步检测支持放大电路,其放大来自可配置放大器110的输出和从诸如传感器2的外部装置发送的信号,并且能够根据从MCU单元200发出的控制来配置其特性和其操作。
低通滤波器130是SC类型滤波器,其去除从诸如可配置放大器110、增益放大器120和传感器2的外部装置发送的信号的高频分量,并且通过信号的低频分量,并且其特性和其操作是根据从MCU单元200发出的控制而可配置的。高通滤波器140是SC类型滤波器,其从可配置放大器110和增益放大器120的输出,和从来自诸如传感器2的外部装置发送的信号去除低频分量,并且通过信号的高频分量,并且,其特性和操作是根据从MCU单元200发出的控制而可配置的。
可变调节器150是向MCU200的A/D转换器260供应电压的可变电压源,并且其特性和操作是根据从MCU单元200发出的控制而可配置的。温度传感器160是测量半导体装置1的温度的传感器,并且能够根据从MCU单元200发出的控制来配置其特性和其操作。
通用放大器170是放大从诸如从传感器2的外部装置发送的信号的放大器,并且其操作是根据从MCU单元200发出的控制而可配置的。SPI接口180是如下接口,用于AFE单元100经由MCU单元200的SPI接口270和SPI总线向MCU单元200输入和从MCU单元200输出数据等。另外,如果半导体装置1不包括MCU单元200,则通过将SPI接口180耦合到半导体装置1的外部端子,AFE单元100经由外部端子被耦合到外部微控制器和外部仿真器等。
接下来,将详细描述在类型0的半导体装置1中的AFE单元100的配置。图3是示出在AFE单元100的电路之间的耦合关系的图。SPI接口180耦合到外部端子(CS、SCLK、SDO和SDI),并且包括寄存器(控制寄存器)181。从MCU单元200经由SPI接口输入用于修改电路的电路构成和特性的配置信息(设置信息),并且,在寄存器181中存储该信息。寄存器181被耦合到在AFE单元100中的每一个电路,根据在寄存器181中存储的配置信息来配置在AFE单元100中的每一个电路的电路构成和特性。
可配置放大器110包括放大器AMP1、AMP2和AMP3,并且这些放大器耦合到用于切换这些放大器的输入和输出的开关SW10至SW15。
放大器AMP1的一个输入端子经由开关SW10耦合到端子MPXIN10或端子MPXIN11的任何一个,并且另一个输入端子经由开关SW11耦合到端子MPXIN20或端子MPXIN21的任何一个,并且放大器AMP1的输出端子耦合到端子AMP1_OUT。以类似的方式,放大器AMP2的一个输入端子经由开关SW12耦合到端子MPXIN30或端子MPXIN31的任何一个,另一个输入端子经由开关SW13耦合到端子MPXIN40或端子MPXIN41的任何一个,并且放大器AMP2的输出端子耦合到端子AMP2_OUT。
另外,放大器AMP3的一个输入端子经由开关SW14耦合到MPXIN50、MPXIN51的任何一个或AMP1的输出端子,另一个输入端子经由开关SW15耦合到端子MPXIN60、MPXIN61的任何一个或AMP2的输出端子,并且,放大器AMP3的输出端子耦合到端子AMP3_OUT。AMP1、AMP2和AMP3的输出端子也耦合到增益放大器120、低通滤波器130和高通滤波器140。
如下所述修改可配置放大器110的内部电路构成和特性,因为根据寄存器181的配置值,通过切换开关SW10至SW15来修改在AMP1、AMP2和AMP3之间的耦合配置。
图4和图5是使用开关SW10至SW15来切换在AMP1、AMP2和AMP3之间的耦合的示例。在图4中,根据寄存器181的配置值,切换开关SW10和SW11,使得AMP1的输入端子耦合到端子MPXIN10和MPXIN20,切换开关SW12和SW13,使得AMP2的输入端子耦合到端子MPXIN30和MPXIN40,并且切换开关SW14和SW15,使得AMP3的输入端子耦合到端子MPXIN50和MPXIN60。利用上面的耦合,变得有可能使得AMP1、AMP2和AMP3分别作为独立的放大器操作。
在图5中,根据寄存器181的配置值,切换开关SW10,使得AMP1的一个输入端子耦合到端子MPXIN10,切换开关SW13,使得AMP2的一个输入端子耦合到端子MPXIN40,切换开关SW11和SW12,使得AMP1的另一个输入端子和AMP2的另一个输入端子彼此耦合,并且切换SW14和SW15,使得AMP3的一个输入端子耦合到AMP1的输出端子,并且AMP3的另一个输入端子耦合到AMP2的输出端子。利用上面的耦合,变得有可能配置包括AMP1、AMP2和AMP3的仪表放大器。
另外,如图3中所示,开关SW16和SW17耦合到增益放大器120,使得可以切换向增益放大器120的输入。增益放大器120的输入端子经由开关SW16和开关SW17耦合到AMP1的输出端子、AMP2的输出端子或AMP3的输出端子,并且经由开关17耦合到端子GAINAMP_IN。另外,增益放大器120的输出端子耦合到端子GAINAMP_OUT。增益放大器120的输出端子也耦合到低通滤波器130和高通滤波器140。另外,利用开关SW16,可以切换在AMP1至AMP3的输出端子和外部端子或增益放大器之间的耦合。
开关SW18和SW19耦合到低通滤波器130。以便切换向低通滤波器130的输入,并且开关SW18和开关SW20也耦合到高通滤波器140,以便切换向高通滤波器140的输入。低通滤波器130的输入端子经由开关SW16、SW17、SW18和SW19耦合到AMP1至AMP3的输出端子,经由开关SW18和SW19耦合到增益放大器120的输出端子和SC_IN,并且经由开关SW19耦合到高通滤波器140的输出端子。另外,低通滤波器130的输出端子耦合到端子LPF_OUT。高通滤波器140的输入端子经由开关SW16、SW17、SW18和SW20耦合到AMP1至AMP3的输出端子,经由开关SW18和SW20耦合到增益放大器120的输出端子和SC_IN,并且经由开关SW20耦合到低通滤波器130的输出端子。另外,高通滤波器140的输出端子耦合到端子HPF_OUT。另外,通过在低通滤波器130的输出端子和对应的外部端子之间安设开关,可以切换低通滤波器130的输出端子到外部端子的耦合和低通滤波器130的输出端子到SW20的耦合。另外,通过在高通滤波器140的输出端子和对应的外部端子之间安设开关,可以切换高通滤波器140的输出端子到该外部端子的耦合和高通滤波器140的输出端子到SW19的耦合。
通过根据寄存器181的配置值来接通和断开开关SW16至SW20来修改增益放大器120、低通滤波器130和高通滤波器140的耦合配置,并且,也如下所述修改它们的内部特性。
图6和图7是通过开关SW17至SW20执行的在增益放大器120、低通滤波器130和高通滤波器140之间的耦合切换的示例。在图6中,根据寄存器181的配置值,增益放大器120的输入端子通过切换开关SW17而耦合到AMP1、AMP2和AMP3的输出端子的任何一个,低通滤波器130的输入端子通过切换开关SW18和SW19而耦合到增益放大器120的输出端子,并且,高通滤波器140的输入端子通过切换开关SW20而耦合到低通滤波器130的输出端子。通过执行这样的切换,可以配置将AMP1、AMP2和AMP3的任何一个、增益放大器120、低通滤波器130和高通滤波器140以此顺序耦合的电路。
在图7中,根据寄存器181的配置值,增益放大器120的输入端子通过切换开关SW17而耦合到GAINAMP_IN,高通滤波器140的输入端子通过切换开关SW18和SW20耦合到SC_IN,并且,低通滤波器130的输入端子通过切换开关SW19耦合到高通滤波器140的输出端子。通过执行这样的切换,变得有可能使得增益放大器120作为独立的放大器,并且可以配置将高通滤波器140和低通滤波器130以此顺序耦合的电路。
另外,如图3中所示,可变调节器150的输出端子分别耦合到端子BGR_OUT和LDO_OUT。根据寄存器181的配置值来修改可变调节器150的特性,如下所述。
温度传感器160的输出端子耦合到端子TEMP_OUT。根据寄存器181的配置值来修改温度传感器160的特性,如下所述。
通用放大器170的输入端子之一耦合到端子AMP4_IN_NE,通用放大器170的输入端子的另一个耦合到端子AMP4_IN_PO,并且,通用放大器170的输出端子耦合到端子AMP4_OUT。通用放大器包括一个运算放大器,并且根据寄存器181的配置值来配置其电源的接通/断开操作。
接着,将参考图8至图14来描述可配置放大器110的具体电路构成。
可配置放大器110是用于放大传感器的输出信号的放大器,并且可以根据控制寄存器的配置来修改可配置放大器110的参数(特性)以及拓扑(电路构成)。特性的修改的一个示例是可以将可配置放大器的增益配置为可变。例如,在独立地使用单独放大器的情况下,可以将它们的增益配置为以2dB在6dB至46dB内,并且在将三个放大器用作仪表放大器的情况下,可以将仪表放大器的增益配置为以2dB在20dB至60dB内。另外,可以将可配置放大器110的通过率配置为可变的,并且,当可配置放大器110在电源断开模式中时,可以切换电源的接通/断开操作。
图8示出可配置放大器110的放大器AMP1的电路构成。另外,放大器AMP2和AMP3的电路构成与放大器AMP1的电路构成相同。
如图8中所示,放大器AMP1包括运算放大器111、耦合到运算放大器111的端子的可变电阻器112a至112d、开关113a至113c和DAC114。另外,如图3中所示,复用器(开关)SW10和SW11耦合到放大器AMP1。
根据寄存器181的配置值,通过复用器SW10和SW11来切换向运算放大器111的输入,开关113a在可变电阻器(输入电阻器)112a的存在和不存在之间切换,开关113b在可变电阻器(输入电阻器)112b的存在和不存在之间切换,并且开关113c切换DAC114的耦合。另外,如图3中所示,通过开关SW16、SW17和SW18来切换运算放大器111向增益放大器120、向低通滤波器130和向高通滤波器140的输出的耦合。另外,通过根据寄存器181的配置值修改可变电阻器112a、112b、112c和112d的电阻器值与DAC114的配置,可以改变AMP1的增益、操作点和偏移等。另外,可以根据寄存器181的配置值来控制放大器AMP1的电源的接通/断开操作。另外,通过根据寄存器181的配置值将运算放大器的操作模式修改为高速模式、中等速度模式或低速模式,可以控制通过率。
可配置放大器110的单独开关和复用器的切换使得有可能配置IV放大器、反相放大器、减法(差分)放大器、非反相放大器和加法放大器。
图9是示出I/V放大器的配置的示例的图。根据寄存器181的配置值,外部端子MPXIN10通过切换复用器SW10耦合到反相输入端子,并且通过接通开关113a来短路可变电阻器112a。在图9中所示的该耦合使得有可能配置I/V放大器。另外,通过根据寄存器181的配置值来修改可变电阻器112a和112d的电阻器值,配置放大器的增益。当电流型传感器的信号通过外部输入端子被输入到该I/V放大器时,该放大器将输入电流转换为电压,并且输出该电压。
图10是示出减法(差分)放大器的配置的示例的图。根据寄存器181的配置值,分别通过切换复用器SW10和SW11,将外部输入端子MPXIN10耦合到反相输入端子并且将外部输入端子MPXIN20耦合到非反相输入端子。在图10中所示的该耦合使得有可能配置减法放大器。另外,通过根据寄存器181的配置值来修改可变电阻器112a、112b和112d的电阻器值,配置放大器的增益。当两个信号(V1,V2)被从外部输入端子输入到该减法放大器时,该放大器输出通过从另一个输入电压V2减去一个输入电压V1而获得的差,即,电压(V2-V1)。
图11是示出加法放大器的配置的示例的图。在此,假定该电路包括在可变电阻器112b和反相输入端子之间的开关113d。根据寄存器181的配置值,外部输入端子MPXIN10和外部输入端子MPXIN20通过切换复用器SW10、SW11和开关113d而耦合到反相输入端子。在图11中所示的该耦合使得有可能配置加法放大器。另外,通过根据寄存器181的配置值来修改可变电阻器112a、112b和112d的电阻器值,配置放大器的增益。当将两个信号(V1,V2)从外部输入端子输入到该加法放大器内时,该加法放大器输出通过将一个输入电压V1加到另一个输入电压V2而获得的和,即,电压(V1+V2)。
图12是示出反相放大器的配置的示例的图。根据寄存器181的配置值,外部端子MPXIN10通过切换复用器SW10耦合到反相输入端子,并且DAC114的输出通过接通开关113c而耦合到非反相输入端子。在图12中所示的该耦合使得有可能配置反相放大器。另外,通过根据寄存器181的配置值而修改可变电阻器112a和112d的电阻器值,配置放大器的增益,并且通过根据寄存器181的配置值来修改DAC的输出电压,调整放大器的操作点和偏移。当电压型传感器的信号从外部输入端子被输入到该反相放大器时,该放大器反相和放大输入电压,并且输出结果电压。
图13是示出非反相放大器的配置的示例的图。根据寄存器181的配置值,DAC114的输出通过切换复用器SW10而耦合到反相输入端子,并且外部输入端子MPXIN20通过切换复用器SW11而耦合到非反相输入端子。在图13中所示的该耦合使得有可能配置非反相放大器。另外,通过根据寄存器181的配置值修改可变电阻器112a和112d的电阻器值,配置放大器的增益,并且通过根据寄存器181的配置值来修改DAC的输出电压,调整放大器的操作点和偏移。当电压型传感器的信号从外部输入端子被输入到该非反相放大器时,该放大器非反相地放大输入电压,并且输出结果电压(其具有与输入电压的相位相同的相位)。
图14是示出包括放大器AMP1至AMP3的仪表放大器的配置的示例的图。如图5中所述,通过根据寄存器181的配置值,利用复用器(开关)SW10至SW15来耦合AMP1至AMP3,可以配置在图14中所示的仪表放大器。另外,虽然未示出开关,但是通过在AMP1中接通开关113b来短路可变电阻器112b,通过在AMP2中接通开关113b来短路可变电阻器112b,并且,通过在AMP3中接通开关113c来将DAC114耦合到非反相输入端子。
另外,通过根据寄存器181的配置值来修改在放大器AMP3中的增益放大器120a和112d的电阻器值,配置仪表放大器的增益,并且通过根据寄存器181的配置值来修改DAC114的输出电压,调整仪表放大器的操作点和偏移。当彼此具有弱差分的两个信号被从两个外部输入端子输入到该仪表放大器时,AMP1和AMP2分别和非反相地放大这些信号,并且然后,AMP3差分地放大由AMP1和AMP2非反相地放大的信号,并且输出结果电压。
接着,将参考图15至图20来描述在AFE单元100中的其他电路的具体电路构成。
图15是示出增益放大器120的电路构成的图。增益放大器120支持同步检测功能,并且执行对输入信号的放大和同步检测。作为增益放大器120的特性的修改之一,增益放大器120可以被配置为使得其增益可变。例如,可以配置为使得该增益以2dB在6dB至46dB内可变。另外,当增益放大器在电源断开模式中时,可以切换增益放大器的电源的接通/断开操作。
如图15中所示,增益放大器120包括运算放大器AMP21和AMP22,并且增益放大器120进一步包括可变电阻器121a、121c、固定电阻器121b、122a、122b、122c和DAC123,其全部分别耦合到运算放大器AMP21和AMP22的输入或输出端子。另外,如图3中所示,复用器(开关)SW17耦合到增益放大器120。另外,增益放大器120包括同步检测开关124和作为同步检测控制单元的固定电阻器125。
根据寄存器181的配置值,控制复用器SW17以切换向增益放大器120的输入。另外,通过根据寄存器181的配置值来修改可变电阻器121a和121c的电阻器值和DAC123的配置,可以改变AMP21的增益、AMP21和AMP22的操作点和偏移等。另外,可以根据寄存器181的配置值来控制向运算放大器AMP21和AMP22的电源的接通/断开操作。
在增益放大器120中,从AMP1至AMP3或从外部端子输入的信号被AMP21反相地放大,并且进一步被AMP22反相地放大。随后,向端子GAINAMP_OUT输出该信号。
另外,从MCU单元200输入同步时钟CLK_SYNCH,并且,按同步时钟CLK_SYNCH的时序来切换同步检测开关124的耦合,因此,向端子SYNCH_OUT输出AMP21的输出信号和AMP22的输出信号的任何一个。
图16A至16D示出用于示出增益放大器120的输出操作的时序图。如图16A中所示,AMP21输出输入信号的反相信号,并且如图16B中所示,AMP22输出从AMP21发送的信号的反相信号。该AMP22的输出信号作为从增益放大器120的输出被输出到端子GAINAMP_OUT。
MCU单元200耦合到端子GAINAMP_OUT,并且与从端子GAINAMP_OUT输出的信号同步地产生时钟。在该情况下,如图16C中所示,MCU单元200产生CLK_SYNCH,当从端子GAINAMP_OUT输出的信号高于标准值时,CLK_SYNCH的电平变高。随后,向增益放大器120供应该同步时钟CLK_SYNCH。
同步检测开关124与同步时钟CLK_SYNCH同步地在AMP21到端子SYNCH_OUT的耦合和AMP22到端子SYNCH_OUT的耦合之间切换。具体地说,当时钟CLK_SYNCH的电平低时,AMP21耦合到端子SYNCH_OUT,并且,AMP21的输出被发送到端子SYNCH_OUT,并且当时钟CLK_SYNCH的电平高时,AMP22耦合到端子SYNCH_OUT,并且AMP22的输出被发送到端子SYNCH_OUT。结果,如图16D中所示,执行同步检测,并且从端子SYNCH_OUT输出全波整流信号。
图17是示出低通滤波器130的电路构成的图。低通滤波器130是具有可变截止频率的SC(开关电容器)类型低通滤波器,并且用于滤波输入信号。
低通滤波器130具有诸如0.702的固定Q值。作为低通滤波器130的特性的修改之一,可以将截止频率配置为可变。例如,可以将截止频率配置为在9Hz至900Hz内的频率。此外,当低通滤波器在电源断开模式时,可以切换低通滤波器的电源的接通/断开操作。
如图17中所示,低通滤波器130包括:切换信号产生单元131,其产生切换信号;以及,滤波器单元132,其根据切换信号来滤波输入信号。
切换信号产生单元131包括触发器133和多个反相器134。滤波器单元132包括多个运算放大器135、耦合到运算放大器135的多个开关136、多个电容器137和被DAC138控制的可变电压源139。另外,如图3中所示,复用器(开关)SW19耦合到低通滤波器130。
根据寄存器181的配置值,复用器SW19被控制以切换向低通滤波器130的输入。另外,通过根据寄存器181的配置值来修改DAC138的配置,控制可变电压源139,使得可以改变运算放大器的操作点和偏移等。另外,根据寄存器181的配置值,可以切换低通滤波器130的电源的接通/断开操作。
在低通滤波器130中,从外部向切换信号产生单元131输入时钟CLK_LPF,并且,通过触发器133和反相器134来产生切换信号Φ1和Φ2。在滤波器单元132中,当从外部端子或增益放大器120等输入信号时,经由三个运算放大器135来输出该信号。在该情况下,切换信号Φ1和Φ2以将开关136接通/断开,使得切换电容器137的耦合。结果,经由该三个运算放大器输出的信号变为其高于截止频率的频率分量被去除的信号,并且输出该信号。
可以通过MCU单元200使用从外部发送的时钟CLK_LPF来修改截止频率。具体地说,截止频率fc=0.009×fCLK_LPF/2。
图18是示出高通滤波器140的电路构成的图。高通滤波器140是其截止频率可变的SC类型高通滤波器,并且用于滤波输入信号。
高通滤波器140具有例如0.702的固定Q值。作为高通滤波器的特性的修改之一,可以将截止频率配置为可变。例如,可以将截止频率配置为在8Hz至800Hz内的频率。另外,当高通滤波器在电源断开模式中时可以切换高通滤波器的电源的接通/断开操作。
如图18中所示,高通滤波器140包括:切换信号产生单元141,其产生切换信号;以及,滤波器单元142,其根据该切换信号来滤波输入信号。
切换信号产生单元141包括触发器143和多个反相器144。滤波器单元142包括多个运算放大器145、耦合到运算放大器145的多个开关146、多个电容器147和被DAC148控制的可变电压源149。另外,如图3中所示,复用器(开关)SW20耦合到高通滤波器140。
根据寄存器181的配置值,复用器SW20被控制以切换向高通滤波器140的输入。另外,通过根据寄存器181的配置值来修改DAC148的配置,来控制可变电压源149,使得可以改变运算放大器的操作点和偏移等。另外,根据寄存器181的配置值可以切换高通滤波器140的电源的接通/断开操作。
在高通滤波器140中,从外部向切换信号产生单元141输入时钟CLK_HPF,并且,通过触发器143和反相器144来产生切换信号Φ1和Φ2。在滤波器单元142中,当从外部端子或增益放大器120等输入信号时,经由三个运算放大器145来输出信号。在该情况下,切换信号Φ1和Φ2以将开关146接通/断开,使得切换电容器147的耦合。结果,经由三个运算放大器输出的信号变为其低于截止频率的频率分量被去除的信号。
可以通过MCU单元200使用从外部发送的时钟CLK_HPF来修改该截止频率。具体地说,截止频率fc=0.008×fCLK_HPF/2。
图19是示出可变调节器150的电路构成的图。可变调节器150是可以输出可变输出电压的调节器,并且它是用于MCU单元200的A/D转换器260的参考电源产生电路。作为可变调节器150的特性的修改的一个示例,可变调节器150的输出电压可以被配置为以0.5%的精度以0.1V在2.0V和3.3V内可变。另外,输出电路是15mA,并且可以控制输出电源的接通/断开操作。
如图19中所示,可变调节器150包括运算放大器151,并且进一步包括:带隙参考BGR,其耦合到运算放大器151的输入侧;晶体管152和153,其耦合到运算放大器151的输出侧;固定电阻器154;以及,可变电阻器155。
根据寄存器181的配置值,配置BGR的电压,并且修改可变电阻器155的电阻器值,使得可以修改可变调节器150的输出电压。另外,根据寄存器181的配置值,切换运算放大器151的接通/断开操作和晶体管153的接通/断开操作,使得控制输出电压的输出开始/停止操作。
在可变调节器150中,从端子BGR_OUT输出BGR的电压。根据BGR的电压和可变电阻器155的电压,运算放大器151操作,并且控制晶体管152,使得根据固定电阻器154与可变电阻器155的比率来输出电压。
图20是示出温度传感器160的电路构成的图。温度传感器160是用于测量半导体装置1的温度的传感器,并且MCU单元200使用这个测量结果来执行对半导体装置的温度特性的校正等。例如,作为温度传感器160的温度特性之一,输出温度系数是-5mV/°C。另外,当温度传感器在电源断开模式中时,可以切换电源的接通/断开操作。
如图20中所示,温度传感器160包括运算放大器161,并且进一步包括:电流源162和二极管163,它们耦合到运算放大器161的输入侧;以及,固定电阻器164和165,它们耦合到运算放大器161的输出侧。根据寄存器181的配置值,可以切换运算放大器的电源的接通/断开操作。
在温度传感器160中,二极管163的电压以-2mV/°C的速率变化,并且该电压被运算放大器161非反相地放大,使得从运算放大器161输出的电压以-5mV/°C的速率变化。
如上所述,类型0的半导体装置1包括AFE单元100,该AFE单元100的电路构成和特性可以被配置为可变。因此,诸如类型0的半导体装置1的仅一种类型的半导体装置可以耦合到各种传感器等,这导致在许多应用系统中的各种用途。
例如,如果使得可配置放大器110的电路构成是非反相放大器的电路构成,则电压输出型传感器可以耦合到半导体装置1,因此,半导体装置1可以用于使用红外线传感器、温度传感器或磁传感器等的应用系统。作为一些示例,可以设想,半导体装置1用于包括红外线传感器的数字相机、包括温度传感器的打印机、包括磁传感器的平板终端或包括红外线传感器的空调等。
另外,如果使得可配置放大器110的电路构成是仪表放大器的电路构成,则因为具有弱差分输出的传感器可以耦合到半导体装置1,所以半导体装置1可以用于使用应力传感器、陀螺传感器或冲击传感器等的应用系统。作为一些示例,能够设想半导体装置1用于包括压力传感器的血压监测器、包括应力传感器的浴室秤、包括陀螺传感器的蜂窝电话或包括冲击传感器的液晶电视机等。
另外,如果使得可配置放大器110的电路构成是I/V放大器的电路构成,则因为电流输出型传感器可以耦合到半导体装置1,所以半导体装置1可以用于使用光电二极管、人检测传感器或红外线传感器等的应用系统。作为一些示例,可以设想半导体装置1用于包括光电二极管的数字相机、包括人检测传感器的马桶座圈、或包括红外线传感器的条形码读取器。
图21是示出类型1的半导体装置1的电路块的图。在图2中所示的类型0的半导体装置1被配置为良好地适应于通用系统,从而它包括可以接受各种类型的传感器的AFE电路。另一方面,类型1的半导体装置1被配置为良好地适应于普通测量仪表,并且包括仅对于在该普通测量仪表上安装的传感器所需的AFE电路。
如图21中所示,类型1的半导体装置1包括:MCU单元200,其电路构成与在图2中所示的MCU单元的电路构成相同;以及,AFE单元100,其包括仪表放大器190、可变调节器150、温度传感器160和SPI接口180。与图2中所示的半导体装置1作比较,类型1的半导体装置1不包括可配置放大器、同步检测支持增益放大器、SC类型低通滤波器、SC类型高通滤波器、通用放大器,并且相反仅包括仪表放大器。关于可变调节器150、温度传感器160和SPI接口180,它们与在图2中所示的那些相同。
接受由普通测量仪表使用的传感器的仪表放大器190是能够放大弱差分信号的放大电路。仪表放大器190是与由在图2中所示的可配置放大器110供应的仪表放大器的电路类似的电路。仪表放大器190是固定的,并且仅可以修改仪表放大器190的特性。
图22是示出在类型1的半导体装置1的AFE单元100中的电路之间的耦合关系的图。可变调节器150、温度传感器160和SPI接口180与在图3中所示的那些相同。
因为仪表放大器190的电路构成固定,所以仪表放大器190不包括用于切换电路构成的开关(复用器)。仪表放大器190的一个输入端子耦合到端子AMP_IN1,另一个输入端子耦合到端子AMP_IN2,并且,仪表放大器190的输出端子耦合到端子AMP_OUT。另外,可以设想,仪表放大器190包括用于从到外部端子的多个耦合选择的开关。
将省略关于类型1的半导体装置的AFE单元100的电路的具体电路构成的说明,因为它们与在图2中所示的类型0的半导体装置1的那些相同。换句话说,仪表放大器190的电路构成与图14中所示的相同,并且如图14中所示,可以通过修改电阻器值来配置仪表放大器190的增益,并且,可以通过修改DAC的配置来改变仪表放大器190的操作点和偏移。
如上所述,因为类型1的半导体装置1的AFE单元100的电路构成固定,所以仅AFE单元100的特性可以被配置为可修改。因此,诸如类型1的半导体装置1的仅一种类型的半导体装置可以用于具有各种特性的特定传感器,这导致在特定应用系统中的各种用途。
例如,如在类型0的半导体装置中配置的仪表放大器的情况,类型1的半导体装置的半导体装置可以用于使用输出弱差分输出的应力传感器、陀螺传感器或冲击传感器等的应用系统。
图23示出类型2的半导体装置1的电路框图。在图2中所示点类型0的半导体装置1被配置为良好地适应于通用系统,并且包括可以接受各种类型的传感器的AFE电路。另一方面,类型2的半导体装置1被配置得良好地适应于电机控制,并且包括仅用于电机控制所需的AFE电路。
如图23中所示,类型2的半导体装置1包括:MCU单元200,其电路构成与在图2中所示的MCU单元的电路构成相同;以及,AFE单元100,其包括嵌入比较器的高速仪表放大器191、温度传感器160和SPI接口180。与在图2中所示的半导体装置作比较,类型2的半导体装置1不包括可配置放大器、同步检测支持增益放大器、SC类型低通滤波器、SC类型高通滤波器、通用放大器、可变调节器,并且相反仅包括嵌入比较器的高速仪表放大器191。关于温度传感器160和SPI接口180,它们与在图2中所示的那些相同。
嵌入比较器的高速仪表放大器(也被简称为高速仪表放大器)191可以用于电机控制,并且是能够高速放大弱差分信号的放大电路,并且进一步包括用于比较输出电压的比较器。AFE单元100包括多个高速仪表放大器(多通道高速仪表放大器)191,以便使得有可能控制多相电机。在这种情况下,假定AFE单元100包括四个高速仪表放大器(四通道高速仪表放大器)。高速仪表电路191的电路构成是固定的,并且仅可以修改仪表电路191的特性。
图24是示出在类型2的半导体装置1的AFE单元100中的电路之间的耦合关系的图。温度传感器160和SPI接口180与在图3中所示的那些相同。
因为高速仪表放大器191的电路构成是固定的,所以仪表放大器191不包括用于切换电路构成的开关(复用器)。四个高速仪表放大器191-1至191-4的电路构成分别彼此独立。
换句话说,高速仪表放大器191-1至191-4的每一个的一个输入端子耦合到在端子AMP_IN10、AMP_IN20、AMP_IN30和AMP_IN40中的对应的端子,高速仪表放大器的每一个的另一个输入端子耦合到在端子AMP_IN11、AMP_IN21、AMP_IN31和AMP_IN41中的对应的端子,高速仪表放大器的每一个的输出端子耦合到在端子AMP_OUT1、AMP_OUT2、AMP_OUT3和AMP_OUT4中的对应的端子,并且,比较器的每一个的输出端子耦合到在端子COMP_OUT1、COMP_OUT2、COMP_OUT3和COMP_OUT4中的对应的端子。另外,可以设想,仪表放大器190包括用于从到外部端子的多个耦合中选择的开关。
图25是示出高速仪表放大器191的具体电路构成的图。高速仪表放大器191是良好地适应于电机控制的嵌入比较器的高速仪表放大器,并且放大用于电机控制的传感器的输出信号,并且执行电压比较。作为高速仪表放大器191的特性的修改之一,可以将增益配置为可变。例如,增益可以被配置为以2dB在10dB至34dB内可变。另外,高速仪表放大器191的通过率可以被配置为是可变的,并且当高速仪表放大器191在电源断开模式中时,可以切换高速仪表放大器191的电源的接通/断开操作。
另外,高速仪表放大器191嵌入用于比较高速仪表放大器的输出的比较器,并且该比较器被配置为使得比较器的滞后电压和参考电压可变。
如图25中所示,高速仪表放大器191包括作为仪表放大器一致地操作的运算放大器192a和192b、作为滞后比较器操作的运算放大器192c,并且进一步包括耦合到运算放大器192a至192c的可变电阻器193a至193c、固定电阻器194a和194b与DAC195a和195b。
通过根据寄存器181的配置值来修改可变电阻器193a至193c的电阻器值和DAC195a的配置,可以改变高速仪表放大器191的增益、操作点和偏移。另外,根据DAC195b的配置,可以改变比较器的参考电压。另外,根据寄存器181的配置值,可以控制运算放大器192a至192c的电源的接通/断开操作。
在高速仪表放大器191中,当经由一对外部输入端子AMPINMn和AMPINPn(在该情况下,对应于一对AMP_IN10和AMP_IN11至一对AMP_IN40和AMP_IN41的任何一个)输入差分信号时,差分信号被包括两个运算放大器192a和192b的仪表放大器迅速地和非反相地放大,并且放大的信号被输出到端子AMPOUTn(对应于AMP_OUT1至AMP_OUT4的任何一个)。另外,通过包括运算放大器192c的滞后比较器将向端子AMPOUTn输出的输出信号与参考电压作比较,并且,结果产生的信号被输出为比较信号。在此,MCU单元200根据从端子AMPOUTn和COMPOUTn输出的信号来执行电机控制。
如上所述,因为类型2的半导体装置1的AFE单元100的电路构成固定,所以仅AFE单元100的特性可以被配置为可修改。因此,仅诸如类型2的半导体装置1的一种类型的半导体装置可以用于具有各种特性的特定传感器,这导致在特定应用系统中的各种用途。具体地说,类型2的半导体装置1可以耦合到用于多相电机的驱动电路。
利用上述的半导体装置1的任何一个,可以带来下面的有益效果。首先,可以实现半导体装置1的尺寸减小和减少由半导体装置1消耗的电力。因为在半导体装置1中包括MCU单元和AFE单元的电路,所以与包括在安装板上安装的多个模拟电路IC的装置作比较,可以实现半导体装置的尺寸减小。另外,对于对低功耗模式的请求,AFE单元的电源可以被配置为断开,并且MCU单元可以被配置为被置于休眠模式内,这导致减小由半导体装置消耗的电力。
另外,可以缩短模拟IC的开发过程。具体而言,因为需要诸如电路设计、掩膜设计、掩膜制造和样品制造的几个处理,通常需要三至八月来开发良好地适应于传感器的模拟IC。在上述情况下,因为可以仅通过修改半导体装置1的配置来获得良好地适应于传感器的模拟电路,所以可以完成包括期望的模拟电路的半导体装置的开发,而不用从电路设计至样品制造的开发过程。因此,可以在短时间段内完成传感器的开发,并且可以迅速和及时地将该系统投入市场。
另外,仅半导体装置1可以接受多个应用系统。因为可以自由地修改半导体装置1的电路构成,所以半导体装置1可以耦合到各种传感器,诸如电流型传感器和电压型传感器。结果,因为不必开发对于各种传感器中的每一种专用的半导体装置,所以可以缩短用于开发良好地适应于传感器的半导体装置所需的时间段。
另外,如上所述,类型1的半导体装置1可以被配置为良好地适应于普通测量仪表,并且仅包括用于普通测量仪表所需的仪表放大器等,并且类型2的半导体装置1被配置为良好地适应于电机控制,并且仅包括用于电机控制所需的高速仪表放大器。因此,因为类型1的半导体装置1和类型2的半导体装置1不包括多余的电路,所以它们的电路变得简单,使得可以实现半导体装置的尺寸缩小,并且也可以实现减少由半导体装置消耗的电力。
在上述半导体装置1中,因为需要根据要耦合到半导体装置1的传感器而确定AFE单元100的配置和特性,所以在使用传感器和半导体装置1的传感器系统的设计开发期间对于传感器和半导体装置1的操作执行模拟。以下将描述在包括传感器和半导体装置1的传感器系统的开发过程期间执行的模拟。在该情况下,虽然主要使用仅包括AFE单元100的半导体装置作为模拟对象来进行说明,但是也可以在包括AFE单元100和MCU单元200两者的半导体装置1上执行模拟。
图26是示出根据这个实施例的用于模拟半导体装置1的操作的模拟系统(设计支持系统)的配置的图。
如图26中所示,该模拟系统包括用户终端3和网络模拟器4,它们两者经由网络5耦合以便彼此通信。用户终端3主要包括网络浏览器300和存储单元310。网络模拟器4主要包括网络服务器400、模拟控制单元410和存储单元420。
网络5例如是因特网,并且是用户终端3和网络模拟器4可以在其间发送网页信息所经由的网络。网络5可以或者是有线网络或是无线网络。
用户终端3的网络浏览器300基于从网络服务器400接收的网页信息来在显示装置上显示网页。网络浏览器300也是接收从用户发送的操作的用户界面,并且根据用户操作来访问网络服务器400以便使得网络模拟器4执行模拟。
用户终端3的存储单元310存储用于实现用户终端3的功能的各种数据和程序等。另外,如下所述,存储单元310从网络模拟器4下载和存储寄存器信息。在半导体装置1的寄存器181中设置该寄存器信息。
网络模拟器4的网络服务器400是向网络浏览器300提供网络模拟器4的网络服务的服务器。网络服务器400接收来自网络浏览器300的访问,并且根据该访问来发送要在网络浏览器300上显示的网络信息。
网络模拟器4的模拟控制单元410实现在传感器和半导体装置1上执行的模拟功能。如下所述,网络模拟器4配置作为模拟目标的传感器和半导体装置1的电路构成,并且设置模拟所需的参数,并且执行该模拟。
网络模拟器4的存储单元420存储用于实现网络模拟器4的功能的各种数据和程序等。如下所述,存储单元420存储关于可选择的传感器的信息、关于适合于传感器的偏置电路的信息和关于适合于传感器和偏置电路的模拟电路的信息等。
用户终端3是诸如作为客户机装置操作的个人计算机的计算机装置,并且,网络模拟器4是诸如作为服务器装置操作的工作站的计算机装置。图27是示出用于实现用户终端3或网络模拟器4的硬件配置的示例的图。另外,用户终端3或网络模拟器4可以不仅由单个计算机而且由多个计算机配置。
如图27中所示,用户终端3或网络模拟器4是普通计算机装置,并且包括中央处理单元(CPU)31和存储器34。CPU31和存储器34经由总线耦合到作为辅助存储装置的硬盘装置(HDD)35。用户终端3作为用户界面硬件例如包括:用于用户执行输入操作的指示装置(鼠标或游戏棒等)、诸如键盘的输入装置32、用于向用户提供诸如GUI的可视化数据的诸如CRT或液晶显示器的显示装置33。可以设想,网络模拟器4也包括用户界面硬件,如用户终端3的情况。
诸如HDD35等的存储介质可以存储浏览器程序和模拟程序,该浏览器程序和模拟程序向CPU31等发出指令并且与操作系统合作地执行用户终端3和网络模拟器4的功能。这些程序在它们被加载到存储器34内后被执行。
另外,用户终端3或网络模拟器4包括用于要耦合到外部装置的用户终端3或网络模拟器4的输入/输出(I/O)接口36和NIC(网络接口卡)37。例如,用户终端3包括用于要耦合到半导体装置1等的用户终端3的USB,作为输入/输出接口36。用户终端3和网络模拟器4分别包括以太网(注册商标)卡,作为用于要耦合到网络5的用户终端3和网络模拟器4的NIC37。
图28A是示出网络模拟器4的模拟控制单元410的功能块和在存储单元420中存储的各种数据的图。在此,由图28A所示的配置是示例,并且,任何其他配置是可行的,只要它可以实现由图29和随后的图示出的多个处理和屏幕显示。
模拟控制单元410通过由CPU31执行的对应的模拟程序来实现用于模拟的在图28中的单元的功能。如图28中所示,模拟控制单元410主要包括网页处理单元411、电路配置单元412、参数设置单元413、模拟执行单元415和寄存器信息产生单元416。另外,模拟执行单元415包括物理量转换单元(物理量至电特性转换功能)450、自动配置单元451、暂态分析单元452、AC分析单元453、滤波效果分析单元454和同步检测分析单元455。
通过HDD35和存储器34来实现存储单元420。如图28A中所示,存储单元420包括传感器数据库421、传感器偏置电路数据库422、可配置模拟电路数据库423、AFE数据库424、网页信息存储单元425、电路信息存储单元426、参数存储单元427、结果信息存储单元428、寄存器信息存储单元429和输入图案存储单元430。
传感器数据库421是存储各个传感器的数据表的数据库。传感器的数据表包括关于传感器的类型和传感器的特性等的信息。传感器和它们的类型和特性被彼此相关联地存储在传感器数据库421中。
传感器偏置电路数据库422是存储可以用于各个传感器的偏置电路(偏置方法)的数据库。关于偏置电路的信息包括关于在偏置电路中包括的元件的信息、关于在该元件之间的耦合关系的信息和关于偏置电路的输出端子的信息。传感器偏置电路数据库422彼此相关联地存储单独传感器和对应的偏置电路。
可配置模拟电路数据库423是用于选择对于传感器和对应的传感器偏置电路的组合的最佳模拟电路的数据库。关于可配置模拟电路的信息包括关于半导体装置1的可配置放大器110的配置和输入端子的信息。可配置模拟电路数据库423彼此相关联地存储传感器和对应的偏置电路的组合与可配置放大器110。
AFE数据库424是存储半导体装置1的数据表的数据库。数据表特别包括AFE单元100的电路构成和特性,用于模拟半导体装置1的AFE单元100。AFE数据库424彼此相关联地存储半导体装置1的电路构成和对应的AFE单元100的电路构成。例如,AFE数据库424存储上述的类型0至类型2的半导体装置1的数据表。
网页信息存储单元425存储用于在用户终端3的网络浏览器300上显示各种屏幕的网页信息。该网页信息是用于显示包括当模拟半导体装置1时使用的GUI的网页(屏幕)的信息。
电路信息存储单元426存储关于模拟目标电路的电路信息。该电路信息包括关于传感器、偏置电路、AFE单元100的电路元件和在该元件之间的耦合关系的信息。参数存储单元427存储用于执行模拟所需的参数作为模拟条件。这些参数包括关于物理量等的输入信息以及电路参数等。
结果信息存储单元428存储关于模拟的结果的结果信息。该结果信息包括作为暂态分析模拟、AC分析模拟和同步检测分析模拟的结果而获得的AFE单元100的各个电路的输入和输出波形。寄存器信息存储单元429存储在半导体装置1的寄存器181中配置的寄存器信息(配置信息)。输入图案存储单元430存储关于向传感器输入的信号的多个波形图案的信息。输入图案存储单元430存储稍后描述的正弦波、方波、三角波和阶梯响应作为输入图案。
网页处理单元(网页显示单元)411通过经由网络服务器400向用户终端3发送在网页信息存储单元425中存储的网页信息来在网络浏览器300上显示包括GUI的网页(屏幕)。另外,网页处理单元(网页显示单元)411从用户终端3接收由用户对于GUI进行的输入操作。
网页处理单元411包括用于显示各种屏幕的显示单元。具体地说,网页处理单元411包括传感器显示单元411a、偏置电路显示单元411b、AFE显示单元411c和输入图案显示单元411d。传感器显示单元411a参考传感器数据库421来显示与由用户选择的传感器的类型对应的多个传感器。偏置电路显示单元411b参考传感器偏置电路数据库422来显示与所选择的传感器对应的多个偏置电路。AFE显示单元(半导体装置显示单元)411c参考AFE数据库424来显示每一个包括具有配置的电路构成的可配置放大器110的多个半导体装置1。输入图案显示单元411d显示在输入图案存储单元430中存储的多个波形图案。
电路配置单元412基于在网页(屏幕)上由用户执行的输入操作来产生电路信息,并且在电路信息存储单元426中存储该信息。电路配置单元412根据传感器、偏置电路和半导体装置1的选择来产生该电路信息。具体地说,电路配置单元412包括传感器选择单元412a、偏置电路选择单元412b和AFE配置选择单元412c。
传感器选择单元412a基于与通过用户操作从在传感器数据库421中存储并且在传感器显示单元411a上显示的多个传感器选择的传感器有关的信息来产生电路信息,偏置电路选择单元412b基于与通过用户操作从良好地适应于所选择的传感器并且在偏置电路显示单元411b显示的多个偏置电路选择的偏置电路有关的信息来产生电路信息。AFE配置选择单元(电路配置单元)412c通过参考可配置模拟电路数据库423,指定良好地适应于所选择的传感器和偏置电路的可配置放大器110的电路构成和耦合关系,来产生电路信息。另外,AFE配置选择单元(半导体装置选择)412c基于由用户操作从在AFE数据库424中包括和在AFE显示单元411c上显示的多个半导体装置1选择的半导体装置1的信息来产生电路信息。
参数设置单元413基于由用户执行的在网页(屏幕)上的输入操作来产生用于执行模拟的参数,并且在参数存储单元427中存储该参数。参数设置单元(输入图案选择单元)413产生关于要向传感器输入的物理量的输入图案的信息,其中,通过用户操作从由输入图案显示单元411d示出的多个波形图案选择物理量的输入图案。
模拟执行单元415参考电路信息存储单元426和参数存储单元427,基于存储的电路信息和参数来执行模拟。
物理量转换单元450将由向传感器输入的信息表示的物理量转换为由传感器输出的电信号。物理量转换单元450参考参数存储单元427,根据所配置的物理量的输入图案来产生与以时间序列顺序变化的物理量对应的传感器的输出信号。
自动配置单元(电路特性配置单元)451自动地配置AFE单元100的电路特性,并且使得参数存储单元427存储所配置的参数。自动配置单元451参考电路信息存储单元426,对于所配置的传感器和偏置电路的电路构成和所配置的可配置放大器110的电路构成,自动地配置可配置放大器110的适当增益和偏移。自动配置单元451对于可配置放大器110的操作执行模拟,并且调整可配置放大器110的DAC电压和增益等,使得可配置放大器110的增益和偏移变为最佳。
暂态分析单元452模拟AFE单元100的输入和输出特性,以分析暂态特性,并且使得结果信息存储单元428存储模拟结果。暂态分析单元452参考电路信息存储单元426和参数存储单元427,来模拟具有利用各个参数作为模拟条件配置的电路布局的AFE单元100的电路操作,并且暂态分析单元452产生示出AFE单元100的输入和输出特性的波形。暂态分析单元452使用通过物理量转换单元450转换以时间系列顺序输入的物理量的输入图案而获得的传感器输出信号作为向AFE单元100的输入信号,来模拟AFE单元100的操作,并且产生AFE单元100的各个电路的时间序列输出信号。
AC分析单元453模拟AFE单元100的频率特性以分析AC特性,并且使得结果信息存储单元428存储模拟结果。AC分析单元453参考电路信息存储单元426和参数存储单元427,来模拟具有利用各个参数作为模拟条件配置的电路构成的AFE单元100的电路操作,并且AC分析单元453产生示出AFE单元100的频率特性的波形。AC分析单元453产生用于每一个频率的物理量的输入图案,使用通过物理量转换单元450转换每一个频率的物理量的输入图案而获得的传感器输出信号作为向AFE单元100的输入信号,来模拟仪表放大器的操作,并且产生用于AFE单元100的各个电路的每一个频率的输出信号。
滤波效果分析单元454模拟位于噪声环境中的AFE单元100的输入和输出特性以分析滤波效果,并且使得结果信息存储单元428存储模拟结果。滤波效果分析单元454参考电路信息存储单元426和参数存储单元427来模拟具有利用各个参数作为模拟条件配置的电路构成的AFE单元100的电路操作,并且滤波效果分析单元454产生示出位于噪声环境中的AFE单元100的输入和输出特性的波形。滤波效果分析单元454向以时间序列顺序输入的物理量的输入图案加上噪声,并且使用通过物理量转换单元450转换增加噪声的信号而获得的传感器输出信号作为向AFE单元100的输入信号,来模拟AFE单元100的操作,并且滤波效果分析单元454产生用于AFE单元100的各个电路的时间序列输出信号。
同步检测分析单元455模拟AFE单元100的同步操作,以分析同步检测操作,并且使结果信息存储单元428存储模拟结果。同步检测分析单元455参考电路信息存储单元426和参数存储单元427,来模拟具有利用各个参数作为模拟条件配置的电路构成的AFE单元100的电路操作,并且同步检测分析单元455产生示出同步检测操作的波形。同步检测分析单元455使用以时间序列顺序输入的物理量的输入图案和如图16中所示的同步时钟作为向AFE单元100的输入信号,来模拟AFE单元100的操作,并且产生AFE单元100的各个电路的时间序列输出信号。
寄存器信息产生单元416产生在半导体装置1的寄存器181中配置的寄存器信息,并且使得寄存器信息存储单元429存储该寄存器信息。寄存器信息产生单元416参考电路信息存储单元426和参数存储单元427,根据配置为模拟目标的AFE单元100的电路构成和电路特性来产生寄存器信息。
另外,如图28B或在图28C中所示,可以将网络模拟器4配置为从在图28A中所示的块中选择的一些块。例如,在图28B中所示的网络模拟器4至少包括在图28A中所示的单元中的传感器偏置电路数据库422、传感器选择单元412a、偏置电路显示单元411b、偏置电路选择单元412b、电路构成配置单元(AFE配置选择单元)412c和模拟执行单元415。
具体地说,在图28B中,传感器选择单元412a选择要耦合到半导体装置1的传感器,传感器偏置电路数据库422彼此相关联地存储传感器和向传感器供应偏置信号的多个偏置电路,并且偏置电路显示单元411b参考传感器偏置电路数据库422显示与所选择的传感器对应的多个偏置电路。偏置电路选择单元412b根据用户操作从在所显示的多个配置电路中选择要耦合到所选择的传感器的偏置电路。电路配置单元412c配置要耦合到所选择的传感器和偏置电路的半导体装置1的电路构成。模拟执行单元415对于所选择的传感器、偏置电路和具有所配置的电路构成的半导体装置1执行模拟。在网络模拟器4被至少配置有在图28B中所示的单元的情况下,可以从与所选择的传感器对应的多个偏置电路中选择最佳的偏置电路,并且可以通过网络模拟器来有效地执行模拟。
替代地,如图28C中所示,至少包括在图28A中所示的单元中的输入图案存储单元430、电路构成配置单元(AFE配置选择单元)412c、输入图案显示单元411d、输入图案选择单元(参数设置单元)413和模拟执行单元415的网络模拟器4也是可设想的。
具体地说,在图28C中,电路构成配置单元412c根据要耦合到半导体装置1的传感器来配置半导体装置1的电路构成。输入图案存储单元430存储要输入到传感器的多个波形图案,并且输入图案显示单元411d显示在输入图案存储单元430中存储的多个波形图案。输入图案选择单元413根据用户操作从显示的多个波形图案选择要输入到传感器的波形图案。模拟执行单元415使用所选择的波形图案作为输入条件,对于传感器和具有配置的电路构成的模拟前端电路的组合执行模拟。在网络模拟器4被至少配置有在图28C中所示的单元的情况下,可以从向传感器输入的波形图案选择期望的波形图案,并且可以通过网络模拟器来有效地执行模拟。
接下来,将参考图29至图37来描述在根据这个实施例的模拟系统中执行模拟的模拟方法。在该模拟方法中,因为主要通过在图26至图28C中所示的网络模拟器4来执行各种处理,所以以下将描述由网络模拟器4执行的处理。
在图29中的流程图示出根据这个实施例的模拟处理的整个流程。在这个模拟处理中,首先,网页处理单元411使得用户终端3显示指南屏幕(在步骤S101)。当用户在用户终端3的网络浏览器300处指定网络模拟器4的URL时,网络浏览器300访问网络服务器400,并且在网络模拟器4处启动模拟程序。随后,网页处理单元411向用户终端3发送关于作为启动页面的指南屏幕的网页信息,并且使得网络浏览器300显示该指南屏幕。
接下来,网页处理单元411使得用户终端3显示传感器选择屏幕,并且用户选择传感器(在步骤S102)。如果用户在步骤S101在指南屏幕上执行期望选择传感器的操作,则网页处理单元411向用户终端3发送关于用于选择传感器的传感器选择屏幕的网页信息,并且使得网络浏览器300显示传感器选择屏幕。当用户指定用于传感器类型等的缩减条件(搜索条件或过滤条件)时,网页处理单元411从传感器数据库421提取适合于缩减条件的传感器,并且在传感器选择屏幕上显示所提取的传感器的列表。如果用户从在传感器选择屏幕上显示的传感器的列表选择要使用的传感器,则电路配置单元412(传感器选择单元412a)使得电路信息存储单元426将所选择的传感器存储为模拟目标电路。
接下来,网页处理单元411使得用户终端3显示偏置电路选择屏幕,并且用户选择偏置电路(在步骤S103)。如果用户在步骤S102在传感器选择屏幕上执行期望配置偏置电路的操作,则网页处理单元411向用户终端3发送关于偏置电路选择屏幕的网络信息,并且使得网络浏览器300显示偏置电路选择屏幕。网页处理单元411参考传感器偏置电路数据库422,提取适合于在步骤S102中选择的传感器的多个偏置电路,并且在偏置电路选择屏幕上显示所提取的偏置电路。如果用户从在偏置电路选择屏幕上显示的多个偏置电路中选择要使用的偏置电路,则电路配置单元412(偏置电路选择单元412b)使得电路信息存储单元426将所选择的偏置电路存储为模拟目标电路。
接下来,网页处理单元411使得用户终端3显示物理量输入屏幕,并且用户输入物理量(在步骤S104)。如果用户在步骤S102在传感器选择屏幕上或在步骤S103在偏置电路选择屏幕上执行期望向传感器输入物理量的操作,则网页处理单元411向用户终端3发送关于用户在其上输入物理量的物理量输入屏幕的网络信息,并且使得网络浏览器300显示物理量输入屏幕。网页处理单元411以时间序列顺序显示用于输入要向传感器输入的物理量的多个输入图案(输入波形),并且用户选择要用于模拟的输入图案。另外,网页处理单元411参考传感器数据库421,在物理量输入屏幕上显示与所选择的传感器对应的物理量的可接受输入范围,并且用户在可接受的输入范围内指定物理量的期望的输入范围。在物理量输入屏幕上,如果用户向传感器输入物理量的输入图案和期望的输入范围,则参数设置单元413在参数存储单元427中设置输入参数。
接下来,网页处理单元411使得用户终端3显示AFE选择屏幕,并且用户选择AFE(半导体装置)(在步骤S105)。在步骤S101处的指南屏幕上或在步骤S102处的传感器选择屏幕上等,如果用户执行期望选择半导体装置(AFE单元100)的操作,则网页处理单元411向用户终端3发送关于用户在其上选择半导体装置1的AFE选择屏幕的网页信息,并且使得网络浏览器300显示AFE显示屏幕。
网页处理单元411参考AFE数据库424,来提取半导体装置1,其包括电路构成适应于所选择的传感器和偏置电路的可配置放大器110。在该情况下,网页处理单元411参考可配置模拟电路数据库423,来确定良好地适应于所选择的传感器和偏置电路的可配置放大器110的电路构成,并且提取包括具有所确定的电路构成的可配置放大器110的半导体装置1。另外,当用户指定用于半导体装置1等的电路构成的缩减条件(搜索条件或过滤条件)时,网页处理单元411从AFE数据库424提取适合于该缩减条件的半导体装置1,并且在AFE选择屏幕上显示所提取的半导体装置1的列表。如果用户从在AFE选择屏幕上显示的半导体装置1的列表选择要使用的半导体装置1(AFE单元100),则电路配置单元412(AFE配置选择单元412c)使得电路信息存储单元426将半导体装置1的所选择的AFE单元100存储为模拟目标电路。
接下来,电路配置单元412确定可配置放大器110的电路构成和耦合关系(在步骤S106)。当在步骤S102和S103选择传感器和偏置电路,并且在步骤S105选择半导体装置1时,电路配置单元412参考可配置模拟电路数据库423确定适合于所选择的传感器和偏置电路的可配置放大器110的电路构成,并且进一步确定在传感器和偏置电路与可配置放大器110之间的耦合关系(耦合端子)。电路配置单元412(AFE配置选择单元412c)使得电路信息存储单元426存储所确定的可配置放大器110的电路构成和耦合关系。
接下来,网页处理单元411使得用户终端3显示传感器AFE耦合屏幕,并且用户耦合传感器和AFE(半导体装置1)(在步骤S107)。在步骤S105处的AFE选择屏幕上,如果用户执行期望耦合传感器和半导体装置1的操作,则网页处理单元411向用户终端3发送关于用户在其上耦合传感器和半导体装置1的传感器AFE耦合屏幕的网络信息,并且使得网络浏览器300显示传感器AFE耦合屏幕。网页处理单元411显示所选择的传感器和偏置电路的输出端子,以及所选择的半导体装置1(AFE单元100)的输入端子,使得用户可以选择在传感器、偏置电路和半导体装置1之间的耦合关系。另外,作为默认耦合关系,显示在步骤S106处确定的耦合关系,使得传感器和偏置电路与半导体装置1可以利用该默认耦合关系彼此耦合。在传感器AFE耦合屏幕上,如果用户选择在传感器和半导体装置1之间的耦合关系,则电路配置单元412使得电路信息存储单元426将所选择的耦合关系存储为在模拟目标电路之间的耦合关系。
接下来,自动配置单元451执行自动配置处理(在步骤S108)。在步骤S102至S107,确定传感器和偏置电路的电路构成和可配置放大器110的电路构成,并且,确定在传感器和偏置电路与可配置放大器110之间的耦合关系,自动配置单元451执行自动配置处理,以便自动配置可配置放大器110的默认值。下面将描述该自动配置处理的细节。自动配置单元451使得参数存储单元427存储通过自动配置处理配置的可配置放大器110的DAC输出和增益等。
接下来,模拟执行单元415执行模拟执行处理(在步骤S109)。在步骤S102至S108,确定传感器和偏置电路的电路构成,以及半导体装置1(AFE单元100)的电路构成,并且也确定在传感器和偏置电路与半导体装置1(AFE单元100)之间的耦合关系,模拟执行单元415执行用于暂态分析、AC分析、滤波效果分析和同步检测分析等的模拟。下面将描述这些模拟执行处理的细节。模拟执行单元415使得结果信息存储单元428存储通过这些模拟执行处理获得的模拟结果。
接下来,网页处理单元411使得用户终端3显示零件列表屏幕(在步骤S110)。在步骤S101处的指南屏幕上或在步骤S109处的模拟屏幕(稍后描述)上,如果用户执行期望显示零件列表(BOM:材料清单)的操作,则网页处理单元411向用户终端3发送关于用于显示零件列表的零件列表屏幕的网络信息,并且使得网络浏览器300显示零件列表屏幕。网页处理单元411参考电路信息存储单元426,在零件列表屏幕上显示包括被选择为模拟目标的传感器和半导体装置1的零件列表。所显示的零件列表被配置为具有与零件购买站点的链接,因此,如果用户在零件列表屏幕上选择零件,则访问对应的零件购买站点,并且用户可以购买该零件。
接下来,寄存器信息产生单元416产生寄存器信息(在步骤S111)。在步骤S102至S109处,确定半导体装置1(AFE单元100)的电路构成和参数(电路特性),寄存器信息产生单元416产生要在半导体装置1的寄存器181中配置的寄存器信息。寄存器信息产生单元416基于半导体装置1的电路构成和参数,参考电路信息存储单元426和参数存储单元427,来产生寄存器信息,并且使得寄存器信息存储单元429存储所产生的寄存器信息。因为在报告屏幕上显示该寄存器信息,所以仅必须在当显示报告屏幕时的时间在步骤S111处产生寄存器信息。
接下来,网页处理单元411的用户终端3显示报告屏幕(在步骤S112)。在步骤S101处的指南屏幕上或在步骤S109处的模拟屏幕上等,如果用户执行期望输出模拟结果的操作,则网页处理单元411向用户终端3发送关于包括模拟结果的报告屏幕的网络信息,并且使得网络浏览器300显示该报告屏幕。网页处理单元411参考结果信息存储单元428在报告屏幕上显示模拟结果。另外,网页处理单元411参考电路信息存储单元426、参数存储单元427、寄存器信息存储单元429,来显示作为模拟目标的传感器和偏置电路、半导体装置1的电路构成、耦合关系和参数。而且,网页处理单元411显示半导体装置1的寄存器信息。另外,在报告屏幕上,可以根据由用户执行的操作将寄存器信息下载到用户终端3。
图30是示出根据该实施例的模拟执行处理的图。换句话说,该处理等同于在图29中的步骤S109处所示的处理。首先,网页处理单元411使得用户终端3显示模拟屏幕(在步骤S201)。在图29中的步骤S109处,如果开始模拟执行处理,则网页处理单元411向用户终端3发送关于用于模拟执行的模拟屏幕的网络信息,并且使得网络浏览器300显示模拟屏幕。
根据在步骤S201处显示的模拟屏幕上的用户操作(在步骤S201),执行下面的处理步骤S203至S210。重复执行这些处理,只要显示模拟屏幕。
在模拟屏幕上,如果用户执行期望输入参数的操作,则网页处理单元411使得用户终端3显示其上输入参数的屏幕,并且用户输入用于模拟所需的参数(在步骤S203)。在模拟屏幕上,如果用户点击用于输入参数等的参数输入按钮,则网页处理单元411向用户终端3发送关于参数输入屏幕的网页信息,并且使得网络浏览器300显示参数输入屏幕。网页处理单元411在参数输入屏幕上显示已经在参数存储单元427中设置的参数和默认值。在参数输入屏幕上,如果用户通过输入参数而确定它们,则参数设置单元413使得参数存储单元427存储该参数。
在模拟屏幕上,如果用户执行期望配置可配置放大器110的操作,则网页处理单元411使得用户终端3显示放大器配置屏幕,并且用户配置可配置放大器110(在步骤S204)。在模拟屏幕上,如果用户点击放大器图标等,则网页处理单元411向用户终端3发送用于配置可配置放大器110的细节的放大器配置屏幕的网页信息,并且使得网络浏览器300显示放大器配置屏幕。网页处理单元411在放大器配置屏幕上显示已经在电路信息存储单元426中配置的放大器的电路构成。在放大器配置屏幕上,如果用户配置和确定可配置放大器110的电路构成,则电路配置单元412使得电路信息存储单元426存储可配置放大器110的电路信息。
在模拟屏幕上,如果用户执行期望配置传感器的操作,则网页处理单元411使得用户终端3显示传感器配置屏幕,并且用户配置传感器(在步骤S205)。在模拟屏幕上,如果用户点击传感器配置按钮等,则网页处理单元411向用户终端3发送关于传感器配置屏幕的网页信息,并且使得网络浏览器300显示传感器配置屏幕。网页处理单元411在传感器配置屏幕上显示关于已经在电路信息存储单元426中配置的传感器的信息。在传感器配置屏幕上,如果用户确定和配置关于传感器的信息,则电路配置单元412使得电路信息存储单元426存储传感器的电路信息。
在模拟屏幕上,如果用户执行用于自动配置的操作(在步骤S206),则执行自动配置处理,如果用户执行用于暂态分析的操作,则执行暂态分析处理(在步骤S207),如果用户执行用于AC分析的操作,则执行AC分析处理(在步骤S208),如果用户执行用于滤波器效果分析的操作,则执行滤波效果分析处理(在步骤S209),并且如果用户执行用于同步检测分析的操作,则执行同步检测分析处理(在步骤S210)。以下,将描述上述处理。
图31是示出根据这个实施例的自动配置处理的流程图,并且等同于在图29中的步骤S108或在图30中的步骤S206处所示的处理。例如,如果用户点击自动配置按钮,则开始自动配置处理。
首先,自动配置单元451获取要在其上执行自动配置的可配置放大器110的目标范围(在步骤S301)。自动配置单元451参考AFE数据库424,获取允许半导体装置1的可配置放大器110的输出电平存在的目标范围(动态范围)。
接下来,自动配置单元451初始化耦合到可配置放大器110的输入的DAC(在步骤S302),并且连续地初始化可配置放大器110的增益(在步骤S303)。自动配置单元451初始化DAC的输出电压,使得可配置放大器110的输入信号的电平变为中心值(中间值)。另外,自动配置单元451初始化可配置放大器110的增益,使得该增益变为任意值。
接下来,自动配置单元451对于可配置放大器110执行模拟(在步骤S304)。自动配置单元451利用被配置为模拟条件传感器的输出信号、DAC的输出电压和可配置放大器110的增益,来模拟可配置放大器110的操作。例如,自动配置单元451在向可配置放大器110输入传感器的最大值、最小值或中间值的情况下计算可配置放大器110的输出信号。
接着,自动配置单元451调整DAC的输出电压(在步骤S305)。具体地说,自动配置单元451调整DAC的输出电压,使得可配置放大器110的输出电压的中间值可以变为电源电压的中间值。换句话说,自动配置单元451将可配置放大器110的输出电压的中间值与电源电压的中间值作比较,并且基于比较结果来增大或减小DAC的输出电压。
接下来,自动配置单元451判断模拟结果是否在可配置放大器110的目标范围内(在步骤S306)。自动配置单元451将通过使用目标范围的模拟获得的可配置放大器110的输出信号的最大值与最小值作比较。当输入信号是最小时,自动配置单元451将可配置放大器110的输出信号与目标范围的最小值作比较,并且如果模拟结果小于目标范围的最小值,则自动配置单元451判断模拟结果在目标范围之外。接下来,当输入信号是最大时,自动配置单元451将可配置放大器110的输出信号与目标范围的最大值作比较,并且如果模拟结果大于目标范围的最大值,则自动配置单元451判断模拟结果在目标范围之外。如果模拟结果小于目标范围的最大值,则自动配置单元451判断模拟结果在目标范围之内。
在模拟结果在可配置放大器110的目标范围之外的情况下,自动配置单元451重新配置放大器的增益(在步骤S307)。具体而言,如果可配置放大器110的输出信号的最小值小于目标范围的最小值,则自动配置单元451增大放大器的增益,并且如果可配置放大器110的输出信号的最大值大于目标范围的最大值,则自动配置单元451减小放大器的增益。连续地,自动配置单元451重复可配置放大器110的模拟(在步骤S304)、DAC的调整(在步骤S305)和模拟结果是否在目标范围内的判断(在步骤S306)。
在模拟结果在可配置放大器110的目标范围内的情况下,因为配置足够的增益和偏移,所以自动配置单元451结束自动配置处理。可配置放大器110的增益和关于DAC的配置信息被存储在参数存储单元427中。
将参考图32和图33来描述自动配置处理的具体示例。图32是利用一个DAC作为非反相放大器配置的可配置放大器110的示例,并且可配置放大器110具有与在图13中所示的电路构成相同的电路构成。换句话说,在图32中所示的可配置放大器110具有下述电路构成:其中,运算放大器OP1的反相输入端子经由电阻器R1耦合到DAC2,运算放大器OP1的输出端子以反馈耦合经由电阻器R2耦合到反相端,并且运算放大器OP1的非反相输入端子耦合到传感器2。
在自动配置在图32中所示的可配置放大器110的情况下,DAC2的输出电压首先被配置为传感器的输出电压(Vin±x)的中间值(在步骤S302),并且,运算放大器OP1的增益被配置为任意值(在步骤S303)。
接下来,在模拟运算放大器OP1的操作的同时,自动配置单元451调整DAC2的输出电压,使得运算放大器OP1的输出电压可以变为Vcc的中间值(Vcc/2)(在步骤S304和S305)。
接下来,假定可配置放大器110的目标范围是Vcc/2±0.8V至Vcc/2±1V,并且判断运算放大器OP1的输出电压是否在目标范围内(在步骤S306)。如果运算放大器OP1的输出电压在目标范围内,则自动配置单元451结束自动配置处理。如果运算放大器OP1的输出电压在目标范围之外,则自动配置单元451重复运算放大器OP1的增益的重新配置(在步骤S307)和DAC的调整(在步骤S305),直到运算放大器OP1的输出电压落在目标范围内。
图33是利用两个DAC被配置为差分放大器的可配置放大器110的示例,并且可配置放大器110具有与在图10中所示的电路构成相同的电路构成。换句话说,在图33中所示的可配置放大器110具有下述电路构成:其中,运算放大器OP1的反相输入端子经由电阻器R1耦合到DAC2,运算放大器OP1的输出端子以反馈耦合经由电阻器R2耦合到反相端,并且运算放大器OP1的非反相输入端子经由电阻器R4耦合到DAC1,而运算放大器OP1的非反相输入端子经由电阻器R3耦合到传感器2。
在自动配置在图33中所示的可配置放大器110的情况下,DAC1的输出电压被配置为VCC的中间值(Vcc/2=2.5V),并且DAC2的输出电压被配置为传感器的输出电压(Vin±x)的中间值(在步骤S302)。连续地,运算放大器OP1的增益被配置为任意值(在步骤S303)。
接下来,在模拟运算放大器OP1的操作的同时,自动配置单元451调整DAC1的输出电压,使得运算放大器OP1的输出电压可以变为Vcc的中间值(Vcc/2)(在步骤S304和S305)。
接下来,将假定可配置放大器110的目标范围例如是Vcc/2±0.8V至Vcc/2±1V,并且判断运算放大器OP1的输出电压是否在目标范围内(在步骤S306)。如果运算放大器OP1的输出电压在目标范围之内,则自动配置单元451结束自动配置处理。如果运算放大器OP1的输出电压在目标范围之外,则自动配置单元451重复运算放大器OP1的增益的重新配置(在步骤S307)和DAC的调整(在步骤S305),直到运算放大器OP1的输出电压落在目标范围之内。
图34是示出根据该实施例的暂态分析处理的流程图,并且等同于在图30中的步骤S207处所示的处理。例如,如果用户在模拟屏幕上点击暂态分析按钮,则开始暂态分析处理。
首先,暂态分析单元452获取要被执行模拟的电路的电路信息(在步骤S311)。暂态分析单元452参考电路信息存储单元426,来获取传感器和偏置电路、半导体装置1(AFE单元100)的电路构成和耦合关系。
接下来,暂态分析单元452获取用于执行模拟的参数(在步骤S312)。暂态分析单元452参考参数存储单元427,获取要输入到传感器的物理量的输入图案和要模拟的电路的参数。
接下来,暂态分析单元452初始化向传感器输入的物理量(在步骤S313)。暂态分析单元452参考要向传感器输入的物理量的输入图案,来配置初始向传感器输入的物理量。因为以时间序列顺序来输入物理量,所以也初始化时间信息。
接下来,暂态分析单元452对于半导体装置1(AFE单元100)执行模拟(在步骤S314)。物理量转换单元450计算与物理量对应的传感器的输出信号,并且暂态分析单元452利用传感器的输出信号和放大器的增益等作为模拟条件来模拟半导体装置1的操作。
接下来,暂态分析单元452存储模拟结果(在步骤S315)。暂态分析单元452使得结果信息存储单元428与当前时间信息相关联地将半导体装置1的各个电路的输出信号存储为模拟结果。
接下来,暂态分析单元452判断物理量的输入图案的输入是否结束(在步骤S316)。暂态分析单元452通过将当前时间信息与物理量的输入图案的输入结束的最大时间作比较,来判断物理量的输入图案的输入是否结束。
如果物理量的输入图案的输入未结束,则暂态分析单元452更新输入的物理量(在步骤S317)。电路配置单元412将时间信息向下一个时间移动,并且利用该输入图案来配置与该时间对应的物理量。利用更新的物理量,暂态分析单元452执行模拟(在步骤S314),存储结果(在步骤S315),并且重复这些处理直到物理量的输入图案的输入结束。
当物理量的输入图案的输入结束时,暂态分析单元452显示模拟结果(在步骤S318),并且结束暂态分析处理。具体地说,参考结果信息存储单元428,暂态分析单元452显示通过在模拟屏幕上以时间序列顺序绘制所存储的模拟结果而获得的信号波形。
图35是示出根据该实施例的AC分析处理的流程图,并且等同于在图30中的步骤S208处所示的处理。例如,如果用户在模拟屏幕上点击AC分析按钮,则开始AC分析处理。
首先,AC分析单元453获取要被执行模拟的电路的电路信息(在步骤S321)。AC分析单元453参考电路信息存储单元426获取传感器和偏置电路、半导体装置1(AFE单元100)的电路构成和耦合关系。。
接下来,AC分析单元453获得用于执行模拟的参数(在步骤S322)。AC分析单元453参考参数存储单元427获取要向传感器输入的物理量的输入图案和要模拟的电路的参数。
接下来,AC分析单元453配置向传感器输入的物理量的值。连续地,AC分析单元453初始化用于AC分析的频率(在步骤S323)。具体地说,AC分析单元453将用于AC分析的频带的最小值或最大值设置为用于AC分析的频率的初始值。
接下来,AC分析单元453对于半导体装置1(AFE单元100)执行模拟(在步骤S324)。物理量转换单元450计算与输入的物理量对应的传感器的输出信号,并且AC分析单元453利用传感器的输出信号和放大器的增益等作为模拟条件,来模拟半导体装置1的操作。
接下来,AC分析单元453存储模拟结果(在步骤S325)。具体地说,AC分析单元453使得结果信息存储单元428与当前时间信息相关联地将半导体装置1的各个电路的输出信号存储为模拟结果。
接下来,AC分析单元453判断AC分析的频率的输入是否结束(在步骤S326)。AC分析单元453通过将关于当前频率的信息与用于AC分析的频带的最大值或最小值的信息作比较,来判断AC分析的频率的输入是否结束。
如果AC分析的频率的输入未结束,则AC分析单元453更新用于AC分析的频率(在步骤S327)。AC分析单元453使用新的频率来更新频率信息,并且利用更新的频率来执行模拟(在步骤S324),存储结果(在步骤S325),并且重复这些处理直到AC分析的输入频率的输入结束。
当AC分析的频率的输入结束时,AC分析单元453显示模拟结果(在步骤S328),并且结束AC分析处理。具体地说,参考结果信息存储单元428,AC分析单元453显示通过在模拟屏幕上以频率系列顺序绘制所存储的模拟结果而获得的信号波形。
图36是示出根据这个实施例的滤波效果分析处理的流程图,并且等同于在图30中的步骤S209处所示的处理。例如,如果用户在模拟屏幕上点击滤波效果分析,则开始滤波效果分析处理。
首先,滤波效果分析单元454获取要被执行模拟的电路的电路信息(在步骤S331)。滤波效果分析单元454参考电路信息存储单元426,来获取传感器和偏置电路、半导体装置1(AFE单元100)的电路构成和耦合关系。
接下来,滤波效果分析单元454获取用于执行模拟的参数(在步骤S332)。滤波效果分析单元454参考参数存储单元427,来获取要向传感器输入的物理量的输入图案和要模拟的电路的参数。
接下来,滤波效果分析单元454向物理量的输入图案加上噪声(在步骤S333)。具体地说,滤波效果分析单元454产生噪声图案,并且向要输入到传感器的物理量的输入图案加上该噪声。
接下来,滤波效果分析单元454初始化向传感器输入的物理量(在步骤S334)。滤波效果分析单元454参考增加了噪声的物理量的输入图案,来配置初始向传感器输入的物理量。因为以时间序列顺序来输入物理量,所以也初始化时间信息。
接下来,滤波效果分析单元454对于半导体装置1(AFE单元100)执行模拟(在步骤S335)。物理量转换单元450计算与输入的物理量对应的传感器的输出信号,并且滤波效果分析单元454利用传感器的输出信号和放大器的增益等作为模拟条件,来模拟半导体装置1的操作。
接下来,滤波效果分析单元454存储模拟结果(在步骤S336)。滤波效果分析单元454使得结果信息存储单元428与当前时间信息相关联地将半导体装置1的各个电路的输出信号存储为模拟结果。
接下来,滤波效果分析单元454判断物理量的输入图案的输入是否结束(在步骤S337)。滤波效果分析单元454通过将当前时间信息与增加了噪声的物理量的输入图案的输入结束处的最大时间作比较,来判断物理量的输入图案的输入是否结束。
如果物理量的输入图案的输入未结束,则滤波效果分析单元454更新物理量(在步骤S338)。滤波效果分析单元454将时间信息向下一个时间移动,并且利用增加了噪声的输入图案来配置与时间对应的物理量。利用更新的物理量,暂态分析单元452执行模拟(在步骤S335),存储结果(在步骤S336),并且重复这些处理,直到物理量的输入图案的输入结束。
当物理量的输入图案的输入结束时,滤波效果分析单元454显示模拟结果(在步骤S339),并且结束滤波效果分析处理。具体地说,参考结果信息存储单元428,滤波效果分析单元454显示通过在模拟屏幕上以时间序列顺序绘制所存储的模拟结果而获得的信号波形。
图37是示出根据这个实施例的同步检测分析处理的流程图,并且等同于在图30中的步骤S210处所示的处理。例如,如果用户在模拟屏幕上点击同步检测分析按钮,则开始同步检测分析处理。
首先,同步检测分析单元455获取关于要被执行模拟的电路的电路信息(在步骤S341)。同步检测分析单元455参考电路信息存储单元426,来获取传感器和偏置电路、半导体装置1(AFE单元100)的电路构成和耦合关系。
接下来,同步检测分析单元455获取用于执行模拟的参数(在步骤S342)。同步检测分析单元455参考参数存储单元427,来获取要向传感器输入的物理量的输入图案和要模拟的电路的参数。
接下来,同步检测分析单元455初始化输入同步检测图案(在步骤S343)。同步检测分析单元455参考向传感器输入的物理量的输入图案,来配置初始向传感器输入的物理量。另外,同步检测分析单元455将被输入用于同步检测的同步时钟CLK_SYNCH初始化为同步检测图案。
接下来,同步检测分析单元455对于半导体装置1(AFE单元100)执行模拟(在步骤S344)。物理量转换单元450计算与输入的物理量对应的传感器的输出信号,并且同步检测分析单元455利用传感器的输出信号和放大器的增益等作为模拟条件,来模拟半导体装置1的操作。
接下来,同步检测分析单元455存储模拟结果(在步骤S345)。同步检测分析单元455使得结果信息存储单元428与当前时间信息相关联地将半导体装置1的各个电路的输出信号存储为模拟结果。
接下来,同步检测分析单元455判断物理量的输入图案的输入或同步检测图案的输入是否结束(在步骤S346)。同步检测分析单元455通过将当前时间信息与物理量的输入图案的输入或同步检测图案的输入结束处的最大时间作比较,来判断物理量的输入图案的输入或同步检测图案的输入是否结束。
如果物理量的输入图案的输入或同步检测图案的输入未结束,则同步检测分析单元455更新输入的物理量和同步检测输入(在步骤S347)。同步检测分析单元455将时间信息向下一个时间移动,利用输入图案来配置与时间对应的物理量,并且利用同步检测图案来配置与时间对应的同步时钟。利用更新的物理量和更新的同步时钟,同步检测分析单元455执行模拟(在步骤S344),存储结果(在步骤S345),并且重复这些处理,直到物理量的输入图案的输入或同步检测图案的输入结束。
当物理量的输入图案的输入或同步检测图案的输入结束时,同步检测分析单元455显示模拟结果(在步骤S348),并且结束同步检测分析处理。具体地说,参考结果信息存储单元428,同步检测分析单元455显示通过在模拟屏幕上以时间序列顺序绘制所存储的模拟结果而获得的信号波形。
接下来,将参考图38至图64来描述通过用户终端3在图29至图37中所示的各个处理处显示的屏幕(网页)的显示示例,其中,网络模拟器4使得用户终端3显示这些屏幕(网页)。如上所述的各个屏幕被显示为用于在图29至图37中所示的各个模拟处理的用户界面,并且因为主要由网络模拟器4的网页处理单元411向用户终端3发送并且用于显示这些屏幕的网页信息等,来实现这些屏幕的显示。
图38是在图29中的步骤S101处所示的指南屏幕的显示示例。如图38中所示,在网络浏览器300的窗口的整体中显示网络模拟器屏幕P100,并且在网络模拟器屏幕P100内部显示用于模拟所需的多个处理的各个屏幕。
网络模拟器屏幕P100在其上部包括标签区域P10,标签区域P10被共同地显示在各个屏幕中。在标签区域P10中显示用于在各个屏幕中选择要显示的任何屏幕的标签P11至P17。因为在各个屏幕中共同地显示标签区域P10,所以用户可以从任何屏幕切换到他的/她的期望的屏幕。
例如,如果点击“指南”标签P11,则显示指南屏幕;如果点击“传感器选择”标签P12,则显示传感器选择屏幕;如果点击“AFE选择”标签P13,则显示AFE选择屏幕;如果点击“传感器与AFE耦合”标签P14,则显示传感器AFE耦合屏幕;如果点击“模拟”标签P15,则显示模拟屏幕;如果点击“零件列表”标签P16,则显示零件列表屏幕;并且,如果点击“报告”标签P17,则显示报告屏幕。
当启动网络模拟器时或当选择“指南”标签P11时,在网络模拟器屏幕P100的中心附近显示指南屏幕S101,如图38中所示。
在指南屏幕P101上,以流程图格式来显示网络模拟器的使用的流程,使得用户可以一眼明白如何使用网络模拟器。例如,指南显示的流程图对应于在图29中所述的网络模拟器的操作,并且它也对应于由标签P11至P17显示的各个屏幕。
关于在指南屏幕P101上所示的流程图的每一个步骤的标题包括步骤的图标(未示出)和概述的描述,使得用户可以容易地明白步骤的内容。例如,在步骤1的“传感器选择”,选择传感器的类型,并且使用“细节配置”来配置传感器名称、偏置电路和传感器输入条件。在步骤2的“智能模拟选择”中,确定要耦合到传感器的智能模拟(半导体装置1),并且,可以利用被提供有已经配置的参数的过滤功能来选择半导体装置1。在步骤3的“传感器耦合”,可以通过拖放或对话操作来配置在传感器和智能模拟(半导体装置1)之间的布线耦合。在步骤4的“模拟”,执行模拟,显示模拟结果,并且可以配置用于每一个放大器的增益和DAC值。在步骤5的“零件列表”,选择电子零件交易者,并且显示零件列表。在步骤6的“报告”,可以下载设计总结和PDF文件,并且也可以下载智能模拟(半导体装置1)的寄存器值。在步骤7的“设计管理”,可以存储和共享智能模拟(半导体装置1)的设计内容。
图39是示出在图29中的步骤S102处所示的传感器选择屏幕的显示示例的图。当选择“传感器选择”标签P12时,在如图39中所示的网络模拟器屏幕P100的基本中心处显示传感器选择屏幕P200。
在网络模拟器屏幕P100上显示的传感器选择屏幕P200(在图39)和后述的其他屏幕的每一个在其右上边缘上和在右下边缘上包括两个前进按钮P21,并且以类似的方式在其左上边缘上和在左下边缘上包括两个返回按钮P22。当点击两个前进按钮P21之一时,显示下一个屏幕,并且当点击返回按钮P22之一时,显示前一个屏幕。例如,如果在传感器选择屏幕P200上点击前进按钮P21之一,则显示AFE选择屏幕,并且如果在传感器选择屏幕P200上点击返回按钮P22之一,则显示指南屏幕。
如图39中所示,在传感器选择屏幕P200上显示当前选择传感器的当前传感器选择状态。在传感器选择屏幕P200上,对于每个产生器显示传感器框P210,并且传感器框P210示出传感器的选择状态。在传感器选择框P210的传感器名称显示区域P211中,显示当前选择的传感器的传感器类型和传感器名称。在图39中,因为还没有选择任何传感器,所以将“未选择”显示为传感器名称。
传感器选择框P210的传感器类型下拉菜单P212以下拉格式来显示多个传感器类型,并且用户可以从下拉列表选择传感器的类型(传感器的种类)。“细节配置”按钮P213是用于显示可以在其上配置传感器的细节的传感器细节屏幕的按钮。在传感器细节屏幕上细节配置从下拉菜单P212选择的类型的传感器的细节。
在传感器选择框P210下方显示“增加传感器”按钮P215。“增加传感器”按钮P215是用于增加和选择传感器的按钮。每次按下“增加传感器”按钮P215时,显示新的传感器选择框P210。
图40是在其上选择三个传感器并且显示三个传感器选择框P210a至P210c的传感器选择屏幕P200的示例。传感器选择框P210a是用于传感器0的传感器选择框,并且选择具有零件编号“ADP1151”的压力传感器。传感器选择框P210b是用于传感器1的传感器选择框,并且选择具有零件编号“NJL7502L”的光电晶体管。传感器选择框P210c是用于传感器2的传感器选择框,并且选择具有零件编号“LM45CM3NOPB”的温度传感器。
分别在传感器选择框P210b和P210c中显示用于删除对应的传感器的选择的删除按钮P214。当点击删除按钮P214时,释放对应的传感器的选择,并且删除对应的传感器选择框P210。
图41是示出从在图39中的传感器选择屏幕P200转移的、被显示来用于配置传感器的细节的传感器细节屏幕P220和传感器细节选择屏幕P240的显示示例的图。在这个示例中,因为在图39和图41中的两个屏幕上选择传感器,所以两个屏幕可以被称为传感器选择屏幕。
如图41中所示,传感器细节屏幕P220是独立于网络模拟器屏幕P100的弹出屏幕。当在图39中的传感器选择屏幕P200上点击“细节配置”按钮P213时,以弹出方式来显示传感器细节屏幕P220。
传感器细节屏幕P220在其上部包括标签显示区域P230,该标签显示区域P230也以相同的方式显示在其他屏幕上。在标签显示区域P230中显示用于显示对应的屏幕的标签P231至P234。具体地说,当点击“传感器选择”标签P231时,显示传感器细节选择屏幕,当点击“偏置电路”标签P232上,显示偏置电路选择屏幕,当点击“传感器输入”标签P233时,显示物理量输入屏幕,并且当点击“传感器特性”标签P234时,显示传感器特性配置屏幕。
在公共地显示在上面四个屏幕的每一个上的传感器细节屏幕P220的左下角中显示“存储”按钮P235。通过点击“存储”按钮P235,在网络模拟器4中存储在传感器细节屏幕P220上显示的上面四个屏幕的每一个上配置的内容。换句话说,在电路信息存储单元426和参数存储单元427中存储电路信息和参数。
当在传感器选择屏幕P200上点击“细节配置”按钮P213或选择“传感器选择”标签P231时,在如图41中所示的传感器细节屏幕P220上显示传感器细节选择屏幕P240。
在传感器细节选择屏幕P240的上部的传感器类型显示区域P241中显示从在传感器选择屏幕P200上的传感器类型下拉菜单P212选择的传感器类型。在图41中,将温度传感器显示为选择的传感器。
在传感器类型显示区域P241下方显示传感器选择方法单选按钮P242。利用传感器选择方法单选按钮P242,选择“零件搜索”或者“未注册/定制”作为传感器选择方法,在“零件搜索”中,从在传感器数据库421中注册的传感器搜索传感器;在“未注册/定制”中,定制(配置为具有任意特性)在传感器数据库421中未注册的传感器。
当使用传感器选择方法单选按钮P242之一来选择“零件搜索”时,在传感器选择方法单选按钮P242下方显示传感器缩减条件栏P243和传感器列表P244。在传感器缩减条件栏P243中,显示“通过零件编号搜索”区域P243a和“传感器搜索”区域P243b。
在“通过零件编号搜索”区域P243a中,向“零件编号”输入框输入用户要搜索的传感器的零件编号。在“传感器搜索”区域P243b中,显示下拉菜单和框,可以使用它们来根据传感器类型指定缩减条件。在图41中,因为传感器类型是温度传感器,所以显示“制造”下拉菜单、“输出类型”下拉菜单和两个“温度”输入框。
为了将特定制造商的传感器指定为搜索目标,可以在“制造商”下拉菜单中指定制造商的名称。另外,为了将所有制造商的传感器指定为搜索目标,可以指定“任意”。为了将具有特定的输出类型的传感器指定为搜索目标,可以在“输出类型”下拉菜单中指定电流输出型或电压输出型。另外,为了将具有所有输出类型的传感器指定为搜索目标,可以指定“任意”。为了基于温度传感器的特性来搜索传感器,可以将由温度传感器检测的温度的最小值和最大值输入到“温度”输入框。
在缩减条件栏P243和传感器列表P244之间显示“搜索”按钮P245和“复位”按钮P246。当点击“搜索”按钮P245时,基于在缩减条件栏P243中配置的条件来执行传感器数据库的搜索,并且,在传感器列表P244上显示搜索结果。如果点击“复位”按钮P246,则复位在缩减条件栏P243中配置的缩减条件(搜索条件),并且屏幕变为对于传感器搜索无任何配置的初始状态。
在传感器列表P244上,显示满足在缩减条件栏P243中配置的条件的传感器的列表。在“通过零件编号搜索”区域P243a中指定零件编号的情况下,从在传感器数据库421中存储的传感器中显示其类型是温度传感器和其零件编号对应于配置的零件编号的传感器。在“传感器搜索”区域P243b中指定关于制造商、输出类型和温度的条件的情况下,从在传感器数据库421中存储的传感器中显示其类型的温度传感器并且满足制造商、输出类型和温度的条件的传感器。
在传感器列表P244上,根据传感器类型以多列显示多个关于各个传感器的信息。在图41中,因为传感器是温度传感器,所以存在5列:零件#、制造商、数据表、描述、以及温度,其中,分别显示每一个传感器的零件编号、制造商、数据表、描述和温度特性。在数据表列中,显示PDF图标,并且当点击PDF图标时,显示包括数据表的PDF文件。在描述列中显示输出类型,诸如电压输出型和电流输出型等,并且,在温度列中显示所检测的温度的最小值和最大值。
因为通过指定传感器类型和缩减条件来显示传感器列表P244,所以可以通过简单的操作来选择期望的传感器。用户基于所显示的信息来从传感器列表P244选择要使用的传感器。
如果如在图29中的步骤S102处所示从传感器列表P244选择传感器,则在电路信息存储单元426中存储传感器的电路信息。
图42是示出在将压力传感器选择为传感器类型的情况下的传感器细节选择屏幕P240的显示示例的图。在传感器类型产生区域P241中显示压力传感器,并且,在“传感器搜索”区域P243b中显示与压力传感器对应的缩减条件(搜索条件)。在图42中,显示“制造商”下拉菜单、“输出类型”下拉菜单和“压力”输入框。为了基于压力传感器的特性来搜索传感器,向“压力”输入框输入可以被压力传感器检测的压力的最小值和最大值。
传感器列表P244是与压力传感器对应的列表,并且包括5列:零件#、制造商、数据表、描述、以及压力,其中,分别显示每一个传感器的零件编号、制造商、数据表、描述和压力特性。在描述列中显示诸如高精度传感器和硅传感器等的传感器的类型,并且,在压力列中显示所检测的压力的最小值和最大值。
另外,在用于其他传感器的传感器细节选择屏幕P240上,以与在图41和图42中所示类似的方式来根据传感器类型执行显示和搜索。例如,在传感器类型是光电晶体管的情况下,暗电流ID、峰值灵敏度波形长度λp和检测范围等被显示为缩减条件(搜索条件)和传感器列表的显示列,并且可以执行对于期望的光电晶体管的搜索。
图43是示出在使用传感器选择方法单选按钮P242的另一个来选择“未注册/定制”的情况下的传感器细节选择屏幕P240的显示示例的图。在该情况下,在传感器选择方法单选按钮P242下方显示参数输入区域P247、特性图形P248和特性绘制输入区域P249。
参数输入区域P247、特性图形P248和特性绘制输入区域P249被显示为使得可以配置与所选择的传感器类型对应的特性。在参数输入区域P247中设置注册名称、零件编号和各种参数。利用特性图形P248和特性绘制输入区域P249,来配置传感器的特性。在特性图形P248中,通过点击和拖动操作来绘制与相应的特性对应的图形,来配置传感器的特性。在特性绘制输入区域P249中,通过输入数值而不是绘制与相应的特性对应的图形来配置传感器的特性。另外,可以利用绘制点数量增加按钮(未示出)来任意递增特性图形的绘制点的数量。
图44是示出在图29中的步骤S103处显示的偏置电路选择屏幕的显示示例的图。当在图41中的传感器细节屏幕P220上选择“偏置电路”标签P232时,如图44中所示显示偏置电路选择屏幕P250。在步骤S103处描述的偏置电路选择屏幕P250上显示适合于所选择的传感器的偏置电路。利用所显示的适合于传感器的偏置电路,可以通过简单的操作来选择最佳的偏置电路。
在偏置电路选择屏幕P250上显示示意电路列表P251和所选电路P252。在示意电路列表P251上显示良好地适应于传感器的所有偏置电路的电路图像,并且,在所选电路P252上显示由用户在示意电路列表P251上选择的偏置电路的电路图像。
图44是在将光电晶体管选择为传感器并且在示意电路列表P251上将偏置电路P253a至P253b显示为良好地适应于光电晶体管的偏置电路的情况下的偏置电路选择屏幕P250的显示示例。在该情况下,用户选择偏置电路P253a,并且在所选电路P252上显示与偏置电路P253a相同的电路图像。如在图29中的步骤S103处所述,在电路信息存储单元426中存储所选择的偏置电路的电路信息。
在偏置电路选择屏幕P250上显示良好地适应于传感器的多个偏置电路使得用户能够根据传感器的意图用途和使用环境来选择最佳偏置电路。作为一些示例,将描述在图44中可选择的偏置电路的特性。偏置电路P253b和P253c是适合于将电流输出型传感器的电流输出转换为电压输出并且将输出电压传送到下一级的偏置电路,而偏置电路P253a和P253d是适合于将电流输出型传感器的电流输出原样传送到下一级的偏置电路。
偏置电路P253c是向具有共集电极配置的电流输出型传感器供应偏置的偏置电路。在偏置电路P253c中,向光电晶体管的集电极供应偏置电源,并且,经由电阻器来将光电晶体管的发射极接地。耦合到发射极的电阻器的两端是传感器的输出端子,并且耦合到半导体装置1的输入端子。因为偏置电路P253c用于从外部电源向其供应偏置并且从其产生与输入亮度对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110的配置是非反相放大器的配置。因此,如果选择偏置电路P253c,则可配置放大器110的配置被自动配置为非反相放大器的配置,并且,偏置电路P253c被配置为耦合到非反相放大器。亮度越小,则偏置电路P253c输出的电压信号越低,因此,偏置电路P253c最适合于处理小亮度的应用。
偏置电路P253b是向具有共发射极配置的电流输出型传感器供应偏置的偏置电路。在偏置电路P253b中,将光电晶体管的发射极接地,并且,集电极经由电阻器耦合到偏置电源。耦合到集电极的电阻器的两端是传感器的输出端子,并且耦合到半导体装置1的输入端子。因为偏置电路P253b用于从外部电源向其供应偏置并且从其产生与输入亮度对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110的配置是非反相放大器的配置。因此,如果选择偏置电路P253b,则可配置放大器110的配置被自动配置为非反相放大器的配置,并且,偏置电路P253b被配置为耦合到非反相放大器。亮度越大,则偏置电路P253b输出的电压信号越低,因此,偏置电路P253b最适合于处理大亮度的应用。
偏置电路P253a是向电流输出型传感器的集电极供应偏置的偏置电路。在偏置电路P253a中,光电晶体管的集电极是传感器输出端子,并且耦合到半导体装置1的输入端子。将光电晶体管的发射极接地。因为偏置电路P253a不从外部供应偏置,并且产生与输入亮度对应的电流,所以优选的是,耦合到该传感器的可配置放大器110的配置是IV放大器的配置。因此,如果选择偏置电路P253a,则可配置放大器110的配置被自动配置为IV放大器的配置,并且偏置电路P253a被配置为耦合到IV放大器。当亮度低时,耦合到该偏置电路P253a的可配置放大器110的输出电压与运算放大器的参考电压近乎相同,并且当亮度增大时,运算放大器的输出电压增大。因此,偏置电路P253a最佳地适合于处理小亮度的应用。
偏置电路P253d是向电流输出型传感器的发射极供应偏置的偏置电路。在偏置电路P253d中,向光电晶体管的集电极供应偏置电源,并且,发射极是传感器输出端子,并且耦合到半导体装置1的输入端子。因为偏置电路P253d不从外部供应偏置,并且产生与输入亮度对应的电流,所以优选的是,耦合到该传感器的可配置放大器110的配置是IV放大器的配置。因此,如果选择偏置电路P253d,则可配置放大器110的配置被自动配置为IV放大器的配置,并且偏置电路P253d被配置为耦合到IV放大器。当亮度低时,耦合到该偏置电路P253d的可配置放大器110的输出电压与运算放大器的参考电压近乎相同,并且当亮度增大时,运算放大器的输出电压减小。因此,偏置电路P253d最佳地适合于处理大亮度的应用。
图45是示出在图44中所示的偏置电路选择屏幕P250的另一个示例的图。图45是在下述情况下的偏置电路选择屏幕P250的显示示例:其中,将惠斯通电桥型压力传感器选择为传感器,并且,在示意电路列表P251上将一个偏置电路P254显示为良好地适应于压力传感器的偏置电路。因为在示意电路列表P251上显示仅一个偏置电路P254,所以在所选电路P252上显示这个偏置电路P254。
也可以设想,除了在图45中的偏置电路P254之外,可以如图46中所示在示意电路列表P251上显示另一个偏置电路,使得可以选择该两个偏置电路之一。在图46中所示的示例中,在偏置电路选择屏幕P250上显示:示意电路列表P251,其上显示偏置电路P254a和P254b作为惠斯通电桥型压力传感器;以及,所选电路P252,其中,显示所选择的偏置电路P254a。
偏置电路P254a是直接地向电压输出型压力传感器供应偏置电源的电路。在偏置电路P254a中,对作为一种压力传感器的惠斯通电桥的上端供应偏置电源,将下端接地,并且作为传感器的输出端子的右端和左端耦合到半导体装置1的输入端子。因为偏置电路P254a用于从外部电源向其供应偏置并且从其产生与压力对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110的配置是仪表放大器的配置。因此,如果选择偏置电路P254a,则可配置放大器110的配置被自动配置为仪表放大器的配置,并且偏置电路P254a被配置为耦合到仪表放大器。
偏置电路P254b是经由电阻器向电压输出型压力传感器供应偏置电源的电路。在偏置电路P254b中,经由电阻器对作为一种压力传感器的惠斯通电桥的上端供应偏置电源,将下端接地,并且作为传感器的输出端子的右端和左端耦合到半导体装置1的输入端子。因为偏置电路P254b用于从外部电源向其供应偏置并且从其产生与压力对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110是仪表放大器。因此,如果选择偏置电路P254b,则可配置放大器110的配置被自动配置为仪表放大器的配置,并且偏置电路P254b被配置为耦合到仪表放大器。
图47是示出在图44中所示的偏置电路选择屏幕P250的另一个示例的图。图47是在下述情况下的偏置电路选择屏幕P250的显示示例:其中,将电流换能器型压力传感器选择为传感器,并且在示意电路列表P251上将偏置电路P254c和P254d显示为良好地适应于压力传感器的偏置电路。在所选电路P252上显示所选择的偏置电路P254c。
偏置电路P254c是从电流输出型压力传感器产生作为检测信号的电流的电路。在偏置电路P254c中,向压力传感器的一端供应偏置电源,并且另一端是传感器输出端子,并且耦合到半导体装置1的输入端子。因为偏置电路P254c不从外部供应偏置,并且产生作为电流的输出信号,所以优选的是,耦合到该传感器的可配置放大器110的配置是IV放大器的配置。因此,如果选择偏置电路P254c,则可配置放大器110的配置被自动配置为IV放大器的配置,并且偏置电路P254c被配置为耦合到IV放大器。
偏置电路P254d是向电流输出型压力传感器内拉入作为检测信号的电流的电路。在偏置电路P254d中,压力传感器的一端是传感器输出端子,并且耦合到半导体装置1的输入端子,并且将另一端接地。因为偏置电路P254d不从外部供应偏置,并且产生作为电流的输出信号,所以优选的是,耦合到该传感器的可配置放大器110的配置是IV放大器的配置。因此,如果选择偏置电路P254d,则可配置放大器110的配置被自动配置为IV放大器的配置,并且偏置电路P254d被配置为耦合到IV放大器。
图48是示出在图44中所示的偏置电路选择屏幕P250的另一个示例的图。图48是在下述情况下的偏置电路选择屏幕P250的显示示例:其中,将温度传感器选择为传感器,并且在示意电路列表P251上将偏置电路P255a和P255b显示为良好地适应于温度传感器的偏置电路。在所选电路P252上显示所选择的偏置电路P255a。
偏置电路P255a是向电压输出型的温度传感器供应偏置电源,并且直接地将输出信号输出的电路。在偏置电路P255a中,向温度传感器的一端供应偏置电源,将另一端接地,并且,温度传感器的输出端子仅耦合到半导体装置1的输入端子。例如,因为偏置电路P255a用于从外部电源向其供应偏置并且从其产生与温度对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110的配置是非反相放大器的配置。因此,如果选择偏置电路P255a,则可配置放大器110的配置被自动配置为非反相放大器的配置,并且偏置电路P255a被配置为耦合到非反相放大器。
偏置电路P255b是向电压输出型的温度传感器供应偏置电源的电路,并且经由接地电阻器将输出信号输出。在偏置电路P255b中,向温度传感器的一端供应偏置电源,将另一端接地,并且,温度传感器的输出端子仅耦合到半导体装置1的输入端子并且也耦合到接地电阻器。例如,因为偏置电路P255b用于从外部电源向其供应偏置并且从其产生与温度对应的电压的传感器,所以优选的是,耦合到该传感器的可配置放大器110的配置是非反相放大器的配置。因此,如果选择偏置电路P255b,则可配置放大器110的配置被自动配置为非反相放大器的配置,并且偏置电路P255b被配置为耦合到非反相放大器。另外,偏置电路P255b也以使用接地电阻器来将传感器的电流输出转换为电压的方式用于电流输出型的温度传感器。
图49是示出在图29中的步骤S103处示出的物理量输入屏幕的显示示例的图。在图41或图44中的传感器细节屏幕P220上选择“传感器输入”标签P233的情况下,传感器细节屏幕P220上显示物理量输入屏幕P260,如图49中所示。
在物理量输入屏幕P260上显示输入图案列表P261和输入参数区域P262。在输入图案列表P261上将可选择的图案显示为要向传感器输入的物理量的输入图案,并且,在输入参数区域P262上显示用于细节配置所选择的输入图案的参数。如在图29中的步骤S104处所述,在参数存储单元427中存储所配置的输入图案和参数。
在输入图案列表P261上,可以选择预定义输入图案P261a至P261d的任何一个和作为用户任意定义的输入图案的“用户定义”图案261e。
可以选择的预定义输入图案是:正弦波,即,“正弦”图案P261a;方波,即,“脉冲”图案261b;阶梯响应波,即,“阶梯”图案P261c;以及,三角波,即,“三角”图案P261d。
在输入参数区域P262中,显示在输入图案列表P261上选择的图案和与在图41中的传感器选择屏幕上选择的传感器对应的参数等。在图49中所示的示例中,将温度传感器选择为传感器,并且将正弦波,即,“正弦”图案P261a选择为输入图案。因为输入图案是正弦波,所以在输入参数区域P262中显示用于最小值、最大值和频率的输入框。因为传感器是温度传感器,所以最小值和最大值的单位是“°C”。
图50是示出在图49中所示的物理量输入屏幕P260的另一个示例的图。在图50中,将压力传感器选择为传感器,并且,将正弦波,即,“正弦”图案P261a选择为输入图案。因为输入图案是正弦波,所以在输入参数区域P262中显示用于最小值、最大值和频率的输入框。因为传感器是压力传感器,所以最小值和最大值的单位是“Pa”。
图51是示出在图49中所示的物理量输入屏幕P260的另一个示例的图。在图51中,将光电晶体管选择为传感器,并且,将正弦波,即,“正弦”图案P261a选择为输入图案。因为输入图案是正弦波,所以在输入参数区域P262中显示用于最小值、最大值和频率的输入框。因为传感器是光电晶体管,所以最小值和最大值的单位是“W/m2”。
另外,因为可以在输入参数区域P262中配置与所选择的输入图案对应的输入参数,所以可以正确地指定每一个输入波形的图案。例如,如果输入图案是正弦波,则如上所述配置最小值、最大值和频率。如果输入图案是方波,则配置最小值、最大值、上升速度和下降速度。如果输入图案是三角波,则配置最小值、最大值和频率。如果输入图案是阶梯响应,则配置最小值、最大值、上升时间和上升速度。另外可以根据传感器的特性来显示用于所选择的传感器的输入参数的最小值和最大值的默认值。换句话说,参考传感器数据库421来获得传感器可以检测的最小值和最大值,并且显示它们。因此,用户不必检验传感器的特性,并且这可以防止用户错误地指定在传感器的特性的可允许输入范围之外的最小值和最大值。
在物理量输入屏幕P260上显示多个输入波形,并且,可以从预定义输入波形选择要输入到传感器的物理量,结果是可以容易分析模拟电路的各种特性。作为一些示例,下面将描述在图51中的可以选择的输入波形的特性。
图52A是示出当利用正弦波输入图案模拟模拟电路(半导体装置1)时使用的输入信号和输出信号的图。在输入信号是正弦波的情况下,通过将具有与输入信号相同的相位的同相信号P262a与从模拟产生的输出信号P262b作比较,变得有可能最佳地对于模拟结果执行粗略检验,诸如存在或不存在失真和相差等。另外,也可能检验是否将输出信号的波形削波。通过在如图52A中所示的模拟结果的显示屏幕上叠加地显示上面两个波形,用户可以一眼就检验模拟电路的特性。
换句话说,利用正弦波输入图案,用户可以容易地检验在那个频率处的特性值,这使得用户能够根据检验结果来适当地配置可配置放大器110的电路构成和特性。
另外,也可能的是,模拟执行单元415使用模拟结果来检测相差等,并且根据检测结果来自动配置可配置放大器110的电路构成和特性。模拟执行单元415对于将正弦波输入图案输入到的可配置放大器110执行模拟,并且根据由模拟结果示出的频率特性来配置可配置放大器110的耦合级的数量。在不能在所需频率处实现适当的放大功能的情况下,模拟执行单元415将可配置放大器110配置为多级放大器。例如,存在下述情况:其中,即使在正弦波频率100kHz处需要来自一级可配置放大器110的30dB放大功能,该一级可配置放大器110也不能实现该放大功能。在该情况下,例如,通过将可配置放大器110配置为两级放大器,即,通过耦合具有15dB增益的放大器AMP1和具有15dB增益的放大器AMP2,可以实现期望的频率特性。
图52B是示出当利用方波输入图案来模拟模拟电路(半导体装置1)时使用的输入信号和输出信号的图。在输入信号是方波的情况下,通过将具有与输入信号相同的相位的同相信号P262c与源自模拟的输出信号P262d作比较,变得可能最佳地检验响应特性。通过如图52B中所示在模拟结果的显示屏幕上叠加地显示上面两个波形,用户可以一眼就检验模拟电路的响应特性。
换句话说,利用方波输入图案,用户可以容易地检验响应特性,这使得用户能够根据检验结果适当地配置可配置放大器110的电路构成和特性。
另外,也可能的是,模拟执行单元415使用模拟结果来检测信号的失真和延迟等,并且根据检测结果来自动地配置可配置放大器110的电路构成和特性。模拟执行单元415对于将方波输入图案输入到的可配置放大器110执行模拟,并且根据由模拟结果示出的响应特性来配置可配置放大器110的操作模式。在响应特性不足并且上升特性失真的情况下,模拟执行单元415修改可配置放大器110的操作模式。因为操作模式和功耗具有折衷关系,所以必须在利用方波检验响应特性后选择最佳的操作模式。例如,如果可配置放大器110被配置为在低速模式中并且未实现期望的响应特性,则可以通过将可配置放大器110的操作模式配置为中速模式或高速模式来实现期望的响应特性。
图52C是示出当利用三角波输入图案来模拟模拟电路(半导体装置1)时使用的输入信号和输出信号的图。在输入信号是三角波的情况下,通过将具有与输入信号相同的相位的同相信号P262e与源自模拟的输出信号P262f作比较,变得有可能最佳地检验存在或不存在由电源削波的输出信号。通过如图52C中所示在模拟结果的显示屏幕上叠加地显示上面两个波形,用户可以一眼就检验削波的状态。
换句话说,利用三角波输入图案,用户可以容易地检验放大器的偏移和增益是否足够。另外,用户可以容易地检验输出信号的削波状态,这使得用户能够根据检验结果来适当地配置可配置放大器110的电路构成和特性。
另外,也可能的是,模拟执行单元415使用模拟结果来检测削波信号的最大值和最小值,并且根据检测结果来自动地配置可配置放大器110的电路构成和特性。模拟执行单元415对于将三角波输入图案输入到的可配置放大器110执行模拟,并且根据由模拟结果所示的削波状态来配置可配置放大器110的偏移和增益。在将输出信号的波形的上部或下部的任何一个削波的情况下,模拟执行单元415修改可配置放大器110的偏移值,结果是可以获得在期望的范围内的输出信号。在将输出信号的波形的上部和下部两者削波的情况下,可配置放大器110的增益太大;因此,可以通过降低放大器的增益来获得在期望的范围内的输出信号。
图52D是示出当使用阶梯响应波形输入图案来模拟模拟电路(半导体装置1)时使用的输入信号和输出信号的图。在输入信号是阶梯响应波的情况下,通过将具有与输入信号相同的相位的同相信号P262g与源自模拟的输出信号P262h作比较,变得有可能最佳地检验响应特性。通过如图52D中所示在模拟结果的显示屏幕上叠加地显示上面两个波形,用户可以一眼就检验响应特性。
换句话说,利用阶梯响应波形输入图案,用户可以容易地检验响应特性,而不必考虑脉冲宽度,虽然不可能同时检验上升速度和下降速度两者。另外,可以利用阶梯响应波形来检验刚好在接通电源后的响应。另外,利用阶梯响应波形输入图案,用户可以容易地检验响应特性,这使得用户能够根据检验结果来适当地配置可配置放大器110的电路构成和特性。另外,也可能的是,模拟执行单元415使用模拟结果来检测信号的失真和延迟等,并且根据检测结果来自动地配置可配置放大器110的电路构成和特性。
图53是示出选择“用户定义”图案P261e的、在图49中所示的物理量输入屏幕P260的显示示例的图。如图53中所示,当选择“用户定义”图案P261e时,在物理量输入屏幕P260上显示用户定义输入区域P270,而不是在图49中的输入参数区域P262。
在用户定义输入区域P270中显示输入图案图形P271和绘制输入区域P272,输入图案图形P271和绘制输入区域P272两者都对应于所选择的传感器。在输入图案图形P271上,通过经由点击或拖动操作而指定绘制点来建立输入图案。在绘制输入区域P272中,通过由输入数值指定图形的绘制点来建立输入图案。另外,可以利用绘制点数量增加按钮(未示出)来任意地递增输入图案图形的绘制点的数量。
图54是当在图41、图44或图49等中所示的传感器细节屏幕P220上选择“传感器特性”标签P234时显示的传感器特性屏幕P280的显示示例的图。在传感器特性屏幕P280上显示特性图形P281和特性范围P282。在特性图形P281上和在特性范围P282中显示在图41中选择的传感器的特性等。基于所选择的传感器的数据表,在特性图形P281上显示传感器的输入和输出特性对物理量,并且在特性范围P282中显示传感器的操作范围。
在图54中所示的示例是在将温度传感器选择为传感器的情况下的传感器特性屏幕P280的显示示例。在特性图形P281上,x轴表示所检测的传感器的温度,y轴表示传感器的输出电压,并且显示输出电压的特性对所检测的温度。在特性范围P282中显示与由特性图形P281上的图形所示的范围相同的温度范围和输出电压范围。
图55是在图54中所示的传感器特性屏幕P280的另一个示例。图55是示出在将光电传感器选择为传感器的情况下的传感器特性屏幕的显示示例的图。在特性图形P281上,x轴表示所检测的亮度,y轴表示输出电流,并且显示输出电流的特性对检测的亮度。在特性范围P282中显示与由在特性图形P281上的图形示出的范围相同的亮度范围和输出电流范围。
图56是在图29中的步骤S105处所示的AFE选择屏幕的显示示例。当在图38或图39等中的网络模拟器屏幕P100上选择“AFE选择”标签P13时,如图56中所示显示AFE选择屏幕P300。
在AFE选择屏幕P300的上部显示AFE缩减条件P310,并且在下部显示AFE列表P320。在AFE缩减条件P310上,显示用于进一步缩减由所选传感器和偏置电路指定的半导体装置1的条件。
在图56中,AFE缩减条件P310包括:“放大器”区域P311;“滤波器”区域P312;“其他”区域P313;“DAC”区域P314。“放大器”区域P311包括:“反相”复选框,用于使得反相放大器作为搜索条件;“非反相”复选框,用于使得非反相放大器作为搜索条件;“差分”复选框,用于使得差分放大器作为搜索条件;“IV”复选框,用于使得IV放大器作为搜索条件;以及,“仪表”复选框,用于使得仪表放大器作为搜索条件。在“放大器”区域P311中,通过点击来选择与搜索条件对应的复选框,以便基于半导体装置1的可配置放大器110的电路构成来搜索半导体装置1。
“滤波器”区域P312包括:“低通滤波器”复选框,用于使得低通滤波器作为搜索条件;以及,“高通滤波器”复选框,用于使得高通滤波器作为搜索条件。在“滤波器”区域P312中,通过点击来选择与搜索条件对应的复选框,以便基于半导体装置1的滤波器的电路构成来搜索半导体装置1。
“其他”区域P313包括:“稳压器”复选框,用于使得稳压器(可变调节器150)作为搜索条件;“电压基准”复选框,用于使得电压基准作为搜索条件;以及,“温度传感器”复选框,用于使得温度传感器作为搜索条件。在“其他”区域P313中,通过点击来选择与搜索条件对应的复选框,以便基于稳压器的电路构成等来搜索半导体装置1。
“DAC”区域P314包括DAC的“分辨率”下拉菜单和“Ch编号”下拉菜单。在“分辨率”下拉菜单处,指定用于使得具有特定比特数分辨率的半导体装置1作为搜索目标的特定比特数,或者指定用于使得具有任何比特数分辨率的半导体装置1作为搜索目标的“任意”。在“Ch编号”下拉菜单处,指定用于使得具有特定通道编号的半导体装置1作为搜索目标的特定通道编号,或者指定用于使得具有任何通道编号的半导体装置1作为搜索目标的“任意”。
在AFE缩减条件P310和AFE列表P320之间显示“搜索”按钮P315和“复位”按钮P316。当点击“搜索”按钮P315时,基于在AFE缩减条件P310中配置的条件来执行AFE数据库的搜索,并且在AFE列表P320上显示搜索结果。如果点击“复位”按钮P316,则复位在缩减条件P310中配置的缩减条件(搜索条件),并且屏幕变为对于AFE搜索无任何配置的初始状态。
在AFE列表P244上,显示良好地适应于所选传感器和偏置电路并且也满足在AFE缩减条件P310中配置的条件的半导体装置1的列表。如在图29中的步骤S106处所述,如果在图41或图49等中选择传感器和偏置电路,则确定可以耦合到传感器的半导体装置1。从在AFE数据库424中存储的半导体装置1中显示可以耦合到传感器并且也满足所配置的缩减条件的半导体装置1。
在AFE列表P320上,在多列中显示关于各个半导体装置1的多个信息。在图56中,存在七列:零件编号;描述;数据表;封装;通道;DAC;以及,VDD,其中,分别显示每一个半导体装置1的零件编号、描述、数据表、封装类型、通道编号、DAC配置和电源电压。在数据表列中,显示PDF图标,并且当点击PDF图标时,显示包括数据表的PDF文件。
因为在AFE列表P320上显示良好地适应于传感器和偏置电路并且也满足缩减条件的半导体装置1,所以可以通过简单的操作来选择期望的半导体装置1。用户基于所显示的信息来从AFE列表P320选择要使用的AFE。如果如在图29中的步骤S105处所示从AFE列表P320选择AFE,则在电路信息存储单元426中存储对应的半导体装置1的电路信息。
图57是示出在图29中的步骤S107处显示的传感器AFE耦合屏幕的显示示例的图。当在图38、图39或图56等中在网络模拟器屏幕P100上选择“传感器与AFE耦合”标签P14时,如图57中所示显示传感器AFE耦合屏幕P400。
在传感器AFE耦合屏幕P400的左侧上显示传感器选择框P410a至P410c,其示出传感器和用于每一个传感器的偏置电路的配置状态。传感器选择框P410a至P410c对应于在图39中所示的传感器选择框P210和在图40中所示的传感器选择框P210a至P210c,并且除了在传感器选择框P210和P210a至P210c中显示的内容之外进一步包括关于偏置电路的信息。在图57中,如在图40中的传感器选择框P210的情况,显示:传感器选择框P410a,其中选择压力传感器;传感器选择框P410b,其中选择光电晶体管;以及,传感器选择框P410c,其中选择温度传感器。
具体地说,在传感器选择框P410a至P410c中,如在图40中的传感器选择框P210a至P210c的情况,显示包括所选传感器的传感器类型和零件编号的传感器名称显示区域P411,并且也显示“细节配置”按钮P412。
另外,在传感器选择框P410a至P410c中显示用于配置偏置的偏置下拉菜单P413。例如,在偏置下拉菜单P413中,显示与所选偏置电路对应的偏置供应方法的列表,使得可以选择VDD和GND的供应方法。另外,在传感器选择框P410a至P410c中,与耦合关系相结合地显示:输出信号显示P414,在其中的每一个中显示与所选偏置电路对应的输出信号;以及,输入端子显示P415,在其中的每一个中显示半导体装置1的输入端子。
在传感器AFE耦合屏幕P400中,在传感器选择框P410a至P410c的右侧显示示出半导体装置1的电路构成的图像的半导体装置图像P420,并且分别在与半导体装置图像P420的输入端子对应的位置中显示输入端子下拉菜单P430。
半导体装置图像P420示出在半导体装置1的I/O端子和在半导体装置1内的各个电路之间的耦合关系。根据如图3中所述的实际半导体装置1的耦合关系来显示半导体装置图像P420。
输入端子下拉菜单P430显示要耦合到相应的输入端子的传感器和偏置电路的输出信号。通过点击输入端子下拉菜单P430,可以选择与输入端子对应的传感器的输出信号。另外,通过将传感器的输出信号显示P414的图标拖动到与输入端子对应的输入端子下拉菜单P430,可以建立在传感器的输出信号和输入端子之间的耦合关系。如在图29中的步骤S107处所述,当利用输入端子下拉菜单P430来选择在传感器和半导体装置1之间的耦合关系时,在电路信息存储单元426中存储关于所选择的耦合关系的电路信息。
另外,如图29中的步骤S106处所述,当选择传感器和偏置电路时,确定可配置放大器110的电路构成和耦合关系。在图57中的传感器AFE耦合屏幕P400中,默认显示在步骤S106处确定的耦合关系。
另外,在输入端子下拉菜单P430上,显示“自动耦合”按钮P431,其用于自动将传感器耦合到半导体装置1。通过在使用传感器选择框P410a至P410c的任何一个的“细节配置”按钮P412来修改传感器的配置后点击“自动耦合”按钮P431,根据传感器的修改的配置,来新地和自动地耦合传感器和半导体装置1。
下面将描述在图57中所示的示例的耦合关系。在传感器选择框P410a中所示的传感器0取决于压力传感器和对应的偏置电路的选择方式而具有两个输出,并且将这两个输出和可配置放大器110的放大器自动耦合。具体地说,传感器0的输出信号(输出端子)S_1耦合到半导体装置1的输入端子MPXIN10,并且传感器0的输出信号(输出端子)S_2耦合到半导体装置1的输入端子MPXIN20。在半导体装置1中,MPXIN10和MPXIN20分别耦合到AMP CH1(可配置放大器110的放大器AMP1)的反相输入端子和非反相输入端子。换句话说,传感器0的输出信号S_1和S_2被半导体装置1的AMP CH1放大,并且从输出端子AMP1_OUT输出。
在传感器选择框P410b中所示的传感器1取决于光电晶体管和对应的偏置电路的选择方式而具有一个输出,并且将这一个输出和可配置放大器110的放大器自动耦合。具体地说,传感器1的输出信号(输出端子)S_1耦合到半导体装置1的输入端子MPXIN30。在半导体装置1中,MPXIN30耦合到AMP CH2(可配置放大器110的放大器AMP2)的反相输入端子。换句话说,传感器1的输出信号S_1被半导体装置1的AMP CH2放大,并且从输出端子AMP2_OUT输出。
在传感器选择框P410c中所示的传感器2取决于温度传感器和对应的偏置电路的选择方式而具有一个输出,并且将这一个输出和可配置放大器110的放大器自动耦合。具体地说,传感器2的输出信号(输出端子)S_1耦合到半导体装置1的输入端子MPXIN60。在半导体装置1中,MPXIN60耦合到AMP CH3(可配置放大器110的放大器AMP3)的非反相输入端子。换句话说,传感器2的输出信号S_1被半导体装置1的AMP CH3放大,并且从输出端子AMP3_OUT输出。
图58是示出在图30中的步骤S201处显示的模拟屏幕的显示示例的图。当在图38、图39、图56或图57等中的网络模拟器屏幕P100上选择“模拟”标签P15时,如图58中所示显示模拟屏幕P500。模拟屏幕P500包括用于执行模拟的各种配置的显示和显示模拟结果的显示。图58是在执行任何模拟之前的模拟屏幕P500的状态的图。
在模拟屏幕P500的左侧显示传感器选择框P510a至P510c,传感器选择框P510a至P510c的每一个包括传感器的配置状态、偏置电路,以及每一个传感器的输入图案。传感器选择框P510a至P510c对应于在图57中所示的传感器选择框P410a至P410c,并且除了在传感器选择框P410a至P410c中显示的内容之外,进一步包括关于输入图案的信息。在图58中,如在图57中的传感器选择框的情况,显示:传感器选择框P510a,其中选择压力传感器;传感器选择框P510b,其中选择光电晶体管;以及,传感器选择框P510c,其中选择温度传感器。
具体地说,在传感器选择框P510a至P510c中,如在图57中的传感器选择框P410a至P410c的情况,显示:传感器名称显示区域P511,其包括所选传感器的传感器类型和零件编号;偏置供应方法P513;在输出信号和输入端子之间的耦合关系P514;以及,“细节配置”按钮P516。另外,在传感器选择框P510a至P510c中显示:输入波形图像P512,其示出所配置的物理量的输入图案图像;以及,偏置电路图像P515,其示出所配置的偏置电路的电路图像。
在模拟屏幕P500中,在传感器选择框P510a至P510c的右侧显示半导体装置配置区域P520,在半导体装置配置区域P520的每一个中配置半导体装置1的各个电路。在半导体装置配置区域P520中显示与半导体装置1的电路构成对应的电路块。
放大器块P521至P523分别显示配置菜单,该配置菜单用于配置半导体装置1的可配置放大器110的放大器AMP1CH1至AMP3CH3。在放大器块P521至P523的每一个中,通过点选“AMP使能”复选框来接通/断开对应的放大器;利用“配置”下拉菜单来配置放大器的电路构成;使用“增益”下拉菜单来配置放大器的增益;利用“DAC使能”复选框来设置对应的DAC的接通/断开操作;并且,利用“DAC”下拉菜单来配置DAC的输出电压。
例如,如果在“配置”下拉菜单处选择“差分”,则将放大器配置为差分放大器;如果在“配置”下拉菜单处选择“反相”,则将放大器配置为反相放大器;如果在“配置”下拉菜单处选择“非反相”,则将放大器配置为非反相放大器;并且,如果在“配置”下拉菜单处选择“I/V”,则将放大器配置为I/V放大器。另外,如图31中所述,基于所选放大器和偏置电路来自动配置放大器的增益和偏移。在放大器块P521至P523中,默认显示通过自动配置处理自动配置的增益和DAC输出电压。
另外,通过在放大器块P521至P523的每一个中点击“缩放”,可以参考对应的放大器的框图来建立各种配置。具体地说,如图59所示以弹出的方式来显示放大器配置屏幕P600。在放大器配置屏幕P600上,显示与半导体装置1的实际放大器相同的电路图像。例如,在放大器配置屏幕P600上显示在图8中所示的放大器的电路构成。
在放大器配置屏幕P600上,利用下拉菜单P601至P604来配置放大器的输入和输出的耦合目的地;利用下拉菜单P605来配置放大器的增益;使用下拉菜单P606至P608来分别配置存在或不存在输入电阻和DAC到放大器的耦合;并且,利用复选框P609和下拉菜单P610来分别配置DAC的接通/断开操作和DAC的输出电压。
在图58中的增益放大器块P524示出用于配置半导体装置1的增益放大器120的配置菜单。在增益放大器块P524中,如在放大器块P521至P523的任何一个的情况,配置放大器。在增益放大器块P524中,通过点选“AMP使能”复选框来接通/断开放大器;利用“增益”下拉菜单来配置放大器的增益;通过点选“DAC使能”复选框来配置DAC的接通/断开操作;并且,使用“DAC”下拉菜单来配置DAC的输出电压。
滤波器块P525示出了用于配置半导体装置1的低通滤波器130和高通滤波器140的配置菜单。在滤波器块P525中,利用“顺序”下拉菜单来配置在滤波器电路中定位低通滤波器和高通滤波器的顺序;通过点选“LPF使能”复选框来配置低通滤波器的接通/断开操作;利用“LPF截止”下拉菜单来配置低通滤波器的截止频率;通过点选“HPF使能”复选框来配置高通滤波器的接通/断开操作;并且,利用“HPF截止”下拉菜单来配置高通滤波器的截止频率。
例如,如果在“顺序”下拉菜单处选择“LPF”,则配置滤波器电路的电路构成,使得信号仅通过低通滤波器;如果在“顺序”下拉菜单处选择“HPF”,则配置滤波器电路的电路构成,使得信号仅通过高通滤波器;如果在“顺序”下拉菜单处选择“LPF→HPF”,则配置滤波器电路的电路构成,使得信号以该顺序通过低通滤波器和高通滤波器;并且,如果在“顺序”下拉菜单处选择“HPF→LPF”,则配置滤波器电路的电路构成,使得信号以该顺序通过高通滤波器和低通滤波器。
DAC块P526示出用于配置耦合到放大器的DAC的参考电压的配置菜单。在DAC块P526中,利用“DACVRT”下拉菜单来配置DAC的配置的电压的上限,并且,利用“DACVRB”下拉菜单来配置DAC的配置的电压的下限。
可变调节器块P527示出了用于配置半导体装置1的可变调节器150的配置菜单。在可变调节器块P527中,通过点击“使能”复选框来配置可变调节器的接通/断开操作,并且利用“LDO”下拉菜单来配置可变调节器的输出电压。
温度传感器块P528示出用于配置半导体装置1的温度传感器160的配置菜单。在温度传感器块P528中,通过点击“使能”复选框来配置温度传感器的接通/断开操作。通用放大器块P529示出用于配置半导体装置1的通用放大器170的配置菜单。在通用放大器块P529中,通过点击“使能”复选框来配置通用放大器的接通/断开操作。
在半导体配置区域P520的上部,显示对于各个电路公共地使用的各个配置区域P530。在公共配置区域P530中,可以利用“VDD”下拉菜单来配置电源电压;可以利用“放大模式”下拉菜单来配置放大器模式;并且,可以利用“温度”输入框配置半导体装置1的温度。在“放大器模式”下拉菜单中,放大器操作模式通过选择“高”而变为高速模式,并且放大器操作模式通过选择“低”而变为低速模式。
在公共配置区域P530上,存在用于执行模拟的按钮P531至P536。“自动配置”按钮P531是用于执行在图31中所示的自动配置处理的按钮。在利用传感器选择框P510a至510c的“细节配置”按钮P516来修改传感器的配置的情况下,基于传感器的电路构成来调整对应的放大器的增益和偏移,该传感器的配置通过点击“自动配置”按钮P531而被修改,并且,自动配置放大器的增益和对应的DAC的输出电压。
“分析配置”按钮P532用于在图30中的步骤S203中输入模拟参数。例如,当点击“分析配置”按钮P532时,以弹出方式来显示可配置参数的列表,并且可以设置该参数的任何一个。如在图30中的步骤S203处所述,可以在参数存储单元427中存储设置的参数。
“暂态分析”按钮P533用于执行在图34中所述的暂态分析处理。当点击“暂态分析”按钮P533时,如在图34中所述,使用配置的电路信息和参数作为模拟条件来模拟以时间序列顺序向其输入物理量的半导体装置1的操作,并且在模拟屏幕P500上显示模拟结果。
“AC分析”按钮P534用于执行在图35中所述的AC分析处理。当点击“AC分析”按钮P534时,如在图35中所述,使用配置的电路信息和参数作为模拟条件来模拟对于每一个频率向其输入物理量的半导体装置1的操作,并且在模拟屏幕P500上显示模拟结果。
“滤波效果”按钮P535用于执行在图36中所述的滤波效果分析处理。当点击“滤波效果”按钮P535时,如在图36中所述,使用配置的电路信息和参数作为模拟条件来模拟向其输入增加噪声的物理量的半导体装置1的操作,并且在模拟屏幕P500上显示模拟结果。
“同步检测电路”按钮P536用于执行在图37中所述的同步检测分析处理。当点击“同步检测电路”按钮P536时,如在图37中所述,使用配置的电路信息和参数作为模拟条件来模拟向其输入物理量和同步信号的半导体装置1的操作,并且在模拟屏幕P500上显示模拟结果。
图60A至图60C是示出模拟屏幕P500的显示示例,其中,另外显示暂态分析结果。在此,图60A至图60C是要以此顺序连续显示的模拟屏幕P500的部分。换句话说,为了显示方便,模拟屏幕P500的整体被划分为三个部分。
在通过点击“暂态分析”按钮P533来执行暂态分析后,在模拟屏幕P500上的半导体装置配置区域P520下方显示暂态分析结果显示区域P700,如图60A至图60C中所示。
在暂态分析结果显示区域P700中,在结果图形P701至P705的每一个上以块显示模拟结果的多个信号波形。结果图形P701以块显示传感器的输出信号的波形。在图60B中的结果图形P701中显示输出信号SENSE_OUT1和SENSE_OUT2(传感器0的输出信号S_1和S_2)。
结果图形P702以块显示放大器的输出信号的波形。在图60B中的结果图形P702中显示AMP3_OUT和AMP1_OUT(AMP CH3和AMPCH1的输出信号)。
结果图形P703以块显示增益放大器和滤波器的输出信号的波形。在图60B中的结果图形P703中显示HPF_OUT(高通滤波器的输出信号)、LPF_OUT(低通滤波器的输出信号)、SYNCH_OUT(同步检测电路的输出信号)和GAINAMP_OUT(增益放大器的输出信号)。
结果图形P704以块显示DAC和其他的输出信号的波形。在图60B中的结果图形P704中显示TEMP_OUT(温度传感器的输出信号)、LDO_OUT(功率调节器的输出信号)和DAC4_OUT、DAC3_OUT、DAC1_OUT(DAC4、DAC3和DAC1的输出信号)。
结果图形P705以块显示所有输出信号的波形。在图60C中的结果图形P705中将在结果图形P701至P704的任何一个中显示的:TEMP_OUT;LDO_OUT;DAC4_OUT、DAC3_OUT、DAC1_OUT、HPF_OUT、LPF_OUT、SYNCH_OUT、GAINAMP_OUT、AMP3_OUT、AMP1_OUT、SENCE_OUT2和SENCE_OUT1全部显示。
图61A至图61D是示出在图60A至图60C中所示的模拟屏幕P500的显示示例,其中,另外显示另外的暂态分析结果。在此,图61A至图61D是要按顺序连续显示的模拟屏幕P500的部分。换句话说,为了显示方便,将模拟屏幕P500的整体划分为四个部分。
如果在图60A至图60C中的模拟屏幕P500上另外点击“暂态分析”按钮P533来执行暂态分析,则在如图61A至图61D中所示的模拟屏幕P500上的暂态分析结果显示区域P700下方显示暂态分析结果显示区域P710。
在暂态分析结果显示区域P710中,如暂态分析结果显示区域P700的情况,在结果图形P711至P715的每一个上以块显示模拟结果的多个信号波形。
在图61C中的结果图形P711显示传感器的输出信号SENSE_OUT1。在图61C中的结果图形P712中显示AMP3_OUT和AMP2_OUT。在图61D中的结果图形P713中显示HPF_OUT、LPF_OUT、SYNCH_OUT和GAINAMP_OUT。在图61D中的结果图形P714中显示TEMP_OUT、LDO_OUT、DAC4_OUT、DAC3_OUT和DAC2_OUT。在图61D中的结果图形P715中将在结果图形P711至P714的任何一个中显示的TEMP_OUT、LDO_OUT、DAC4_OUT、DAC3_OUT、DAC2_OUT、HPF_OUT、LPF_OUT、SYNCH_OUT、GAINAMP_OUT、AMP3_OUT、AMP2_OUT和SENCE_OUT1全部显示。
图62是示出用于显示在图36中的滤波效果分析处理的结果的结果图形的显示示例的图。在通过点击“滤波效果”按钮P535执行滤波效果分析后,在模拟屏幕P500下方显示滤波效果结果屏幕。如暂态分析结果的情况,在滤波效果结果屏幕上显示多个结果图形,并且结果图形之一是在图62中的结果图形P720。
结果图形P720以块(叠加地)显示:包括噪声的传感器输出信号P721;通过使用放大器放大传感器输出信号P721而获得的放大器输出信号P722;以及,通过使用滤波器从放大器输出信号P722去除噪声而获得的滤波器输出信号P723。以叠加方式显示作为滤波之前的信号的传感器输出信号P721和放大器输出信号P722,以及在被滤波后的滤波器输出信号P723,使得有可能容易地比较在滤波之前和之后的这些信号波,并且一眼就检验滤波效果。
在现有技术中,利用沿着用于表示频率的水平轴绘制的信号的频率特性来执行检验滤波效果,结果是变得难以可视地明白滤波效果。另一方面,以如图62中所示的方式显示信号使得用户更容易检验滤波效果,使得可以说该方法是用户友好的。
图63是示出在图29中的步骤S110处显示的零件列表屏幕的显示示例的图。如果在图38、图39、图56、图57或图58等中的网络模拟器屏幕P100上选择“零件列表”标签P16,则如图63中所示显示零件列表屏幕P800。
在零件列表屏幕P800上,显示用于选择零件交易者的标签P810和标签P820。通过选择“Chip1Stop”标签P810来显示零件列表P811。在零件列表P811上,显示在模拟时选择的半导体装置1和传感器的列表。在零件列表P811上以多列显示关于单独零件的信息。在图63中,分别在列“Ref”、“Qty”、“找到的零件编号”、“制造商”、“描述”和“库存价格”中显示每一个零件的名称、数量、零件编号、制造商、描述和价格。通过点击“结账”按钮P822,可以购买零件。
图64A至图64G是在图29中的步骤S112处显示的报告屏幕的显示示例。在此,图64A至图64G是将按顺序连续显示的报告屏幕的部分。换句话说,为了显示方便,将报告屏幕的整体划分为7个部分。
如果在图38、图39、图56、图57、图58或图63等中的网络模拟器屏幕P100上选择“报告”标签P17,则如图64A至图64G中所示显示报告屏幕P900。
在报告屏幕P900的上部,显示半导体装置标识区域P901,用于识别对其执行模拟的半导体装置。在半导体装置标识区域P901中显示在AFE选择屏幕选择并且对其执行模拟的半导体装置的零件编号。在图64A中所示的示例中,在半导体装置标识区域P901中显示在图56中选择的零件编号“RAA730500Z”。
另外,在半导体装置标识区域P901的右侧显示PDF图标P902。通过点击PDF图标P902,将以PDF文件格式包括报告屏幕P900整体的PDF文件下载到用户终端3。换句话说,在PDF文件中写入在半导体装置标识区域P901、传感器显示区域P910、寄存器显示区域P920、耦合显示区域P930、智能模拟显示区域P940、零件列表显示区域P950和结果显示区域P960中包括的所有内容,并且下载PDF文件。
在报告屏幕P900上,在半导体装置标识区域P901下方显示传感器显示区域P910。在传感器显示区域P910中显示在传感器选择屏幕选择并且对其执行模拟的传感器的传感器类型、零件编号和制造商,并且另外,对于在传感器显示区域P910中的各个传感器显示在偏置电路屏幕处选择并且对其执行模拟的偏置电路。在图64A中所示的示例中,在传感器显示区域P910上显示在图40中选择的压力传感器、光电晶体管和温度传感器,并且与对应的传感器相关联地显示在图44、图45或图48中选择的偏置电路。
在报告屏幕P900上,在传感器显示区域P910下方显示寄存器显示区域P920。在寄存器显示区域P920中,对于每一个传感器显示寄存器信息表P921和“下载”按钮P22。通过点击“下载”按钮P22,将在对应的寄存器信息表P921中显示的寄存器信息下载到用户终端3。
在寄存器信息表P921中,显示与在模拟屏幕上配置并且对其执行模拟的半导体装置1的电路构成对应的寄存器信息。如在图29中的步骤S111处所述,基于配置的电路信息和参数来产生要在半导体装置1的寄存器181中配置的寄存器信息。
在报告屏幕P900上,在寄存器显示区域P920下方显示耦合显示区域P930。在耦合显示区域P930中,显示在传感器AFE选择屏幕中配置并且对其执行模拟的传感器和半导体装置1之间的耦合关系。在耦合显示区域P930中,如图57的情况,显示传感器选择框P931和半导体装置图像P932。
在报告屏幕P900上,在耦合显示区域P930下方显示智能模拟(半导体装置)显示区域P940。在智能模拟显示区域P940中,对于每一个传感器显示关于半导体装置1的配置信息表P941。
在配置信息表P941中,显示关于在模拟屏幕中配置并且对其执行模拟的半导体装置1的电路构成的配置信息。在配置信息表P941中,显示在图58中配置的半导体装置1的参数的配置值。另外,配置信息表P941和上述在寄存器显示区域中显示的寄存器信息表P921彼此符合,使得可以利用配置信息表P941来检验在寄存器信息表P921中配置的内容。
在报告屏幕P900上,在智能模拟显示区域P940下方显示零件列表显示区域950。在零件列表显示区域P950中,显示包括在模拟中使用的半导体装置1和传感器的零件列表。在零件列表显示区域P950中,如零件列表屏幕P800的情况,分别在列“其他”、“数量”、“描述”和“另外的参数”中显示每一个零件的名称、数量、零件编号和制造商。
在报告屏幕P900上,在零件列表显示区域P950下方显示结果显示区域P960。在结果显示区域P960中显示在模拟后获得并且在模拟屏幕上显示的模拟结果。在图64E至图64G中,如图61B至图61D的情况,显示传感器0的暂态分析结果P961和传感器1的暂态分析结果P962。如在图61B至图61D中的结果图形P701至P705的情况,在暂态分析结果P961中显示结果图形P961a至P961e,并且如在图61B至图61D中的结果图形P711至P715的情况,在暂态分析结果P962中显示结果图形P962a至P962e。
图65是示出根据该实施例的半导体装置的配置系统的框图的示例的图。该配置系统是下述系统:其中,用户终端3使用用户终端3从网络模拟器4接收的寄存器信息来配置半导体装置1。如图65中所示,该配置系统包括:评估板10,其上安装了半导体装置1;传感器板20,其上安装了传感器2;用户终端3;以及,仿真器6。
评估板10包括USB接口11和传感器接口12。用户终端3经由USB电缆耦合到USB接口11,并且仿真器在用户终端3和USB接口11之间。用户终端3和仿真器6经由USB接口11耦合到半导体装置1,使得用户终端3、仿真器6和半导体装置1可以彼此通信。传感器板20经由传感器接口12耦合到半导体装置1,并且传感器2经由传感器接口12耦合到半导体装置1,使得传感器2和半导体装置1可以彼此通信。
仿真器6耦合到半导体装置1的MCU单元200,并且仿真MCU200。因为在用户终端3和仿真器6之间的耦合,用户终端3可以向AFE单元100写入寄存器信息,并且向MCU单元200写入程序。
图65是示出在图65中的配置系统中的半导体装置1的配置方法的流程图。如图66中所示,首先,通过网络模拟器4模拟半导体装置1的操作(在步骤S401)。在图26中所示的系统中,用户终端3访问网络模拟器4,并且对于网络模拟器4执行模拟。如上所述,用户终端3访问网络模拟器4的模拟屏幕,并且使得网络模拟器4模拟根据传感器和对应的偏置电路配置的半导体装置1的操作。
接下来,用户终端3下载寄存器信息(在步骤S402)。如上所述,用户终端3访问网络模拟器4的报告屏幕,使得用户终端下载由网络模拟器4产生的半导体装置1的寄存器信息。用户终端3在存储单元310中存储下载的寄存器信息。
接下来,用户终端3购买零件(在步骤S403)。如上所述,用户终端3访问网络模拟器4的零件列表屏幕,并且从对应的零件交易者购买对其执行模拟的传感器和半导体装置1。用户通过在传感器板20上安装所购买的传感器并且通过将购买的半导体装置1耦合到评估板10来配置在图65中所示的配置系统。
接下来,用户终端3在半导体装置1中写入寄存器信息(在步骤S404)。在图65中所示的配置的配置中,用户终端3经由仿真器6在半导体装置1的寄存器181中写入从网络模拟器4下载的寄存器信息。
在上面的过程后,完成半导体装置1的AFE单元100的配置。连续地,如果启动半导体装置1,则参考在寄存器181中写入的寄存器信息来配置AFE单元100的电路构成和特性,并且AFE单元100开始其操作。换句话说,变得可能使得具有通过模拟获得的配置的半导体装置1运行。
如上所述,本发明的这个实施例使得可能模拟其电路构成和电路特定通过网络模拟器可变的半导体装置的操作。因为可以在网络模拟器上执行模拟,所以用户终端不必具有模拟环境,使得用户可以自由地执行模拟。因为对于与其电路构成和电路特性可变的半导体装置1相同的模拟电路(AFE)执行模拟,所以用户可以使用简单的操作来对于具有各种电路构成和电路特性的模拟电路执行各种模拟。
根据该实施例的网络模拟器使得用户有可能任意地选择要耦合到半导体装置的传感器和偏置电路。当用户选择传感器时,自动向用户显示良好地适应于所选传感器的多个偏置电路。用户可以从良好地适应于传感器的多个偏置电路选择期望的偏置电路。在现有技术中,当选择传感器时,与该传感器对应的偏置电路的电路构成是固定的;因此,不能选择良好地适应于用户的应用环境的偏置电路的电路构成。根据该实施例,可以从多个偏置电路选择良好地适应于实际应用环境的偏置电路;因此,可以使用最佳的电路构成来对于半导体装置执行模拟。
另外,如果选择传感器和对应的偏置电路,则根据该实施例的网络模拟器根据所选择的传感器和偏置电路的电路构成来确定可配置放大器的电路构成。另外,也根据所选传感器和偏置电路的特性来配置可配置放大器的增益和偏移。因此,变得不需要用户检验传感器和偏置电路或检查良好地适应于所选传感器和偏置电路的半导体装置1的电路构成和特性,结果是用户可以容易地使用最佳电路构成和特性模拟半导体装置1。
另外,根据该实施例的网络模拟器被配置使得可以从预定义的波形图案选择要输入到传感器的物理量的输入图案。利用各种类型的波形图案作为向传感器的输入图案来模拟传感器和半导体装置的操作,使得有可能有效地检验包括传感器和半导体装置的模拟电路的各种特性。例如,用户可以通过使用正弦波作为输入波形来模拟模拟电路,以容易地检验模拟电路的频率特性;可以通过使用方波或阶梯响应作为输入波形来模拟模拟电路,以容易地检验响应特性;并且,可以通过使用三角波作为输入波形来模拟模拟电路,以容易地检验削波特性。
虽然已经基于实施例具体描述了由发明人做出的本发明,但是本发明不限于该实施例,并且不必说,存在不偏离本发明的精神和范围的各种修改。

Claims (17)

1.一种用于模拟半导体装置的模拟器,所述半导体装置包括模拟前端电路,所述模拟前端电路的电路构成能够被修改,所述模拟器包括:
输入图案存储单元,用于存储进入传感器的信号的多个波形图案;
电路构成配置单元,用于根据耦合到所述模拟前端电路的传感器来配置所述模拟前端电路的电路构成;
输入图案显示单元,用于显示在所述输入图案存储单元中存储的所述波形图案;
输入图案选择单元,用于根据用户操作从所显示的波形图案中选择要输入到所述传感器的信号的波形图案;以及
模拟执行单元,用于使用所选择的波形图案作为输入条件,来对于所述传感器和具有所配置的电路构成的所述模拟前端电路的组合进行模拟。
2.根据权利要求1所述的用于模拟半导体装置的模拟器,其中,通过时间序列地连续的物理量的时间序列数据来表示所述波形图案。
3.根据权利要求1所述的用于模拟半导体装置的模拟器,其中,所述波形图案包括正弦波图案。
4.根据权利要求3所述的用于模拟半导体装置的模拟器,其中,所述模拟执行单元在所述模拟前端电路接收到所述正弦波图案的情况下,根据所述模拟前端电路的输出信号的频率特性,来配置在所述模拟前端电路中包括的可配置放大器的级数。
5.根据权利要求3所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元利用包括所述正弦波的最小值、最大值和频率的参数来指定所述正弦波图案。
6.根据权利要求5所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元根据耦合到所述模拟前端电路的传感器的所述特性来确定所述最小值和所述最大值。
7.根据权利要求1所述的用于模拟半导体装置的模拟器,其中,所述波形图案包括方波图案。
8.根据权利要求7所述的用于模拟半导体装置的模拟器,其中,所述模拟执行单元在所述模拟前端电路接收到所述方波图案的情况下,根据所述模拟前端电路的输出信号的响应特性,来配置在所述模拟前端电路中包括的可配置放大器的操作模式。
9.根据权利要求7所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元利用包括所述方波的最小值、最大值与上升速度和下降速度的参数来指定所述方波图案。
10.根据权利要9所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元根据耦合到所述模拟前端电路的传感器的所述特性来确定所述最小值和所述最大值。
11.根据权利要求1所述的用于模拟半导体装置的模拟器,其中,所述波形图案包括三角波图案。
12.根据权利要求11所述的用于模拟半导体装置的模拟器,其中,所述模拟执行单元在所述模拟前端电路接收到所述三角波图案的情况下,根据所述模拟前端电路的输出信号的削波状态,来配置在所述模拟前端电路中包括的可配置放大器的偏移或增益。
13.根据权利要求11所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元利用包括所述三角波的最小值、最大值和频率的参数来指定所述三角波图案。
14.根据权利要求13所述的用于模拟半导体装置的模拟器,其中,所述输入图案选择单元根据耦合到所述模拟前端电路的传感器的所述特性来确定所述最小值和所述最大值。
15.根据权利要求1所述的用于模拟半导体装置的模拟器,其中,所述模拟执行单元使用叠加了噪声图案的所选择的波形图案来对于所述传感器和所述模拟前端电路的组合进行模拟。
16.根据权利要求15所述的用于模拟半导体装置的模拟器,
其中,所述模拟前端电路包括用于消除所述噪声图案的滤波器;并且
其中,所述模拟执行单元叠加地显示通过所述滤波器之前的信号和通过所述滤波器之后的信号。
17.一种用于模拟半导体装置的模拟方法,所述半导体装置包括模拟前端电路,所述模拟前端电路的电路构成能够被修改,所述模拟方法包括以下步骤:
在输入图案存储单元中存储进入传感器的信号的多个波形图案;
根据耦合到所述模拟前端电路的传感器来配置所述模拟前端电路的所述电路构成;
显示在所述输入图案存储单元中存储的所述波形图案;
根据用户操作从所显示的波形图案中选择要输入到所述传感器的信号的波形图案;以及
使用所选择的波形图案作为输入条件,来对于所述传感器和具有所配置的电路构成的所述模拟前端电路的组合进行模拟。
CN201310228401.8A 2012-06-08 2013-06-08 用于半导体装置的模拟器和模拟方法 Pending CN103488807A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131368A JP5990409B2 (ja) 2012-06-08 2012-06-08 半導体装置のシミュレータ、シミュレーション方法及びシミュレーションプログラム
JP2012-131368 2012-06-08

Publications (1)

Publication Number Publication Date
CN103488807A true CN103488807A (zh) 2014-01-01

Family

ID=48520724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310228401.8A Pending CN103488807A (zh) 2012-06-08 2013-06-08 用于半导体装置的模拟器和模拟方法

Country Status (5)

Country Link
US (1) US20130332139A1 (zh)
EP (1) EP2672407A1 (zh)
JP (1) JP5990409B2 (zh)
CN (1) CN103488807A (zh)
TW (1) TW201405350A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289927A (zh) * 2020-03-02 2020-06-16 大陆汽车电子(长春)有限公司 智能电池传感器的起动信号模拟装置、测试方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9286429B2 (en) * 2013-12-31 2016-03-15 Alcatel Lucent System and method for amplifier design
US9690361B2 (en) * 2014-12-24 2017-06-27 Intel Corporation Low-power context-aware control for analog frontend
US9543936B1 (en) 2015-06-22 2017-01-10 International Business Machines Corporation Reconfigurable voltage desensitization circuit to emulate system critical paths
IL244746B (en) * 2016-03-24 2021-03-25 Pulsenmore Ltd A complete system for linking sensors to smart devices
CN111102950A (zh) * 2018-10-25 2020-05-05 吴俊陶 一种位移检测传感器采样频率与检测准确度设计方法
CN112986835A (zh) * 2021-03-25 2021-06-18 东风汽车集团股份有限公司 动力电池的模拟前端监测电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155836A (en) * 1987-01-27 1992-10-13 Jordan Dale A Block diagram system and method for controlling electronic instruments with simulated graphic display
US20030107595A1 (en) * 2001-07-24 2003-06-12 Ciolfi John Edward Handling parameters in block diagram modeling
US20120035748A1 (en) * 2010-06-04 2012-02-09 The Mathworks, Inc. Interactive system for controlling multiple input multiple output control (mimo) structures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151984A (en) * 1987-06-22 1992-09-29 Newman William C Block diagram simulator using a library for generation of a computer program
US4882668A (en) * 1987-12-10 1989-11-21 General Dynamics Corp., Pomona Division Adaptive matched filter
US6748339B2 (en) * 2002-02-14 2004-06-08 Sun Microsystems, Inc. Method for simulating power supply noise in an on-chip temperature sensor
JP2004013595A (ja) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd シミュレーション結果検証方法およびシミュレーション結果検証装置
US20040122643A1 (en) * 2002-08-29 2004-06-24 Anderson Howard C. Apparatus and method for simulating switched-capacitor circuits
JP2004145410A (ja) 2002-10-22 2004-05-20 Renesas Technology Corp 回路の設計方法および回路設計支援システム
US7932774B2 (en) * 2006-02-28 2011-04-26 International Business Machines Corporation Structure for intrinsic RC power distribution for noise filtering of analog supplies
JP4778876B2 (ja) * 2006-11-02 2011-09-21 株式会社エー・アンド・デイ エンジン計測装置
US8966414B2 (en) * 2009-05-29 2015-02-24 Cypress Semiconductor Corporation Implementing a circuit using an integrated circuit including parametric analog elements
US8606375B2 (en) * 2010-06-04 2013-12-10 The Mathworks, Inc. Interactive control of multiple input multiple output control structures
US8655635B2 (en) * 2011-09-09 2014-02-18 National Instruments Corporation Creating and controlling a model of a sensor device for a computer simulation
US8942958B2 (en) * 2011-09-30 2015-01-27 Freescale Semiconductor, Inc. Method and apparatus for calculating sensor modelling coefficients
JP5990408B2 (ja) * 2012-06-08 2016-09-14 ルネサスエレクトロニクス株式会社 半導体装置のシミュレータ、シミュレーション方法及びシミュレーションプログラム
US9646121B2 (en) * 2013-03-21 2017-05-09 Renesas Electronics Corporation Semiconductor device simulator, simulation method, and non-transitory computer readable medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155836A (en) * 1987-01-27 1992-10-13 Jordan Dale A Block diagram system and method for controlling electronic instruments with simulated graphic display
US20030107595A1 (en) * 2001-07-24 2003-06-12 Ciolfi John Edward Handling parameters in block diagram modeling
US20120035748A1 (en) * 2010-06-04 2012-02-09 The Mathworks, Inc. Interactive system for controlling multiple input multiple output control (mimo) structures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUCK SINS: "传感器模拟前端", 《今日电子》 *
NATIONAL SEMICONDUCTOR: "Sensor Design Made Easy with Nationals Online Design Tool", 《HTTP://CITESEERX.IST.PSU.EDU/VIEWDOC/DOWNLOAD?DOI=10.1.1.174.5998&REP=REP1&TYPE=PDF》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289927A (zh) * 2020-03-02 2020-06-16 大陆汽车电子(长春)有限公司 智能电池传感器的起动信号模拟装置、测试方法及系统

Also Published As

Publication number Publication date
JP5990409B2 (ja) 2016-09-14
TW201405350A (zh) 2014-02-01
EP2672407A1 (en) 2013-12-11
JP2013254457A (ja) 2013-12-19
US20130332139A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
CN103488807A (zh) 用于半导体装置的模拟器和模拟方法
JP5990408B2 (ja) 半導体装置のシミュレータ、シミュレーション方法及びシミュレーションプログラム
CN103105181B (zh) 半导体器件和传感器系统
JP5904767B2 (ja) 半導体装置の開発支援装置、開発支援方法及び開発支援プログラム
Francken et al. A high-level simulation and synthesis environment for/spl Delta//spl Sigma/modulators
US20140288912A1 (en) Semiconductor device simulator, simulation method, and non-transitory computer readable medium
US8843863B2 (en) Apparatus, method and computer program for managing circuit optimization information
JP6054786B2 (ja) 半導体装置のシミュレータ、シミュレーション方法及びシミュレーションプログラム
KR20140071049A (ko) 용량성 멀티 터치 시스템 및 용량성 멀티 터치 시스템의 저잡음 구동 주파수 결정 방법
KR20210023454A (ko) 미세먼지 센서 측정 및 보정 시스템, 및 그 방법
JP6054785B2 (ja) 半導体装置のシミュレータ、シミュレーション方法及びシミュレーションプログラム
Morawski An application-oriented mathematical meta-model of measurement
JP6034699B2 (ja) 半導体装置及びそのコマンド制御方法
KUBAŘ et al. A Powerful Optimization Tool for Analog Integrated Circuits Design.
JP2004094950A (ja) プログラム可能なデバイスをプログラムするための装置および方法
JP6313018B2 (ja) 設計支援装置、半導体装置及びコンパイルプログラム
Nikolova et al. Analogue behavioural modelling of integrated sensors
EP1394704A2 (en) Apparatus and method for simulating switched capacitor circuits
Abdulhakeem Low cost high speed data acquisition board for laboratory laser system
Gastaldi et al. Virtual Prototyping Using PSpice
Blakely Iridium ADC
Di Paolo Emilio et al. Design of Data Acquisition Systems
Aksu Advanced High Performance Computing for Big Data Local Visual Meaning
Huang et al. Capacitance meaurement in ff range
DANISH DESIGN OF CAPACITIVE ANGLE SENSOR FOR AUTOMOBILE BRAKE SYSTEM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Tokyo, Japan

Applicant after: Renesas Electronics Corporation

Address before: Kanagawa

Applicant before: Renesas Electronics Corporation

COR Change of bibliographic data
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140101