CN103486134A - 一种交流混合磁轴承解耦控制器的构造方法 - Google Patents

一种交流混合磁轴承解耦控制器的构造方法 Download PDF

Info

Publication number
CN103486134A
CN103486134A CN201310448725.2A CN201310448725A CN103486134A CN 103486134 A CN103486134 A CN 103486134A CN 201310448725 A CN201310448725 A CN 201310448725A CN 103486134 A CN103486134 A CN 103486134A
Authority
CN
China
Prior art keywords
neural network
fuzzy neural
controlled object
displacement
composite controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310448725.2A
Other languages
English (en)
Other versions
CN103486134B (zh
Inventor
朱熀秋
鞠金涛
金婕
李媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongtai Chengdong science and Technology Pioneer Park Management Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201310448725.2A priority Critical patent/CN103486134B/zh
Publication of CN103486134A publication Critical patent/CN103486134A/zh
Application granted granted Critical
Publication of CN103486134B publication Critical patent/CN103486134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开一种交流混合磁轴承解耦控制器的构造方法,复合被控对象的输入是等效电流期望值i x *i y *,输出是位移xy,先在复合被控对象之前串联模糊神经网络逆系统,共同构成二阶位置伪线性系统,设计两个位置控制器分别控制位移xy,用位移传感器检测位移xy信号,分别反馈给两个位置控制器构成闭环控制器,最后将闭环控制器串接在模糊神经网络逆系统之前共同构成解耦控制器;模糊神经网络逆系统用4个积分器S -1和模糊神经网络建立,以位移xy和其一阶、二阶导数作为模糊神经网络的输入,以等效电流期望值i x *i y *作为期望输出,采用BP算法离线训练模糊神经网络至精度达到0.001;本发明能实现各输出间的动态解耦控制。

Description

一种交流混合磁轴承解耦控制器的构造方法
技术领域
本发明是一种交流混合磁轴承,具体是交流混合磁轴承解耦控制器的构造方法,适用于高速转子磁悬浮支承系统的精密控制,为超高速转子的支承提供了条件,属于高速及超高速电气传动领域。
背景技术
磁轴承利用电磁力将转子悬浮于空中,使转子与轴承间没有摩擦,因此,具有无摩擦、无磨损、无需润滑油、可支承转速高、转子位移精度高、寿命长等优点。交流混合磁轴承有三个磁极,采用三相功率逆变器进行驱动,且由永磁体提供偏置磁通,与直流磁轴承相比,减小了轴承的空间体积与驱动装置体积,增大了承载力,减小了成本。
由于交流混合磁轴承的磁极在空间具有不对称性,因此交流混合磁轴承是一个非线性,强耦合系统,且由于存在转子临界转速、负载、干扰等因素,导致交流混合磁轴承自身不稳定,控制复杂。为了交流混合磁轴承的高性能运行,需要对系统进行线性化解耦控制。目前针对交流混合磁轴承非线性系统的解耦控制方法有:微分几何法、逆系统解耦、神经网络逆解耦以及各种控制方法的综合运用。微分几何法通过对非线性系统的状态和输入坐标变换实现非线性系统的线性化,但这种方法所用的数学工具比较艰深、抽象,计算繁杂,不利于推广。逆系统理论是基于反馈线性化方法建立起来的,将逆系统与原系统综合构成伪线性系统,从而利用成熟的线性系统控制理论进行控制,但这一方法过分依赖于系统的精确数学模型,这在实际工程应用时难以实现。神经网络逆解耦解决了逆系统精确数学模型难以建立的问题,但神经网络学习存在收敛速度慢,易陷入局部极小点的问题。
发明内容
为了克服上述现有技术的不足,本发明提供了一种交流混合磁轴承模糊神经网络逆解耦控制器的构造方法,实现交流混合磁轴承径向两个自由度间的独立精确控制,克服系统参数摄动、建模误差、扰动及负载变化带来的控制性能下降的问题,使系统具有优良的动静态特性。
本发明所采用的技术方案是:在交流混合磁轴承之前依次串接电流跟踪逆变器和2/3变换,共同构成复合被控对象,复合被控对象的输入是等效电流期望值i x *i y *,输出是位移xy,先在复合被控对象之前串联模糊神经网络逆系统,共同构成二阶位置伪线性系统,再针对二阶位置伪线性系统设计两个位置控制器分别控制位移xy,用位移传感器检测位移xy信号,分别反馈给两个位置控制器,构成闭环控制器,最后将闭环控制器串接在模糊神经网络逆系统之前共同构成解耦控制器;其中,采用以下方法构建模糊神经网络逆系统:1)建立理想状态下交流混合磁轴承的数学模型,建立复合被控对象的系统状态方程,分析复合被控对象的可逆性;2)用4个积分器S -1和模糊神经网络建立复合被控对象的逆系统模型,3)用随机信号作为复合被控对象的激励信号,采集输入输出数据,获得复合被控对象的动静态特性,对输出位移xy求一阶及二阶导数,再对数据进行归一化处理,得到模糊神经网络的训练样本;4)选取能反映复合被控对象动静态特性的2000组训练样本,以位移xy和其一阶、二阶导数                                                
Figure 2013104487252100002DEST_PATH_IMAGE001
作为模糊神经网络的输入,以等效电流期望值i x *i y *作为模糊神经网络的期望输出,采用BP算法离线训练模糊神经网络至精度达到0.001。
本发明的优点在于:
1、采用模糊神经网络逼近交流混合磁轴承的二阶逆模型,克服了逆系统的精确数学模型建立困难的问题,解决了神经网络逆存在的收敛速度慢、网络结构依靠经验、存在局部极小点等问题,将交流混合磁轴承这一非线性、强耦合系统解耦为两个等效的二阶位置伪线性系统,实现各输出间的动态解耦控制,将复杂的非线性系统控制问题转化为简单的线性系统控制问题,可以利用成熟的线性控制理论对交流混合磁轴承进行精确、高性能控制。
2、模糊推理系统对参数变化不敏感,适合处理结构化知识,神经网络拥有自学习能力和连接式结构,适合处理非结构化信息,模糊神经网络将两种思想结合,同时具有模糊思维和知识的自学习能力,弥补了各自的不足,使模糊神经网络的泛化能力、逼近精度与收敛速度有了较大提高。
 
附图说明
图1是交流混合磁轴承结构示意图,其中图(b)主视图,图(a)是图(b)的A-A剖视图,图(c)是图(b)的B-B视图;
图2是复合被控对象结构示意图;
图3是模糊神经网络逆系统结构示意图;
图4是二阶位置伪线性系统等效示意图;
图5是模糊神经网络逆解耦闭环控制器原理图;
图6是交流混合磁轴承模糊神经网络逆解耦控制系统总体框图;
图中:a. 环形永磁体;b1、b2. 定子;c. 控制线圈;d. 转子;
1. 交流混合磁轴承;2. 电流跟踪逆变器;3. 2/3变换;4. 复合被控对象;5. 模糊神经网络逆系统;6. 闭环控制器;7. 位移传感器;8. 模糊神经网络逆解耦控制器;9. 二阶位置伪线性系统;51. 模糊神经网络;61、62. 位置控制器;71、72. xy方向位移传感器。
具体实施方式
如图1所示,交流混合磁轴承1由环形永磁体a、两个对称的定子b1和b2、控制线圈c、转子d构成。其中环形永磁体a置于两个对称定子b1和b2中间,两个对称定子b1、b2分别有三个磁极,控制线圈c分别缠绕在磁极上,定子b1、b2同一方向磁极上的线圈串联,由同一相电流控制,控制线圈c通以三相电i ui vi w,转子d的中心置于定子b1、b2的几何中心。
如图2所示,在交流混合磁轴承1之前串接电流跟踪逆变器2,电流跟踪逆变器2之前串接2/3变换3。由2/3变换3、电流跟踪逆变器2与交流混合磁轴承1共同构成复合被控对象4。等效电流期望值i x *i y *作为2/3变换3的输入,2/3变换3将等效电流期望值i x *i y *变换为三相期望电流值i u *i v *i w *。电流跟踪逆变器2跟踪三相期望电流值i u *i v *i w *,输出三相电流i ui vi w驱动交流混合磁轴承1,交流混合磁轴承1输出xy方向的转子d的位移xy。复合被控对象4的输入是等效电流期望值i x *i y *,输出是位移xy
如图3所示,模糊神经网络逆系统5由模糊神经网络51与4个积分器S -1组成,用于建立复合被控对象4的逆系统模型。以位移xy二阶导数的期望值φ 1φ 2作为模糊神经网络逆系统5的输入,模糊神经网络逆系统5输出是等效电流期望值i x *i y *。模糊神经网络逆系统5的构建需要实施以下步骤:
1、分析交流混合磁轴承1的磁路,建立理想状态下交流混合磁轴承1的力-电流-位移数学模型;
2、对交流混合磁轴承1的转子d进行力学分析,建立运动方程,并选取
Figure 814083DEST_PATH_IMAGE002
作为复合被控对象4系统状态变量,
Figure 2013104487252100002DEST_PATH_IMAGE003
作为复合被控对象4的系统输入变量,
Figure 441505DEST_PATH_IMAGE004
作为复合被控对象4的系统输出变量,建立复合被控对象4的系统状态方程。
3、分析复合被控对象4的可逆性:对复合被控对象4系统输出
Figure 263967DEST_PATH_IMAGE004
进行求导,直到显含输入
Figure 593318DEST_PATH_IMAGE003
为止,得到复合被控对象4的相对阶数为
Figure 2013104487252100002DEST_PATH_IMAGE005
,由此可知复合被控对象4可逆。
4、根据复合被控对象4的相对阶数可知用4个积分器S -1和模糊神经网络51就能够建立复合被控对象4的逆系统模型。选取模糊神经网络51输入变量为位移xyxy的一阶、二阶导数
Figure 608197DEST_PATH_IMAGE006
,输出变量为i x *i y *,采用基于T-S模型的模糊神经网络结构,输入节点个数为6,输出节点个数为2,输入变量隶属度函数为高斯函数,模糊神经网络51输入变量的隶属度函数个数为5,隶属度函数为高斯函数
Figure DEST_PATH_IMAGE007
α为隶属度函数中心值,σ为隶属度宽度。
5、用随机信号作为复合被控对象4的激励信号,采集输入输出数据,充分获得复合被控对象4的动静态特性,计算输出xy的一阶及二阶导数,再对数据进行归一化处理,得到模糊神经网络51的训练样本。
6、选取能充分反映复合被控对象4动静态特性的2000组训练样本,以xyxy的一阶、二阶导数
Figure 339392DEST_PATH_IMAGE006
作为模糊神经网络51的输入,以复合被控对象4的输入i x *i y *作为模糊神经网络51的期望输出,采用自适应学习速率的BP算法离线训练模糊神经网络51至精度达到0.001。
如图4所示,将构建好的模糊神经网络逆系统5串联于复合被控对象4之前,构成二阶位置伪线性系统9,该伪线性系统等效于两个独立的二阶线性系统,实现了复合被控对象4的线性化解耦。
如图5所示,根据线性系统控制理论,针对二阶位置伪线性系统9设计两个位置控制器61、62分别控制xy方向转子d位移xy。用位移传感器7检测交流混合磁轴承1的转子d位移xy信号,分别反馈给位置控制器61、62,构成闭环控制器6。目前常用的控制器设计方法有极点配置、PID控制、鲁棒控制、线性最优控制等,采用鲁棒控制器能有效克服系统参数的摄动、不确定干扰及模糊神经网络建模误差等因素的影响。
如图6所示,闭环控制器6串接在模糊神经网络逆系统5之前共同构成模糊神经网络逆解耦控制器8,实现对复合被控对象4的解耦控制。交流混合磁轴承1由三相电流i ui vi w驱动,输出转子d径向两个自由度的位移xy。位移传感器7检测转子d位移xy作为反馈信号,计算反馈位移值xy与给定位移值的误差,作为闭环控制器6的输入。闭环控制器6经过运算,输出位移二阶导数的期望值φ 1φ 2作为模糊神经网络逆系统5的输入,经过模糊神经网络逆系统5模型推导,得到期望等效电流值i x *i y *。期望等效电流值i x *i y *经过2/3变换3,得到三相期望电流值i u *i v *i w *,电流跟踪逆变器2跟随三相期望电流值i u *i v *i w *输出交流混合磁轴承1的驱动电流i ui vi w,这样就构成了交流混合磁轴承模糊神经网络逆解耦控制系统,其中闭环控制器6、模糊神经网络逆系统5与2/3变换3由软件实现,编写成模块化程序,方便移植应用。电流跟踪逆变器2及位移传感器7由硬件实现。

Claims (3)

1.一种交流混合磁轴承解耦控制器的构造方法,在交流混合磁轴承之前依次串接电流跟踪逆变器和2/3变换,共同构成复合被控对象,复合被控对象的输入是等效电流期望值i x *i y *,输出是位移xy,其特征是:先在复合被控对象之前串联模糊神经网络逆系统,共同构成二阶位置伪线性系统,再针对二阶位置伪线性系统设计两个位置控制器分别控制位移xy,用位移传感器检测位移xy信号,分别反馈给两个位置控制器,构成闭环控制器,最后将闭环控制器串接在模糊神经网络逆系统之前共同构成解耦控制器;其中,采用以下方法构建模糊神经网络逆系统:
1)建立理想状态下交流混合磁轴承的数学模型,建立复合被控对象的系统状态方程,分析复合被控对象的可逆性;
2)用4个积分器S -1和模糊神经网络建立复合被控对象的逆系统模型,
3)用随机信号作为复合被控对象的激励信号,采集输入输出数据,获得复合被控对象的动静态特性,对输出位移xy求一阶及二阶导数,再对数据进行归一化处理,得到模糊神经网络的训练样本;
4)选取能反映复合被控对象动静态特性的2000组训练样本,以位移xy和其一阶、二阶导数                                                
Figure 738778DEST_PATH_IMAGE001
作为模糊神经网络的输入,以等效电流期望值i x *i y *作为模糊神经网络的期望输出,采用BP算法离线训练模糊神经网络至精度达到0.001。
2.根据权利要求1所述的交流混合磁轴承解耦控制器的构造方法,其特征是:步骤1)中,选取
Figure 280749DEST_PATH_IMAGE002
作为复合被控对象的状态变量,
Figure 359563DEST_PATH_IMAGE003
作为复合被控对象的输入变量,作为复合被控对象输出变量,建立复合被控对象的系统状态方程。
3.根据权利要求1所述的交流混合磁轴承解耦控制器的构造方法,其特征是:步骤2)中,模糊神经网络输入变量为位移xyxy的一阶、二阶导数,输出变量为i x *i y *,采用基于T-S模型的模糊神经网络结构,输入变量的隶属度函数为高斯函数α为隶属度函数中心值,σ为隶属度宽度。
CN201310448725.2A 2013-09-27 2013-09-27 一种交流混合磁轴承解耦控制器的构造方法 Active CN103486134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310448725.2A CN103486134B (zh) 2013-09-27 2013-09-27 一种交流混合磁轴承解耦控制器的构造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310448725.2A CN103486134B (zh) 2013-09-27 2013-09-27 一种交流混合磁轴承解耦控制器的构造方法

Publications (2)

Publication Number Publication Date
CN103486134A true CN103486134A (zh) 2014-01-01
CN103486134B CN103486134B (zh) 2015-10-28

Family

ID=49826626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310448725.2A Active CN103486134B (zh) 2013-09-27 2013-09-27 一种交流混合磁轴承解耦控制器的构造方法

Country Status (1)

Country Link
CN (1) CN103486134B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022482A (zh) * 2016-05-10 2016-10-12 东南大学 应用改进型模糊神经网络解耦循环流化床床温-床压的方法
CN107276473A (zh) * 2017-06-29 2017-10-20 江苏大学 五自由度无轴承永磁同步电机模糊神经网络解耦控制器
CN110131312A (zh) * 2019-04-03 2019-08-16 江苏大学 五自由度交流主动磁轴承自抗扰解耦控制器及构造方法
CN112013203A (zh) * 2020-07-18 2020-12-01 淮阴工学院 一种基于drnn神经网络管网检测系统
CN115199645A (zh) * 2022-07-11 2022-10-18 江苏大学 基于车辆工况因素的高稳定低功耗飞轮电池磁悬浮支承控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854020A (ja) * 1994-08-09 1996-02-27 Koyo Seiko Co Ltd 磁気軸受装置
US20080054741A1 (en) * 2006-08-30 2008-03-06 Ebara Corporation Magnetic bearing device, rotating mechanism, and model identification method of rotating machinery main unit
CN101414772A (zh) * 2008-11-28 2009-04-22 江苏大学 五自由度交流磁轴承支承的高速电主轴系统
JP2010185788A (ja) * 2009-02-12 2010-08-26 Kyushu Institute Of Technology 浮上体のセンシング方法
CN202251446U (zh) * 2011-01-10 2012-05-30 江苏大学 一种五自由度交流主动磁轴承α阶逆系统解耦控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854020A (ja) * 1994-08-09 1996-02-27 Koyo Seiko Co Ltd 磁気軸受装置
US20080054741A1 (en) * 2006-08-30 2008-03-06 Ebara Corporation Magnetic bearing device, rotating mechanism, and model identification method of rotating machinery main unit
CN101414772A (zh) * 2008-11-28 2009-04-22 江苏大学 五自由度交流磁轴承支承的高速电主轴系统
JP2010185788A (ja) * 2009-02-12 2010-08-26 Kyushu Institute Of Technology 浮上体のセンシング方法
CN202251446U (zh) * 2011-01-10 2012-05-30 江苏大学 一种五自由度交流主动磁轴承α阶逆系统解耦控制器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106022482A (zh) * 2016-05-10 2016-10-12 东南大学 应用改进型模糊神经网络解耦循环流化床床温-床压的方法
CN106022482B (zh) * 2016-05-10 2018-12-14 东南大学 应用改进型模糊神经网络解耦循环流化床床温-床压的方法
CN107276473A (zh) * 2017-06-29 2017-10-20 江苏大学 五自由度无轴承永磁同步电机模糊神经网络解耦控制器
CN107276473B (zh) * 2017-06-29 2019-08-02 江苏大学 五自由度无轴承永磁同步电机模糊神经网络解耦控制器
CN110131312A (zh) * 2019-04-03 2019-08-16 江苏大学 五自由度交流主动磁轴承自抗扰解耦控制器及构造方法
CN112013203A (zh) * 2020-07-18 2020-12-01 淮阴工学院 一种基于drnn神经网络管网检测系统
CN112013203B (zh) * 2020-07-18 2021-09-24 淮阴工学院 一种基于drnn神经网络管网检测系统
CN115199645A (zh) * 2022-07-11 2022-10-18 江苏大学 基于车辆工况因素的高稳定低功耗飞轮电池磁悬浮支承控制系统
CN115199645B (zh) * 2022-07-11 2024-02-13 江苏大学 基于车辆工况因素的高稳定低功耗飞轮电池磁悬浮支承控制系统

Also Published As

Publication number Publication date
CN103486134B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103486134B (zh) 一种交流混合磁轴承解耦控制器的构造方法
CN100433537C (zh) 无轴承交流异步电机神经网络逆解耦控制器的控制方法
CN103595321A (zh) 一种五自由度交流主动磁轴承解耦控制器的构造方法
CN102790581B (zh) 一种无轴承异步电机径向位置鲁棒控制器的构造方法
CN102136822B (zh) 一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
CN102121499B (zh) 五自由度交流磁轴承支持向量机解耦控制器的构造方法
CN107370429B (zh) 无轴承永磁同步电机模糊神经网络逆解耦控制器
CN102790580B (zh) 无轴承异步电机支持向量机逆解耦控制器的构造方法
CN103246201A (zh) 径向混合磁轴承的改进模糊无模型自适应控制系统及方法
CN102130647B (zh) 检测无轴承异步电机转速的无速度传感器构造方法
CN103647481B (zh) 无轴承永磁同步电机径向位置神经网络自适应逆控制器构造方法
Bohari et al. Speed tracking of indirect field oriented control induction motor using neural network
CN106026819A (zh) 智能汽车eps用交流电机抗干扰智能控制器的构造方法
CN102790577A (zh) 一种无轴承永磁同步电机悬浮子系统控制器的构造方法
Suryoatmojo et al. Robust speed control of brushless dc motor based on adaptive neuro fuzzy inference system for electric motorcycle application
Mosavi et al. Design of efficient adaptive neuro-fuzzy controller based on supervisory learning capable for speed and torque control of BLDC motor
CN102790578B (zh) 无轴承异步电机神经网络广义逆解耦控制器的构造方法
CN202004708U (zh) 一种无轴承无刷直流电机神经网络α阶逆控制器
Wen et al. Research on modeling and control of regenerative braking for brushless DC machines driven electric vehicles
CN103645637A (zh) 单自由度主动磁轴承支持向量机自适应逆控制器构造方法
CN102790576B (zh) 一种无轴承永磁同步电机解耦控制器的构造方法
CN102790579B (zh) 一种五自由度无轴承永磁同步电机解耦控制器的构造方法
CN103427754A (zh) 无轴承异步电机转子径向位移直接控制器
CN103490690A (zh) 一种交流磁轴承容错解耦控制器的构造方法
Mao et al. Nonlinear decoupling sliding mode control of permanent magnet linear synchronous motor based on α-th order inverse system method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201221

Address after: 224200 No.8 Beihai Road, Dongtai City, Yancheng City, Jiangsu Province

Patentee after: Dongtai science and Technology Service Center

Address before: No. 101, Nanxu Avenue, Zhenjiang City, Jiangsu Province, 212000

Patentee before: JIANGSU HUIZHI INTELLECTUAL PROPERTY SERVICES Co.,Ltd.

Effective date of registration: 20201221

Address after: No. 101, Nanxu Avenue, Zhenjiang City, Jiangsu Province, 212000

Patentee after: JIANGSU HUIZHI INTELLECTUAL PROPERTY SERVICES Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210427

Address after: 48 No. 224200 Yancheng City Dongtai city of Jiangsu Province East New District East Avenue

Patentee after: Dongtai Chengdong science and Technology Pioneer Park Management Co.,Ltd.

Address before: 224200 No.8 Beihai Road, Dongtai City, Yancheng City, Jiangsu Province

Patentee before: Dongtai science and Technology Service Center

TR01 Transfer of patent right
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140101

Assignee: Dongtai tepusong Machinery Equipment Co.,Ltd.

Assignor: Dongtai Chengdong science and Technology Pioneer Park Management Co.,Ltd.

Contract record no.: X2023980043158

Denomination of invention: A Construction Method of AC Hybrid Magnetic Bearing Decoupling Controller

Granted publication date: 20151028

License type: Common License

Record date: 20231012

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140101

Assignee: Dongtai Donggao Electronic Information Technology Co.,Ltd.

Assignor: Dongtai Chengdong science and Technology Pioneer Park Management Co.,Ltd.

Contract record no.: X2023980045160

Denomination of invention: A Construction Method of AC Hybrid Magnetic Bearing Decoupling Controller

Granted publication date: 20151028

License type: Common License

Record date: 20231102

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140101

Assignee: Dongtai Gaoxin Mechanical Equipment Co.,Ltd.

Assignor: Dongtai Chengdong science and Technology Pioneer Park Management Co.,Ltd.

Contract record no.: X2023980046304

Denomination of invention: A Construction Method of AC Hybrid Magnetic Bearing Decoupling Controller

Granted publication date: 20151028

License type: Common License

Record date: 20231110

EE01 Entry into force of recordation of patent licensing contract