CN103476965A - 由铝和硅前体沉积Al2O3/SiO2 叠层的方法 - Google Patents

由铝和硅前体沉积Al2O3/SiO2 叠层的方法 Download PDF

Info

Publication number
CN103476965A
CN103476965A CN2011800676288A CN201180067628A CN103476965A CN 103476965 A CN103476965 A CN 103476965A CN 2011800676288 A CN2011800676288 A CN 2011800676288A CN 201180067628 A CN201180067628 A CN 201180067628A CN 103476965 A CN103476965 A CN 103476965A
Authority
CN
China
Prior art keywords
sio
layer
silicon
reaction chamber
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800676288A
Other languages
English (en)
Other versions
CN103476965B (zh
Inventor
C·拉绍
A·马德克
W·M·M·克塞尔斯
G·丁厄曼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Eindhoven Technical University
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Eindhoven Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP11305115.5A external-priority patent/EP2484803B1/en
Priority claimed from EP11305114.8A external-priority patent/EP2484802B1/en
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, Eindhoven Technical University filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN103476965A publication Critical patent/CN103476965A/zh
Application granted granted Critical
Publication of CN103476965B publication Critical patent/CN103476965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

形成Al2O3/SiO2叠层的方法,其相继包括下述步骤:a)将基底供应到反应室中;b)通过ALD法向反应室中注入至少一种含硅化合物,所述至少一种含硅化合物选自由下述物质组成的组:BDEAS双(二乙基氨基)硅烷 SiH2(NEt2)2,BDMAS双(二甲基氨基)硅烷 SiH2(NMe2)2,BEMAS双(乙基甲基氨基)硅烷 SiH2(NEtMe)2,DIPAS(二-异丙基酰氨基)硅烷 SiH3(NiPr2),DTBAS(二叔丁基酰氨基)硅烷 SiH3(NtBu2);c)向反应室中注入选自氧、臭氧、氧等离子体、水、CO2等离子体、N2O等离子体的氧源;d)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含硅化合物和氧源反应,以获得沉积到基底上的SiO2层;e)通过ALD法在所述氧化硅膜上注入选自Al(Me)3、Al(Et)3、Al(Me)2(OiPr)、Al(Me)2(NMe)2或Al(Me)2(NEt)2的至少一种含铝化合物;f)注入如步骤c)中规定的氧源;g)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含铝化合物和氧源反应,以获得沉积到获自步骤d)的SiO2层上的Al2O3层。

Description

由铝和硅前体沉积Al2O3/SiO2 叠层的方法
本发明涉及由铝和硅前体沉积Al2O3/SiO2和Si3N4/Al2O3/SiO2叠层的方法,其可用于沉积光伏技术、特别是太阳能电池中的薄膜。
光伏效应自19世纪末起为人所知。原理在于将光能转化成电能。在到本世纪末预计化石能源短缺的当前背景下,生产清洁和可再生的能源是有前途的解决方案。光伏电力迄今发展缓慢的原因之一是其与传统解决方案,如煤、化石燃料或核电相比缺乏竞争性。因此太阳能电力作为未来混合能源的一个重要组成部分的份额与进一步降低每瓦特峰值成本的能力结合在一起。为了实现这一目标,制造成本的降低和电池效率的改进是必须同时勘察的两种解决方案。
例如通过使用较薄晶片限制硅价格对总电池成本的影响和通常通过降低原材料消耗(包括在各制造步骤中使用的化学品)来实现制造成本的降低。制造工具供应商(OEM-原始设备制造商)和材料供应商常常推动这种制造成本降低。
光伏电池的效率的改进需要通常由R&D实验室推动的革新。例如,学者们对钝化现象进行大量的R&D研究。这有助于增强光伏电池的性能。
SiO2在半导体和光伏工业中已知是极大减轻表面重组的钝化材料。在氧气下通过在900℃下的湿热氧化或在850℃-1000℃下的干氧化生长高品质SiO2层。这些高温通常与光伏器件制造不相容。因此,开发出替代方法,如由TEOS(四乙氧基硅烷)与O2化学气相沉积SiO2。但CVD的缺点之一是难以控制厚度和因此造成的该薄膜的不均匀性。另一缺点是CVD SiO2的相对较差钝化。由于这些原因,原子层沉积(ALD)优选,因为其能实现均匀层的沉积,以表现出良好的钝化性质。
无论沉积方法如何,初沉积的SiO2层的钝化能力的活化——退火步骤,必须在氢气下在850℃下进行。如果这种退火步骤不在氢气下进行,结构缺陷减少,但表面重组速度(SRV)不降低,因为需要可观的氢活化和因此氢扩散才能实现硅表面的显著悬挂键钝化。这种氢当然可来自薄膜本身,但主要由N2-H2气氛供应氢。如果退火温度超过900℃,则会从表面发生氢损失并因此损害氧化硅层的钝化性质。此外,即使这种现象由于另一退火而可逆,也会发生氢的天然损失并随时间经过引发SRV的降低和因此损害该层的钝化能力。
如果空穴-电子对在硅表面处或硅本体中重组的可能性降低,器件的转化效率提高:引入该材料中的缺陷数越低,收集电荷载流子的可能性越高。在太阳能电池的正面以及背面上发生重组。实际上,氢自由基在沉积过程中并入薄膜中。退火步骤在含有适当氢浓度的氮气氛下进行以获得使氢钝化悬挂键的更显著推动力。氢解吸现象随退火温度提高,但在室温下也观察到:其解释了SiO2层的钝化性质的降低。氢因此是关键成分,其化学钝化能力是已知的。
SiO2具有钝化能力,但由于上述缺点,现在考虑Al2O3钝化。就SiO2层而言,Al2O3沉积的最近研究表明,该层在沉积过程中天然富集氢。Al2O3含有合理的氢含量,因此不是严格必须将H2添加到N2中。
就SiO2而言,该层中的氢会化学钝化该界面表面处和硅本体中的悬挂键。与SiO2相反,没有观察到氢解吸,因此可以相信,化学钝化的效率不随时间降低。因此,Al2O3的实施钝化的能力高于SiO2
因此需要具有对n型和p型基底的非常有效的钝化的层。
本发明涉及形成Al2O3/SiO2叠层的方法,其相继包括下述步骤:
a)将基底供应到反应室中;
b)通过ALD法向反应室中注入至少一种含硅化合物,所述至少一种含硅化合物选自由下述物质组成的组:
BDEAS双(二乙基氨基)硅烷    SiH2(NEt2)2,
BDMAS双(二甲基氨基)硅烷    SiH2(NMe2)2,
BEMAS双(乙基甲基氨基)硅烷  SiH2(NEtMe)2,
DIPAS(二-异丙基酰氨基)硅烷 SiH3(NiPr2),
DTBAS(二叔丁基酰氨基)硅烷  SiH3(NtBu2);
c)向反应室中注入选自下列名单的氧源:氧、臭氧、氧等离子体、水、CO2等离子体、N2O等离子体;
d)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含硅化合物和氧源反应,以获得沉积到基底上的SiO2层;
e)通过ALD法在所述氧化硅膜上注入选自下列名单的至少一种含铝化合物:Al(Me)3、Al(Et)3、Al(Me)2(OiPr)、Al(Me)2(NMe)2或Al(Me)2(NEt)2
f)注入如步骤c)中规定的氧源;
g)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含铝化合物和氧源反应以获得沉积到来自步骤d)的SiO2层上的Al2O3层。
根据另一些实施方案,本发明涉及:
·如上定义的方法,其中所述含硅化合物是BDEAS双(二乙基氨基)硅烷SiH2(NEt2)2
·如上定义的方法,其包括下述步骤:
-在步骤e)开始前重复步骤b)至d),直至获得所需SiO2层厚度;如果必要,
-重复步骤e)至g),直至获得所需Al2O3层厚度。
·如上定义的方法,其中SiO2层具有1纳米至15纳米的厚度且Al2O3层具有30纳米的厚度。
·如上定义的方法,其包括下述步骤:
h)在氮气气氛中在400℃至900℃、优选400℃至425℃的温度使来自步骤g)的Al2O3/SiO2叠层退火,
·如上定义的方法,其中退火步骤h)的持续时间不多于10分钟。
·如上定义的方法,其中所述含硅化合物包含至少97%选自下述物质的至少一种含硅化合物:
BDEAS双(二乙基氨基)硅烷    SiH2(NEt2)2,
BDMAS双(二甲基氨基)硅烷    SiH2(NMe2)2,
BEMAS双(乙基甲基氨基)硅烷  SiH2(NEtMe)2,
DIPAS(二-异丙基酰氨基)硅烷 SiH3(NiPr2),
DTBAS(二叔丁基酰氨基)硅烷  SiH3(NtBu2);和:
-200ppb至5ppm Mo(钼),
-1000ppb至5ppm Fe(铁),
-200ppb至5ppm Cu(铜),
-200ppb至10ppm Ta(钽)。
·如上定义的方法,其中所述含铝化合物包含至少97%的选自下列名单的至少一种含铝化合物:Al(Me)3、Al(Et)3、Al(Me)2(OiPr)、Al(Me)2(NMe)2或Al(Me)2(NEt)2;和:
-200ppb至5ppm Mo(钼),
-1000ppb至5ppm Fe(铁),
-200ppb至5ppm Cu(铜),
-200ppb至10ppm Ta(钽)。
·根据如上定义的方法获得的Al2O3/SiO2叠层。
·如上定义的叠层用于钝化光伏器件,特别是太阳能电池的用途。
在本发明中,初沉积的SiO2层具有高氢含量:硅前体中的氢量越高,该层中的氢含量越高。Al2O3用作氢的扩散势垒并用于在退火步骤的过程中将氢自由基从氧化铝层转移至SiO2层。由于存在Al2O3层,也更好地将氢原子限定在SiO2中。在这种情况中,可以不用氢进行退火步骤。此外,SiO2层的厚度用于降低不适合n型基底的Al2O3的场效应钝化。因此,该叠层是用于有效钝化n型基底的良好解决方案,也可用于p型基底而没有表面重组速度的显著提高。
尽管如此,该最适当的前体组合的使用产生非常有效的叠层。
本发明的发明人发现,本发明的方法中所用的前体在该层中提供适当高的氢浓度以提供化学平衡,其有效地将氢转移至Si界面以钝化悬挂键。此外,本发明的另一优点是对这两种前体使用相同氧化剂(在步骤c)和f)的过程中)以便更容易工业使用。
本发明人已经发现,这种前体组合产生具有低金属污染水平的富氢Al2O3/SiO2/Si叠层。由于这种氢含量,该叠层具有良好的化学钝化能力。本发明的另一好处是使用ALD法,其能够精确控制SiO2和Al2O3层的厚度:显而易见的优点在于,无论基底的粗糙度如何,能够生长具有均匀厚度的层。
本领域技术人员会认识到,这种新颖的前体组合不仅限于用于多晶和单晶硅片基光伏太阳能电池的背面钝化叠层的沉积,但其益处适用于使用钝化层的其它各种用途。
Al 2 O 3 /SiO 2 叠层沉积方法的细节:
1.在本发明的一个实施方案中,可以通过在两个罐子中引入气体来进行铝和硅前体的气化——第一个罐子含有本发明的所述含铝化合物分子,第二个罐子含有所述硅。这些罐子优选在能以充足蒸气压气化所述来源的温度下加热。载气可以选自Ar、He、H2、N2或其混合物。这些罐子可以例如在20℃至170℃的温度下加热。可以调节温度以控制气相中的前体量。
2.在本发明的另一实施方案中,本发明的所述含铝化合物以液态送入用于将其气化的气化器。
3.在本发明的另一实施方案中,本发明的所述含硅化合物以液态送入用于将其气化的气化器。
4.在另一实施方案中,这两种前体仅一种以液态送入用于将其气化的气化器。
5.在本发明的一个实施方案中,所述罐中的压力为0,133Pa至133kPa。
6.将所述气化硅源引入反应室,在此其与基底接触。该基底可选自Si、SiO2、SiN、SiON和其它含硅基底和薄膜和甚至含其它金属的薄膜。可以将该基底加热至充足温度,从而以充足的生长速率和以所需物理态和组成获得所需薄膜。典型温度为50℃至400℃。该温度优选低于或等于250℃。控制反应室中的压力,从而以充足的生长速率获得所需含金属薄膜。压力通常为0,133Pa至133kPa或更高。
7.将所述气化铝源引入反应室,在此其与表面上带有SiO2层的基底接触。可以将该基底加热至充足温度,从而以充足的生长速率和以所需物理态和组成获得所需薄膜。温度通常为50℃至400℃。该温度优选低于或等于250℃。控制反应室中的压力,从而以充足的生长速率获得所需含金属薄膜。压力通常为0,133Pa至133kPa或更高。
8.在本发明的一个实施方案中,1中描述的本发明的所述含铝化合物在反应室之前混合到一种或多种反应物类中。
9.在本发明的一个实施方案中,1中描述的本发明的所述含硅化合物在反应室之前混合到一种或多种反应物类中。
10.在本发明的另一实施方案中,为了沉积SiO2层,本发明的所述含硅化合物源和反应物类相继引入反应室中(原子层沉积)或不同的组合。一个实例是连续引入反应物类(一个实例是氧)并脉冲引入本发明的含硅化合物源。
11.在本发明的另一实施方案中,为了沉积SiO2层,本发明的所述含硅化合物源和反应物类在不同空间位置同时(或连续)引入反应室中。基底移向反应室中的不同空间位置以与前体或反应物类接触(空间-ALD)。
12.在本发明的另一实施方案中,为了沉积Al2O3层,1中描述的本发明的所述含铝化合物和反应物类相继引入反应室中(原子层沉积)或不同的组合。一个实例是连续引入反应物类(一个实例是氧)并脉冲引入本发明的所述含铝化合物。
13.在本发明的另一实施方案中,为了沉积Al2O3层,1中描述的本发明的所述含铝化合物和反应物类在不同空间位置同时(或连续)引入反应室中。基底移向反应室中的不同空间位置以与前体或反应物类接触(空间-ALD)。
14.在本发明的一个实施方案中,为了沉积SiO2和/或Al2O3层,反应物类可流经位于反应室上游的远程等离子体系统并分解成自由基。
15.在本发明的一个实施方案中,所述反应物类包括选自氧(O2)、氧自由基(例如O·或OH·)(例如由远程等离子体生成的)、臭氧(O3)、水分(H2O)和H2O2、CO2等离子体、N2O等离子体、氧等离子体的氧源。
16.在本发明的一个实施方案中,1中描述的本发明的所述含铝化合物用于Al2O3薄膜的原子层沉积。所述铝源和反应物类之一相继引入反应室中(原子层沉积)。在0,133Pa至133kPa的范围内选择反应器压力。优选地,反应器压力为1,333kPa至13,3kPa。在金属源脉冲和反应物类脉冲之间引入吹扫气体。吹扫气体可选自N2、Ar、He。铝源、吹扫气体和反应物类脉冲持续时间为0.001s至10s。脉冲持续时间优选为5ms至50ms。
17.在本发明的另一实施方案中,本发明的所述含硅化合物用于SiO2薄膜的原子层沉积。所述硅源或其混合物和反应物类之一相继引入反应室中(原子层沉积)。在0,133Pa至133kPa的范围内选择反应器压力。优选地,反应器压力为1,333kPa至13,3kPa。在金属源脉冲和反应物类脉冲之间引入吹扫气体。吹扫气体可选自N2、Ar、He。硅源、吹扫气体和反应物类脉冲持续时间为0.1s至100s。脉冲持续时间优选为0.5s至10s。
在一个实施方案中,首先沉积SiO2层,然后沉积Al2O3覆盖层。如果必要,可以沉积新的双层Al2O3/SiO2。如果必要,该双层的沉积可重复数次。
18.在本发明的一个实施方案中,18中描述的沉积方法可用于硅酸铝薄膜沉积。
19.在本发明的另一实施方案中,可以在用第1至18点中描述的方法沉积的Al2O3/SiO2叠层上由本发明的所述含硅化合物源通过ALD沉积Si3N4覆盖层。这种三层叠层可用于如太阳能电池的正面钝化之类的用途。
20.在本发明的一个实施方案中,用350℃至1000℃温度范围内的退火步骤活化该层的钝化性质。优选在400℃至600℃进行退火。
实施例
在Si上由H 2 Si(NEt 2 ) 2 和Al(CH 3 ) 3 沉积双层Al 2 O 3 /SiO 2
通过PEALD在n型硅基底上沉积SiO2层。与H2Si(NEt2)2一起使用氧等离子体作为反应物。硅前体储存在在50℃加热的不锈钢罐中。将该前体蒸气吸入(vapor drawn)。在150℃下调节基底温度。首先将前体引入反应器中(50毫秒脉冲)。在反应器中连续引入氧以及氩(这种硅前体不与氧反应)。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~0,2Pa。
这些条件与自限
Figure BDA0000363213450000081
/周期的生长相容。
在之前沉积的SiO2层上由三甲基铝(TMA)和氧等离子体沉积Al2O3层。TMA具有高蒸气压,因此将该蒸气吸入反应器中。该前体以10毫秒持续脉冲引入反应器中。在反应器中连续引入氧以及氩。首先将10毫秒TMA脉冲引入反应器中,然后2秒吹扫序列。然后将等离子体活化4秒,然后新的2秒吹扫序列。实现
Figure BDA0000363213450000082
/周期的生长速率。
在数个基底上沉积数种类型的叠层。SiO2层具有1纳米至15纳米的厚度。Al2O3层厚度保持相同(~30纳米)。该叠层然后在氮气气氛中在400℃下退火。这种退火步骤的持续时间仅为10分钟。对于这一厚度范围,表面重组在1至10cm/s之间不等。
由这一实施例我们可以证实,用相同氧化剂加工的TMA和SiH2(NEt2)2用于沉积Al2O3/SiO2叠层导致非常有效的钝化。
这种类型的重组容易用在ALD设备、例如标准ALD反应器或在线空间ALD反应器中。
在Si上由H 2 Si(NEt 2 ) 2 和Al(CH 3 ) 3 沉积三层叠层系统Si 3 N 4 /Al 2 O 3 /SiO 2
通过PEALD在n型硅基底上沉积SiO2层。与H2Si(NEt2)2一起使用氧等离子体作为反应物。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(50毫秒脉冲)。在反应器中连续引入氧以及氩(这种硅前体不与氧反应)。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~0,2Pa。这些条件与自限
Figure BDA0000363213450000091
/周期的生长相容。
在之前沉积的SiO2层上由三甲基铝(TMA)和氧等离子体沉积Al2O3层。TMA具有高蒸气压,因此将该蒸气吸入反应器中。该前体以10毫秒持续脉冲引入反应器中。在反应器中连续引入氧以及氩。首先将10毫秒TMA脉冲引入反应器中,然后2秒吹扫序列。然后将等离子体活化4秒,然后新的2秒吹扫序列。实现
Figure BDA0000363213450000092
/周期的生长速率。
然后通过PEALD在Al2O3上由H2Si(NEt2)2和NH3等离子体沉积Si3N4层。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(0.5秒脉冲)。在反应器中连续引入NH3。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~10.2Pa。
这种四步骤周期重复数次。
获得三层叠层系统Si3N4/Al2O3/SiO2
在Si上由H 2 Si(NEt 2 ) 2 和Al(Me) 2 (OiPr)沉积双层Al 2 O 3 /SiO 2
通过PEALD在n型硅基底上沉积SiO2层。与H2Si(NEt2)2一起使用氧等离子体作为反应物。硅前体储存在在50℃下加热的不锈钢罐中。将该前体蒸气吸入(vapor drawn)。在150℃下调节基底温度。首先将前体引入反应器中(50毫秒脉冲)。在反应器中连续引入氧以及氩(这种硅前体不与氧气反应)。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~0,2Pa。
这些条件与自限
Figure BDA0000363213450000093
/周期的生长相容。
在之前沉积的SiO2层上由Al(Me)2(OiPr)和氧等离子体沉积Al2O3层。Al(Me)2(OiPr)具有高蒸气压,因此将该蒸气吸入反应器中。该前体以10毫秒持续脉冲引入反应器中。在反应器中连续引入氧以及氩。首先将10毫秒Al(Me)2(OiPr)脉冲引入反应器中,然后2秒吹扫序列。然后将等离子体活化4秒,然后新的2秒吹扫序列。实现
Figure BDA0000363213450000094
/周期的生长速率。
在数个基底上沉积数种类型的叠层。SiO2层具有1纳米至15纳米的厚度。Al2O3层厚度保持相同(~30纳米)。该叠层然后在氮气气氛中在400℃下退火。这种退火步骤的持续时间仅为10分钟。对于这一厚度范围,表面重组在1至10cm/s之间不等。
由这一实施例我们可以证实,用相同氧化剂加工的Al(Me)2(OiPr)和SiH2(NEt2)2用于沉积Al2O3/SiO2叠层导致非常有效的钝化。
这种类型的重组容易用在ALD设备,如标准ALD反应器或在线空间ALD反应器中。
在Si上由H 2 Si(NEt 2 ) 2 和Al(Me) 2 (OiPr)沉积三层叠层系统Si 3 N 4 /Al 2 O 3 /SiO 2
通过PEALD在n型硅基底上沉积SiO2层。与H2Si(NEt2)2一起使用氧等离子体作为反应物。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(50毫秒脉冲)。在反应器中连续引入氧以及氩(这种硅前体不与氧反应)。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~0,2Pa。这些条件与自限
Figure BDA0000363213450000101
/周期的生长相容。
在之前沉积的SiO2层上由Al(Me)2(OiPr)和氧等离子体沉积Al2O3层。Al(Me)2(OiPr)具有高蒸气压,因此将该蒸气吸入反应器中。该前体以10毫秒持续脉冲引入反应器中。在反应器中连续引入氧以及氩。首先将10毫秒Al(Me)2(OiPr)脉冲引入反应器中,然后2秒吹扫序列。然后将等离子体活化4秒,然后新的2秒吹扫序列。实现/周期的生长速率。
然后通过PEALD在Al2O3上由H2Si(NEt2)2和NH3等离子体沉积Si3N4层。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(0.5秒脉冲)。在反应器中连续引入NH3。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~10.2Pa。
这种四步骤周期重复数次。
获得三层叠层系统Si3N4/Al2O3/SiO2
在Si上由H 2 Si(NEt 2 ) 2 沉积叠层系统Si 3 N 4 /SiO 2
通过PEALD在n型硅基底上沉积SiO2层。与H2Si(NEt2)2一起使用氧等离子体作为反应物。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(50毫秒脉冲)。在反应器中连续引入氧以及氩(这种硅前体不与氧气反应)。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~0,2Pa。这些条件与自限
Figure BDA0000363213450000111
/周期的生长相容。
然后通过PEALD在SiO2上由H2Si(NEt2)2和NH3等离子体沉积Si3N4层。硅前体储存在在40℃下加热的不锈钢罐中。载气是氩气。在150℃下调节基底温度。首先将前体引入反应器中(0.5秒脉冲)。在反应器中连续引入NH3。在2秒吹扫序列后,将等离子体活化4秒。在这一序列后然后新的2秒吹扫序列。反应器中的压力为~10.2Pa。
这种四步骤周期重复数次。
获得叠层系统Si3N4/SiO2

Claims (10)

1.形成Al2O3/SiO2叠层的方法,其相继包括下述步骤:
a)将基底供应到反应室中;
b)通过ALD法向反应室中注入至少一种含硅化合物,所述至少一种含硅化合物选自由下述物质组成的组:
BDEAS双(二乙基氨基)硅烷    SiH2(NEt2)2,
BDMAS双(二甲基氨基)硅烷    SiH2(NMe2)2,
BEMAS双(乙基甲基氨基)硅烷  SiH2(NEtMe)2,
DIPAS(二-异丙基酰氨基)硅烷 SiH3(NiPr2),
DTBAS(二叔丁基酰氨基)硅烷  SiH3(NtBu2);
c)向反应室中注入选自氧、臭氧、氧等离子体、水、CO2等离子体、N2O等离子体的氧源;
d)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含硅化合物和氧源反应,以获得沉积到基底上的SiO2层;
e)通过ALD法在所述氧化硅膜上注入选自Al(Me)3、Al(Et)3、Al(Me)2(OiPr)、Al(Me)2(NMe)2或Al(Me)2(NEt)2的至少一种含铝化合物;
f)注入如步骤c)中规定的氧源;
g)在20℃至400℃的温度、优选低于或等于250℃的温度在反应室中使至少一种含铝化合物和氧源反应,以获得沉积到获自步骤d)的SiO2层上的Al2O3层。
2.根据权利要求1的方法,其中所述含硅化合物是
BDEAS双(二乙基氨基)硅烷  SiH2(NEt2)2
3.根据权利要求1或2的方法,其包括下述步骤:
-在步骤e)开始前重复步骤b)至d),直至获得所需的SiO2层厚度;和如果必要,
-重复步骤e)至g),直至获得所需的Al2O3层厚度。
4.根据权利要求1至3之一的方法,其中SiO2层具有1纳米至15纳米的厚度且Al2O3层具有30纳米的厚度。
5.根据权利要求1至4之一的方法,其包括下述步骤:
h)在氮气气氛中在400℃至900℃、优选400℃至425℃的温度将获自步骤g)的Al2O3/SiO2叠层退火。
6.根据权利要求5的方法,其中退火步骤h)的持续时间不多于10分钟。
7.根据权利要求1至6之一的方法,其中所述含硅化合物包含至少97%的选自下述物质的至少一种含硅化合物:
BDEAS双(二乙基氨基)硅烷    SiH2(NEt2)2,
BDMAS双(二甲基氨基)硅烷    SiH2(NMe2)2,
BEMAS双(乙基甲基氨基)硅烷  SiH2(NEtMe)2,
DIPAS(二-异丙基酰氨基)硅烷 SiH3(NiPr2),
DTBAS(二叔丁基酰氨基)硅烷  SiH3(NtBu2);
-200ppb至5ppm Mo(钼),
1000ppb至5ppm Fe(铁),
-200ppb至5ppm Cu(铜),
-200ppb至10ppm Ta(钽)。
8.根据权利要求1至7之一的方法,其中所述含铝化合物包含至少97%的选自Al(Me)3、Al(Et)3、Al(Me)2(OiPr)、Al(Me)2(NMe)2或Al(Me)2(NEt)2的至少一种含铝化合物;
-200ppb至5ppm Mo(钼),
1000ppb至5ppm Fe(铁),
-200ppb至5ppm Cu(铜),
-200ppb至10ppm Ta(钽)。
9.根据如权利要求1至8之一中所述的方法获得的Al2O3/SiO2叠层。
10.如权利要求9中所述的叠层的用途,用于光伏器件,特别是太阳能电池的钝化。
CN201180067628.8A 2011-02-07 2011-12-15 由铝和硅前体沉积Al2O3/SiO2叠层的方法 Active CN103476965B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP11305115.5A EP2484803B1 (en) 2011-02-07 2011-02-07 Method of deposition of Al2O3/SiO2 stacks, from aluminium and silicon precursors
EP11305114.8A EP2484802B1 (en) 2011-02-07 2011-02-07 Method of deposition of Al2O3/SiO2 stacks from DMAI and silicon precursors
EP11305114.8 2011-02-07
EP11305115.5 2011-02-07
PCT/EP2011/072970 WO2012107138A1 (en) 2011-02-07 2011-12-15 METHOD OF DEPOSITION OF Al2O3/SiO2 STACKS, FROM ALUMINIUM AND SILICON PRECURSORS

Publications (2)

Publication Number Publication Date
CN103476965A true CN103476965A (zh) 2013-12-25
CN103476965B CN103476965B (zh) 2016-03-23

Family

ID=45464523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180067628.8A Active CN103476965B (zh) 2011-02-07 2011-12-15 由铝和硅前体沉积Al2O3/SiO2叠层的方法

Country Status (3)

Country Link
US (1) US20130330936A1 (zh)
CN (1) CN103476965B (zh)
WO (1) WO2012107138A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463548A (zh) * 2014-05-29 2017-02-22 京瓷株式会社 太阳能电池元件及其制造方法以及太阳能电池模块
CN106981539A (zh) * 2016-02-05 2017-07-25 江苏微导纳米装备科技有限公司 一种纳米叠层导电薄膜的制备方法及应用
CN108133880A (zh) * 2016-11-14 2018-06-08 朗姆研究公司 氧化铝蚀刻停止层的沉积
CN110724933A (zh) * 2019-11-07 2020-01-24 中国电子科技集团公司第三十八研究所 一种铝合金表面热控涂层的制备方法
CN111399349A (zh) * 2020-04-17 2020-07-10 淮北师范大学 一种高深宽比光刻胶图形处理方法
TWI838513B (zh) 2019-04-12 2024-04-11 荷蘭商Asmip私人控股有限公司 金屬氧化物在金屬表面上之選擇性沉積

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174422B1 (ko) * 2009-12-31 2012-08-16 서울대학교산학협력단 실리카 나노 와이어의 제조 방법
WO2014080080A1 (en) * 2012-11-22 2014-05-30 Beneq Oy Method for fabricating a passivation film on a crystalline silicon surface
CN103450801A (zh) * 2013-09-09 2013-12-18 南京工业大学 一种制备微纳米硅基超疏水涂层的方法及其用途
KR101614190B1 (ko) * 2013-12-24 2016-04-20 엘지전자 주식회사 태양전지 및 이의 제조 방법
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
KR20160082321A (ko) * 2014-12-31 2016-07-08 주식회사 유진테크 머티리얼즈 알루미늄 박막 증착용 전구체 및 이를 이용한 박막 증착 방법
WO2016108398A1 (ko) * 2014-12-31 2016-07-07 주식회사 유진테크 머티리얼즈 유기 13족 전구체 및 이를 이용한 박막 증착 방법
US10428421B2 (en) 2015-08-03 2019-10-01 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10651080B2 (en) 2016-04-26 2020-05-12 Lam Research Corporation Oxidizing treatment of aluminum nitride films in semiconductor device manufacturing
US10049869B2 (en) * 2016-09-30 2018-08-14 Lam Research Corporation Composite dielectric interface layers for interconnect structures
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
NL2020560B1 (en) * 2018-03-09 2019-09-13 Univ Eindhoven Tech Photovoltaic cell and a method for manufacturing the same
FR3086673B1 (fr) * 2018-10-01 2021-06-04 Commissariat Energie Atomique Empilement multicouche pour la croissance par cvd de nanotubes de carbone
US11965238B2 (en) * 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces
TW202140832A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 氧化矽在金屬表面上之選擇性沉積
TW202204658A (zh) 2020-03-30 2022-02-01 荷蘭商Asm Ip私人控股有限公司 在兩不同表面上同時選擇性沉積兩不同材料
TW202140833A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 相對於金屬表面在介電表面上之氧化矽的選擇性沉積
CN117410386B (zh) * 2023-12-14 2024-03-19 无锡松煜科技有限公司 具有陷光结构的叠层钝化结构的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078109A (zh) * 2006-05-23 2007-11-28 气体产品与化学公司 从有机氨基硅烷前体制备氧化硅薄膜的方法
WO2008014492A2 (en) * 2006-07-27 2008-01-31 Nanosolar, Inc. Individually encapsulated solar cells and/or solar cell strings
CN101171366A (zh) * 2005-03-17 2008-04-30 乔治洛德方法研究和开发液化空气有限公司 形成含氧化硅的薄膜的方法
US20110001183A1 (en) * 2009-03-06 2011-01-06 Dong-Chul Yoo Memory device and method of fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548366B2 (en) * 2001-06-20 2003-04-15 Texas Instruments Incorporated Method of two-step annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
EP1490529A1 (en) * 2002-03-28 2004-12-29 President And Fellows Of Harvard College Vapor deposition of silicon dioxide nanolaminates
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US20060216548A1 (en) * 2005-03-22 2006-09-28 Ming Mao Nanolaminate thin films and method for forming the same using atomic layer deposition
JP5543203B2 (ja) * 2006-06-16 2014-07-09 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. 大気圧グロー放電プラズマを使用した原子層堆積の方法及び装置
US9660205B2 (en) * 2007-06-22 2017-05-23 Regents Of The University Of Colorado Protective coatings for organic electronic devices made using atomic layer deposition and molecular layer deposition techniques
US20090075490A1 (en) * 2007-09-18 2009-03-19 L'air Liquite Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming silicon-containing films
JP4959733B2 (ja) * 2008-02-01 2012-06-27 東京エレクトロン株式会社 薄膜形成方法、薄膜形成装置及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171366A (zh) * 2005-03-17 2008-04-30 乔治洛德方法研究和开发液化空气有限公司 形成含氧化硅的薄膜的方法
CN101078109A (zh) * 2006-05-23 2007-11-28 气体产品与化学公司 从有机氨基硅烷前体制备氧化硅薄膜的方法
WO2008014492A2 (en) * 2006-07-27 2008-01-31 Nanosolar, Inc. Individually encapsulated solar cells and/or solar cell strings
US20110001183A1 (en) * 2009-03-06 2011-01-06 Dong-Chul Yoo Memory device and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463548A (zh) * 2014-05-29 2017-02-22 京瓷株式会社 太阳能电池元件及其制造方法以及太阳能电池模块
CN106463548B (zh) * 2014-05-29 2018-07-24 京瓷株式会社 太阳能电池元件以及太阳能电池模块
CN106981539A (zh) * 2016-02-05 2017-07-25 江苏微导纳米装备科技有限公司 一种纳米叠层导电薄膜的制备方法及应用
CN108133880A (zh) * 2016-11-14 2018-06-08 朗姆研究公司 氧化铝蚀刻停止层的沉积
CN108133880B (zh) * 2016-11-14 2022-02-11 朗姆研究公司 氧化铝蚀刻停止层的沉积
TWI838513B (zh) 2019-04-12 2024-04-11 荷蘭商Asmip私人控股有限公司 金屬氧化物在金屬表面上之選擇性沉積
CN110724933A (zh) * 2019-11-07 2020-01-24 中国电子科技集团公司第三十八研究所 一种铝合金表面热控涂层的制备方法
CN111399349A (zh) * 2020-04-17 2020-07-10 淮北师范大学 一种高深宽比光刻胶图形处理方法
CN111399349B (zh) * 2020-04-17 2023-04-04 淮北师范大学 一种高深宽比光刻胶图形处理方法

Also Published As

Publication number Publication date
WO2012107138A1 (en) 2012-08-16
US20130330936A1 (en) 2013-12-12
CN103476965B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN103476965B (zh) 由铝和硅前体沉积Al2O3/SiO2叠层的方法
CN103108982B (zh) 用于光伏用途的Al2O3薄膜的生长
CN107636198B (zh) 用于形成含硅和氧的薄膜的汽相沉积方法
EP2484801B1 (en) Method of deposition of Al2O3/SiO2 stacks, from TMA or TEA and silicon precursors
CN103451619A (zh) 有机氨基乙硅烷前体和包含该前体的薄膜沉积的方法
KR20080095240A (ko) 증착에 의한 기판 표면 상의 규소 필름의 제조 방법
JP7436054B2 (ja) シリコン前駆体化合物、製造方法、及びこれを利用するシリコン含有膜の形成方法
JP7161621B2 (ja) 希土類前駆体、その製造方法およびこれを用いて薄膜を形成する方法
EP2484803B1 (en) Method of deposition of Al2O3/SiO2 stacks, from aluminium and silicon precursors
TW200419005A (en) Method of forming Si-containing thin film using organic Si-containing compound having Si-Si bond
CN112210769A (zh) 一种低温高生长速率氧化硅薄膜的原子层沉积方法
EP2484802B1 (en) Method of deposition of Al2O3/SiO2 stacks from DMAI and silicon precursors
CN109585264B (zh) 一种氮化硅薄膜的可流动化学气相沉积方法
Irikawa et al. Effects of annealing and atomic hydrogen treatment on aluminum oxide passivation layers for crystalline silicon solar cells
EP3307744A1 (en) Vapor deposition processes for forming silicon- and oxygen-containing thin films
JP7196228B2 (ja) シリコン前駆体およびこれを用いたシリコン含有薄膜の製造方法
CN103080115B (zh) 在光伏用途中由三烷基铝生长Al2O3薄膜
JP2013008828A (ja) シリコン絶縁膜の形成方法
TWI747440B (zh) 新穎的矽烷基環二矽氮烷化合物、以及使用其之製備含矽薄膜的方法
Irikawa et al. Effect of atomic hydrogen treatment on passivation quality of aluminum oxide for p-type crystalline silicon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant