CN103472592A - Snapping type high-flux polarization imaging method and polarization imager - Google Patents
Snapping type high-flux polarization imaging method and polarization imager Download PDFInfo
- Publication number
- CN103472592A CN103472592A CN2013104301696A CN201310430169A CN103472592A CN 103472592 A CN103472592 A CN 103472592A CN 2013104301696 A CN2013104301696 A CN 2013104301696A CN 201310430169 A CN201310430169 A CN 201310430169A CN 103472592 A CN103472592 A CN 103472592A
- Authority
- CN
- China
- Prior art keywords
- polarization
- array
- microlens
- imaging
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 111
- 238000003384 imaging method Methods 0.000 title claims abstract description 81
- 238000012634 optical imaging Methods 0.000 claims abstract description 27
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000000701 chemical imaging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Studio Devices (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明是一种快照式高通量的偏振成像方法和偏振成像仪。偏振成像仪包括前置光学成像系统、微透镜阵列和阵列式偏振成像探测器,微透镜阵列置于前置光学成像系统的成像面,阵列式偏振成像探测器置于微透镜阵列的焦平面上。阵列式偏振成像探测器由CCD探测器阵列和线偏振片阵列耦合而成,每个线偏振片对应一个CCD探测器像元。目标发射或反射的不同方向光经过前置光学成像系统成像于某个微透镜上,该微透镜将接收到的目标不同方向的光分散到阵列式偏振成像探测器的各个像元上形成子图像,最终获得目标各个偏振角度图像。本发明具有一次曝光就可获取目标多个偏振角度图像的优势,可应用于快速变化或移动目标的监测与追踪中。
The invention is a snapshot high-throughput polarization imaging method and a polarization imager. The polarization imager includes a front optical imaging system, a microlens array and an array polarization imaging detector. The microlens array is placed on the imaging surface of the front optical imaging system, and the array polarization imaging detector is placed on the focal plane of the microlens array. . The array polarized imaging detector is formed by coupling a CCD detector array and a linear polarizer array, and each linear polarizer corresponds to a CCD detector pixel. The light emitted or reflected by the target in different directions is imaged on a microlens through the pre-optical imaging system, and the microlens disperses the received light of the target in different directions to each pixel of the array polarization imaging detector to form a sub-image , and finally obtain the images of each polarization angle of the target. The invention has the advantage of acquiring multiple polarization angle images of the target with one exposure, and can be applied to the monitoring and tracking of fast-changing or moving targets.
Description
技术领域technical field
本发明涉及光学成像技术,具体涉及一种利用基于微透镜阵列的光场成像技术和阵列式偏振成像探测器,实现画幅式拍照的偏振成像方法和偏振成像仪。The invention relates to optical imaging technology, in particular to a polarization imaging method and a polarization imager for realizing frame-style photography by using a light field imaging technology based on a microlens array and an array polarization imaging detector.
背景技术Background technique
偏振成像技术是获取目标图像的偏振信息的基础,是利用偏振特性对目标进行分析识别的前提。目前,国内外的偏振探测和分析技术主要基于斯托克斯(Stokes)矢量分析法,基于该方法的偏振信息探测需要获取目标至少三个偏振角度图像,根据各探测系统获取目标偏振图像方式的不同,偏振成像技术主要分为凝视型和快照型。凝视型偏振成像技术通过切换偏振元件实现目标多个偏振角度图像获取,需对准目标凝视一定时间以多次曝光获得不同偏振图像信息,要求被测目标和仪器本身保持相对静止,对像元配准要求也较高,不适用于运动或变化目标的探测。Polarization imaging technology is the basis for obtaining the polarization information of the target image, and it is the premise of analyzing and identifying the target by using the polarization characteristics. At present, the polarization detection and analysis technology at home and abroad is mainly based on the Stokes vector analysis method. The polarization information detection based on this method needs to obtain at least three polarization angle images of the target. Different, polarization imaging technology is mainly divided into staring type and snapshot type. The staring polarization imaging technology realizes the acquisition of multiple polarization angle images of the target by switching the polarization element. It needs to stare at the target for a certain period of time to obtain different polarization image information through multiple exposures. It is required that the measured target and the instrument itself remain relatively still. The accuracy requirements are also high, and it is not suitable for the detection of moving or changing targets.
快照型偏振成像技术是指在一次曝光同时获取目标多个偏振角度图像信息,在探测运动或变化目标方面具有优势。这类技术主要分为:振幅分割法、像面分割法和孔径分割法。振幅分割方案是利用分光元件将入射光分割后通过不同的偏振片并被对应的探测器接收,这类技术由于采用多个偏振成像系统,成本高,体积大,难以轻小型化。随着微加工技术的发展,出现了像面分割法,该方法在焦平面探测器前耦合偏振片阵列并对目标直接成像,该技术存在瞬时视场偏移,偏振信息的准确性受影响。孔径分割法是利用后继光学系统形成多个目标投影像,并使各个像通过不同的偏振片后被探测器接收,实现多个偏振态信息的探测,该系统中继光学系统复杂,增加了设计难度。Snapshot polarization imaging technology refers to the acquisition of image information of multiple polarization angles of the target at the same time in one exposure, which has advantages in detecting moving or changing targets. Such techniques are mainly divided into: amplitude segmentation method, image plane segmentation method and aperture segmentation method. The amplitude division scheme is to use the light splitting element to divide the incident light to pass through different polarizers and be received by the corresponding detectors. Due to the use of multiple polarization imaging systems, this type of technology is costly and bulky, making it difficult to light and miniaturize. With the development of micro-processing technology, the image plane segmentation method has appeared. This method couples the polarizer array in front of the focal plane detector and directly images the target. This technology has an instantaneous field of view shift, and the accuracy of the polarization information is affected. The aperture division method is to use the subsequent optical system to form multiple target projection images, and make each image pass through different polarizers and then be received by the detector, so as to realize the detection of multiple polarization state information. The relay optical system of this system is complicated, which increases the design difficulty.
近年来,国际上兴起了一种新型的计算成像技术——光场成像技术,该技术通过在传统光学成像系统添加解调单元,将目标二维空间分布信息和几何光线传播的二维方向信息同时记录下来,可提取不同方向角下的目标信息即目标物体的二维光强度分布,在信息获取上具有很大的优势。In recent years, a new type of computational imaging technology - light field imaging technology has emerged in the world. This technology combines the two-dimensional spatial distribution information of the target and the two-dimensional direction information of the geometric light propagation by adding a demodulation unit to the traditional optical imaging system. Recorded at the same time, the target information under different direction angles can be extracted, that is, the two-dimensional light intensity distribution of the target object, which has great advantages in information acquisition.
文献[1](R.Horstmeyer and et al.,“Flexible multimodal camera using a light fieldarchitecture,”International Conference on Computational Photography(2009))利用小孔阵列作为光场成像技术的调制元件,将多模式滤光片阵列置于前置光学系统光瞳处,一次拍摄获取目标不同偏振角度的图像信息。但该技术具有如下缺点:小孔阵列的光通量低,加大了曝光时间,无法应用于快速变化或移动的目标;小孔阵列的物理衍射光斑大,探测器像元利用率低。Literature [1] (R.Horstmeyer and et al., "Flexible multimodal camera using a light field architecture," International Conference on Computational Photography (2009)) uses pinhole arrays as modulation elements of light field imaging technology to combine multimodal filters The chip array is placed at the pupil of the front optical system, and the image information of different polarization angles of the target can be obtained in one shot. However, this technology has the following disadvantages: the luminous flux of the pinhole array is low, which increases the exposure time, and cannot be applied to fast-changing or moving targets; the physical diffraction spot of the pinhole array is large, and the utilization rate of the detector pixel is low.
文献[2](J.Tyo,“Hybrid division of aperture/division of a focal-plane polarimeter forreal-time polarization imagery without an instantaneous field-of-view error,”Optics Letter,31(20),2006)利用两个微透镜阵列将前置光学系统成像面上的图像二次成像于阵列式偏振成像探测器上,实时获取目标不同偏振角度的图像信息。但该技术具有如下缺点:相邻像元之间存在图像串扰;采用两个微透镜阵列,系统复杂度增加。Literature [2] (J.Tyo, "Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error," Optics Letter, 31(20), 2006) uses two A microlens array re-images the image on the imaging surface of the front optical system on the arrayed polarization imaging detector to obtain image information of different polarization angles of the target in real time. However, this technology has the following disadvantages: there is image crosstalk between adjacent picture elements; two microlens arrays are used, and the system complexity increases.
发明内容Contents of the invention
本发明所要解决的技术问题为:提供一种快照式高通量的偏振成像方法和偏振成像仪,实现一次拍照获取目标的多个偏振角度图像信息,应用于快速变化或移动目标的监测与追踪。The technical problem to be solved by the present invention is to provide a snapshot-type high-throughput polarization imaging method and a polarization imager, which can obtain multiple polarization angle image information of a target in one shot, and be applied to the monitoring and tracking of rapidly changing or moving targets .
本发明提供的一种快照式高通量的偏振成像仪,包括基于微透镜阵列的光场成像机构和阵列式偏振成像探测器,光场成像机构包括成像系统的前置光学成像系统和微透镜阵列。前置光学成像系统由一个以上的透镜组成;微透镜阵列作为光场调制单元被置于前置光学成像系统的成像面;阵列式偏振成像探测器被置于微透镜阵列的焦平面上,形成光场成像后置系统。阵列式偏振成像探测器由CCD探测器阵列和线偏振片阵列耦合而成,每个线偏振片对应一个CCD探测器像元。A snapshot type high-throughput polarization imager provided by the present invention includes a light field imaging mechanism based on a microlens array and an array polarization imaging detector, and the light field imaging mechanism includes a front optical imaging system and a microlens of the imaging system array. The front optical imaging system is composed of more than one lens; the microlens array is placed on the imaging surface of the front optical imaging system as a light field modulation unit; the array polarization imaging detector is placed on the focal plane of the microlens array, forming Light field imaging rear system. The array polarized imaging detector is formed by coupling a CCD detector array and a linear polarizer array, and each linear polarizer corresponds to a CCD detector pixel.
本发明提供的一种快照式高通量的光谱成像方法,包括步骤1~步骤3。A snapshot high-throughput spectral imaging method provided by the present invention includes step 1 to step 3.
步骤1,在前置光学成像系统的成像面放置微透镜阵列;微透镜阵列中的微透镜的F数与前置光学成像系统的等效F数相等。Step 1, placing a microlens array on the imaging surface of the front optical imaging system; the F number of the microlenses in the micro lens array is equal to the equivalent F number of the front optical imaging system.
步骤2,在微透镜阵列的焦平面上放置阵列式偏振成像探测器;阵列式偏振成像探测器由CCD探测器阵列和线偏振片阵列耦合而成,每个线偏振片对应一个CCD探测器像元。Step 2, place an array polarization imaging detector on the focal plane of the microlens array; the array polarization imaging detector is formed by coupling a CCD detector array and a linear polarizer array, and each linear polarizer corresponds to a CCD detector image Yuan.
步骤3,目标发射或反射的不同方向光经过前置光学成像系统调制后,成像于微透镜阵列上的某个微透镜上,该微透镜将接收到的目标不同方向的光分散到阵列式偏振成像探测器的各个像元上形成子图像,最终获得数据立方体大小为(Np,Nx,Ny)的偏振角度图像,其中,Np为一个微透镜覆盖的探测器像元所对应的偏振角度的数目,(Nx,Ny)为获得的二维目标分辨率,Step 3, the light emitted or reflected by the target in different directions is modulated by the pre-optical imaging system, and then imaged on a microlens on the microlens array. The microlens disperses the received light of the target in different directions into the array polarization Sub-images are formed on each pixel of the imaging detector, and finally a polarization angle image with a data cube size of (N p , N x , N y ) is obtained, where N p is the corresponding to the detector pixel covered by a microlens The number of polarization angles, (N x , N y ) is the obtained two-dimensional target resolution,
Wx和Wy为阵列式偏振成像探测器的长和宽,d为微透镜的尺寸。W x and W y are the length and width of the array polarization imaging detector, and d is the size of the microlens.
设置步骤1的微透镜阵列中的每个微透镜至少覆盖(M+2)×(M+2)个像元,其中,2M为探测目标的不同偏振角度数目。Each microlens in the microlens array in step 1 covers at least (M+2)×(M+2) picture elements, where 2M is the number of different polarization angles of the detection target.
本发明的优点与积极效果在于:Advantage and positive effect of the present invention are:
(1)本发明的偏振成像仪和偏振成像方法采用基于微透镜阵列的光场成像机构与阵列式偏振成像探测器,具有一次曝光就可以获取目标多个偏振角度图像的优势,可应用于快速变化或移动目标的监测与追踪中。(1) The polarization imager and polarization imaging method of the present invention adopt a light field imaging mechanism based on a microlens array and an array polarization imaging detector, which has the advantage of obtaining multiple polarization angle images of the target with one exposure, and can be applied to rapid Monitoring and tracking of changing or moving targets.
(2)本发明的偏振成像仪和偏振成像方法采用微透镜阵列作为光场调制元件,微透镜相较于小孔具有高通量、低衍射极限的优势,有利于提高探测器像元利用率,进而提高系统空间分辨率。(2) The polarization imager and polarization imaging method of the present invention use microlens arrays as light field modulation elements. Compared with small holes, microlenses have the advantages of high flux and low diffraction limit, which is conducive to improving the utilization rate of detector pixels , thereby improving the spatial resolution of the system.
(3)本发明的偏振成像仪和偏振成像方法采用微透镜覆盖多个偏振探测器像元,避免由于衍射及机械装夹配准误差造成的相邻微透镜所成像混叠的问题。(3) The polarization imager and polarization imaging method of the present invention use microlenses to cover multiple polarization detector pixels, avoiding the problem of image aliasing caused by diffraction and mechanical clamping and registration errors of adjacent microlenses.
附图说明Description of drawings
图1为本发明的阵列式偏振成像探测器的示意图;Fig. 1 is the schematic diagram of arrayed polarization imaging detector of the present invention;
图2为本发明的偏振成像仪的一维原理示意图;Fig. 2 is the one-dimensional schematic diagram of the polarization imager of the present invention;
图3为微透镜与探测器位置关系示意图;Fig. 3 is a schematic diagram of the positional relationship between the microlens and the detector;
图4为本发明的偏振成像方法的流程示意图。FIG. 4 is a schematic flowchart of the polarization imaging method of the present invention.
具体实施方式Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.
本发明通过前置光学系统将目标成像于微透镜阵列所在的平面,每个微透镜对应一个像元;每个微透镜将主镜孔径成像到探测器上形成宏像素,宏像素每个像元对应镜头的一个采样子孔径,每个像元探测结果都相当于目标经过采样子孔径所成图像;耦合了不同偏振角度偏振片的像元探测结果相当于目标通过不同偏振滤光片所成图像;多个微透镜对应同一子孔径的像元耦合的偏振片角度相同,从而提取相应的像元可以获取目标某一偏振角度的图像。本发明具有一次曝光就能完成数据获取的优势,且微透镜的能量利用率远高于小孔,因此具有高通量、快照式的优点。The present invention images the target on the plane where the microlens array is located through the front optical system, and each microlens corresponds to a pixel; each microlens images the aperture of the primary mirror onto the detector to form a macro pixel, and each pixel of the macro pixel Corresponding to a sampling sub-aperture of the lens, the detection result of each pixel is equivalent to the image formed by the target passing through the sampling sub-aperture; the detection result of the pixel coupled with polarizers with different polarization angles is equivalent to the image formed by the target passing through different polarization filters ; multiple microlenses corresponding to the same sub-aperture are coupled with the same polarizer angle, so that the image of a certain polarization angle of the target can be obtained by extracting the corresponding pixel. The invention has the advantage of completing data acquisition with one exposure, and the energy utilization rate of the microlens is much higher than that of the small hole, so it has the advantages of high flux and snapshot.
本发明提供的快照式高通量的偏振成像仪,主要包括一个基于微透镜阵列的光场成像机构和阵列式偏振成像探测器。基于微透镜阵列的光场成像机构包括前置光学系统(主镜)和微透镜阵列,微透镜阵列作为光场调制单元被置于前置光学成像系统的成像面。阵列式偏振成像探测器由CCD(Charge-coupled Device,电荷耦合元件)探测器阵列和线偏振片阵列耦合而成,每个线偏振片对应一个CCD探测器像元,如图1所示,阵列式偏振成像探测器被置于微透镜阵列的焦平面上,形成光场成像后置系统。图1所示,在每个CCD探测器像元前面设置有一个线偏振片,线偏振片的偏振角度可由用户根据需要设置,本发明优选的设置方式为:设置阵列中每上左、上右、下左和下右相邻的四个线偏振片的偏振角度分别为0度、45度、135度和90度。The snapshot high-throughput polarization imager provided by the present invention mainly includes a light field imaging mechanism based on a microlens array and an array polarization imaging detector. The light field imaging mechanism based on the microlens array includes a front optical system (main mirror) and a microlens array, and the microlens array is placed on the imaging surface of the front optical imaging system as a light field modulation unit. The array polarized imaging detector is composed of a CCD (Charge-coupled Device, charge-coupled device) detector array coupled with a linear polarizer array, each linear polarizer corresponds to a CCD detector pixel, as shown in Figure 1, the array The polarized imaging detector is placed on the focal plane of the microlens array to form a light field imaging rear system. As shown in Figure 1, a linear polarizer is arranged in front of each CCD detector pixel, and the polarization angle of the linear polarizer can be set by the user according to needs. The preferred setting method of the present invention is: each upper left, upper right The polarization angles of the four adjacent linear polarizers, the lower left and the lower right are 0 degree, 45 degree, 135 degree and 90 degree respectively.
本发明实施例中前置光学成像系统为透射式成像系统,也可以采用反射式成像系统来实现。如图2所示,为本发明的偏振成像仪的一维原理示意图,前置光学成像系统被简化为一个位于光场成像机构的前置镜头的光瞳处的理想透镜,即图2所示的主镜。目标经前置光学成像系统成像于微透镜阵列上的某个微透镜上,该微透镜将接收到的来自目标的不同方向的光,分散到微透镜之后的探测器的像元上形成子图像,每个探测器的像元所获取的目标图像对应于目标在不同方向上的光能辐射。由于探测器耦合的线偏振片的调制作用,目标在不同方向上的光能辐射被调制为特定线偏振角度的光,因此每个探测器的像元获取的是目标特定线偏振角度的光能辐射。通过在探测器像元前耦合不同偏振方向的线偏振片(即微偏振滤光片),可以获取目标在不同偏振方向的偏振信息。当目标扩展为二维目标时,其经过前置光学成像系统成像于微透镜阵列所在的成像面上,每个微透镜对应目标所成像的一个空间单元,因此可以获取目标的空间二维信息。同时由于微透镜的调制作用,其后的阵列式偏振成像探测器像元获取的是该目标的空间单元不同线偏振角度下光的辐射信息,通过提取每个微透镜形成的子图像中某一偏振角度对应的像元,可以获取目标在该偏振角度的偏振图像。将多幅不同偏振角度的图像组合,就可以获取目标完整的偏振角度图像信息。In the embodiment of the present invention, the front optical imaging system is a transmission imaging system, which may also be realized by a reflection imaging system. As shown in Figure 2, it is a schematic diagram of the one-dimensional principle of the polarization imager of the present invention, the front optical imaging system is simplified as an ideal lens at the pupil of the front lens of the light field imaging mechanism, as shown in Figure 2 primary mirror. The target is imaged on a microlens on the microlens array through the pre-optical imaging system, and the microlens disperses the received light from different directions of the target to the pixel of the detector behind the microlens to form a sub-image , the target image acquired by each detector pixel corresponds to the light energy radiation of the target in different directions. Due to the modulation effect of the linear polarizer coupled to the detector, the light energy radiation of the target in different directions is modulated into light of a specific linear polarization angle, so each pixel of the detector obtains the light energy of a specific linear polarization angle of the target radiation. The polarization information of the target in different polarization directions can be obtained by coupling linear polarizers with different polarization directions (that is, micro-polarization filters) in front of the detector pixels. When the target expands to a two-dimensional target, it is imaged on the imaging surface where the microlens array is located through the pre-optical imaging system, and each microlens corresponds to a spatial unit of the target imaged, so the spatial two-dimensional information of the target can be obtained. At the same time, due to the modulation effect of the microlens, the pixel of the subsequent array polarization imaging detector acquires the radiation information of the light at different linear polarization angles in the spatial unit of the target, and extracts a certain value in the sub-image formed by each microlens. The pixel corresponding to the polarization angle can acquire the polarization image of the target at the polarization angle. By combining multiple images with different polarization angles, the complete polarization angle image information of the target can be obtained.
本发明中微透镜阵列的各微透镜的F数与前置光学成像系统的有效F数相等,且探测器被置于微透镜阵列的焦平面处。如图2所示,L为前置光学系统等效光瞳到目标所成像的距离,f为微透镜的焦距。微透镜在探测器上的覆盖成像范围d为圆形微透镜直径或方形微透镜的宽度。对采集四个偏振角度的设计方案,为有效利用探测器的像元且使得经相邻微透镜后产生的子图像间不产生混叠,采用如图1所示的设计方案,实际只提取微透镜中心部分覆盖的四个像元,如图3所示。In the present invention, the F number of each microlens of the microlens array is equal to the effective F number of the front optical imaging system, and the detector is placed at the focal plane of the microlens array. As shown in Figure 2, L is the distance from the equivalent pupil of the front optical system to the image of the target, and f is the focal length of the microlens. The coverage imaging range d of the microlens on the detector is the diameter of the circular microlens or the width of the square microlens. For the design scheme of collecting four polarization angles, in order to effectively use the pixels of the detector and prevent aliasing between the sub-images generated by adjacent microlenses, the design scheme shown in Figure 1 is adopted, and only the microlenses are actually extracted. The four pixels covered by the central part of the lens are shown in Figure 3.
本发明的成像光谱仪的一个实施方案如图1所示,其中本发明采用的阵列式偏振成像探测器,被置于微透镜阵列的焦平面处,阵列式偏振成像探测器为由多个不同方向的线偏振片按一定规律排列后与CCD探测器像元耦合组成,其排列方式如图1所示。在实际使用中,阵列式偏振成像探测器的型号、尺寸、偏振角度和排列方案等参数均可根据需要设定。微透镜阵列排布方案、微透镜形状、尺寸和焦距等也根据实际需要设置。An embodiment of the imaging spectrometer of the present invention is shown in Figure 1, wherein the array type polarization imaging detector that the present invention adopts is placed at the focal plane of the microlens array, and the array type polarization imaging detector is composed of a plurality of different directions The linear polarizers are arranged according to a certain rule and then coupled with the CCD detector pixel. The arrangement is shown in Figure 1. In actual use, parameters such as the type, size, polarization angle and arrangement scheme of the array polarization imaging detector can be set according to needs. The arrangement scheme of the microlens array, the shape, size and focal length of the microlens are also set according to actual needs.
本发明实施例中,微透镜阵列被置于目标经过前置光学成像系统成像的像面上,微透镜阵列中的一个微透镜对应于目标经前置光学成像系统所成像的一个像素点,因此成像光谱仪的空间分辨率由微透镜阵列中的微透镜数目决定,而微透镜数目由探测器大小和微透镜大小决定:In the embodiment of the present invention, the microlens array is placed on the image plane where the target is imaged by the front optical imaging system, and one microlens in the microlens array corresponds to a pixel of the target imaged by the front optical imaging system, so The spatial resolution of an imaging spectrometer is determined by the number of microlenses in the microlens array, which is determined by the size of the detector and the size of the microlenses:
其中,Wx和Wy为探测器的长和宽,d为微透镜的尺寸,若微透镜为圆形,则d为微透镜的直径,若微透镜为方形,则d为方形微透镜的宽度。最终通过偏振成像仪获得的二维目标分辨率为(Nx,Ny)。Among them, W x and W y are the length and width of the detector, d is the size of the microlens, if the microlens is circular, then d is the diameter of the microlens, if the microlens is square, then d is the diameter of the square microlens width. Finally, the resolution of the two-dimensional target obtained by the polarization imager is (N x , N y ).
如图4所示,本发明提供的快照式高通量的光谱成像方法是:As shown in Figure 4, the snapshot high-throughput spectral imaging method provided by the present invention is:
步骤1,在前置光学成像系统的成像面放置微透镜阵列,形成光场成像机构。微透镜阵列中的微透镜的F数与前置光学成像系统的等效F数相等。Step 1, placing a microlens array on the imaging surface of the front optical imaging system to form a light field imaging mechanism. The F number of the microlenses in the microlens array is equal to the equivalent F number of the front optical imaging system.
步骤2,在微透镜阵列的焦平面上放置阵列式偏振成像探测器。阵列式偏振成像探测器由CCD探测器阵列和线偏振片阵列耦合而成,每个线偏振片对应一个CCD探测器像元。Step 2, placing an array polarization imaging detector on the focal plane of the microlens array. The array polarized imaging detector is formed by coupling a CCD detector array and a linear polarizer array, and each linear polarizer corresponds to a CCD detector pixel.
步骤3,目标发射或反射的不同方向光经过主镜后,成像于微透镜阵列上的某个微透镜上,该微透镜将接收到的目标不同方向的光,分散到阵列式偏振成像探测器的像元上形成具有不同偏振角度的子图像,最终获得的多幅大小为(Nx,Ny)且偏振角度不同的目标图像。其中,Step 3, the light emitted or reflected by the target in different directions passes through the main mirror and is imaged on a microlens on the microlens array, and the microlens disperses the received light of the target in different directions to the array polarization imaging detector Sub-images with different polarization angles are formed on the pixels of the , and finally multiple target images with a size of (N x , N y ) and different polarization angles are obtained. in,
Wx和Wy为探测器的长和宽,d为微透镜的尺寸。W x and W y are the length and width of the detector, and d is the size of the microlens.
用三维立方体数据来表示得到的偏振角度图像,表示为(Np,Nx,Ny),Np为一个微透镜覆盖的探测器像元所对应的偏振角度的数目,例如利用本发明图1所示的实施例,Np为4,可获得4个偏振角度的目标图像,每个目标图像的分辨率为(Nx,Ny)。Use three-dimensional cube data to represent the polarization angle image obtained, expressed as (N p , N x , N y ), N p is the number of polarization angles corresponding to the detector pixel covered by a microlens, for example, using the figure of the present invention In the embodiment shown in 1, N p is 4, target images of 4 polarization angles can be obtained, and the resolution of each target image is (N x , N y ).
本发明采用每个微透镜至少覆盖M×M个像元,2M为系统探测的目标不同偏振角数目,以图1中4个偏振角度为例,微透镜至少覆盖2×2个像元,如图3所示。为避免由于机械安装等误差引起的相邻微透镜成像的混叠,本发明设置每个微透镜至少覆盖(M+2)×(M+2)个像元,以4个偏振角度为例,微透镜至少覆盖4×4个像元。The present invention adopts each microlens to cover at least M×M picture elements, and 2M is the number of different polarization angles of the target detected by the system. Taking the 4 polarization angles in Fig. 1 as an example, the microlens covers at least 2×2 picture elements, such as Figure 3 shows. In order to avoid the aliasing of adjacent microlens images caused by errors such as mechanical installation, the present invention sets that each microlens covers at least (M+2)×(M+2) pixels, taking 4 polarization angles as an example, Microlenses cover at least 4×4 pixels.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310430169.6A CN103472592B (en) | 2013-09-18 | 2013-09-18 | A snapshot high-throughput polarization imaging method and polarization imager |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310430169.6A CN103472592B (en) | 2013-09-18 | 2013-09-18 | A snapshot high-throughput polarization imaging method and polarization imager |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103472592A true CN103472592A (en) | 2013-12-25 |
CN103472592B CN103472592B (en) | 2015-11-04 |
Family
ID=49797499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310430169.6A Active CN103472592B (en) | 2013-09-18 | 2013-09-18 | A snapshot high-throughput polarization imaging method and polarization imager |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103472592B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104834105A (en) * | 2015-04-03 | 2015-08-12 | 北京空间机电研究所 | Imaging system using array lens to realize polarization detection |
CN105049690A (en) * | 2015-07-06 | 2015-11-11 | 中国科学院遥感与数字地球研究所 | Portable polarization digital camera and imaging method |
CN105445952A (en) * | 2015-12-05 | 2016-03-30 | 西北工业大学 | High photosensitive real time polarization imaging minimal deviation array and imaging device thereof |
CN107014490A (en) * | 2017-04-17 | 2017-08-04 | 大连理工大学 | One kind point focal plane type real-time polarization imaging system |
CN107589551A (en) * | 2017-07-24 | 2018-01-16 | 西安电子科技大学 | A kind of multiple aperture polarization imaging device and system |
CN108206902A (en) * | 2016-12-16 | 2018-06-26 | 深圳超多维光电子有限公司 | A kind of light-field camera |
CN108206901A (en) * | 2016-12-16 | 2018-06-26 | 深圳超多维光电子有限公司 | A kind of light-field camera |
CN108267226A (en) * | 2018-02-09 | 2018-07-10 | 中国科学院长春光学精密机械与物理研究所 | A kind of polarization imaging detection system simultaneously |
CN109405972A (en) * | 2018-11-29 | 2019-03-01 | 天津津航技术物理研究所 | A kind of EO-1 hyperion polarized imaging system |
CN111351790A (en) * | 2020-04-24 | 2020-06-30 | 上海御微半导体技术有限公司 | Defect detection device |
CN111537072A (en) * | 2020-04-22 | 2020-08-14 | 中国人民解放军国防科技大学 | A polarization information measurement system and method of an array polarization camera |
CN111856770A (en) * | 2019-04-26 | 2020-10-30 | 曹毓 | Polarization imaging equipment |
CN112924028A (en) * | 2021-01-25 | 2021-06-08 | 长春理工大学 | Light field polarization imaging detection system for sea surface oil spill |
CN113252168A (en) * | 2021-04-28 | 2021-08-13 | 南京航空航天大学 | Polarization spectrum imaging system based on four-phase modulation |
CN113473033A (en) * | 2021-07-02 | 2021-10-01 | 广州爱闪思光电科技有限公司 | High dynamic imaging device |
US20210333150A1 (en) * | 2020-04-24 | 2021-10-28 | Facebook Technologies, Llc | Polarimetric imaging camera |
CN113706398A (en) * | 2020-05-22 | 2021-11-26 | 西北工业大学 | Device and method for generating high dynamic image in motion scene |
CN115597710A (en) * | 2022-10-08 | 2023-01-13 | 长春理工大学(Cn) | Microlens array module integrated field of view polarization imaging spectrometer system and imaging method |
US11756978B2 (en) | 2021-02-24 | 2023-09-12 | Meta Platforms Technologies, Llc | Multi-spectral image sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11271684A (en) * | 1998-03-25 | 1999-10-08 | Mitsubishi Electric Corp | Image display device |
CN101806959A (en) * | 2009-11-12 | 2010-08-18 | 北京理工大学 | Real-time small polarization imaging device |
JP2012018006A (en) * | 2010-07-06 | 2012-01-26 | Nikon Corp | Optical detector |
CN102680101A (en) * | 2012-05-18 | 2012-09-19 | 南京理工大学 | High-light-spectrum full-polarization detection device for interference light field imaging |
US20120268745A1 (en) * | 2011-04-20 | 2012-10-25 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Ultra-compact snapshot imaging fourier transform spectrometer |
CN102944937A (en) * | 2012-11-27 | 2013-02-27 | 北京理工大学 | Sub-aperture polarization imaging system |
-
2013
- 2013-09-18 CN CN201310430169.6A patent/CN103472592B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11271684A (en) * | 1998-03-25 | 1999-10-08 | Mitsubishi Electric Corp | Image display device |
CN101806959A (en) * | 2009-11-12 | 2010-08-18 | 北京理工大学 | Real-time small polarization imaging device |
JP2012018006A (en) * | 2010-07-06 | 2012-01-26 | Nikon Corp | Optical detector |
US20120268745A1 (en) * | 2011-04-20 | 2012-10-25 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Ultra-compact snapshot imaging fourier transform spectrometer |
CN102680101A (en) * | 2012-05-18 | 2012-09-19 | 南京理工大学 | High-light-spectrum full-polarization detection device for interference light field imaging |
CN102944937A (en) * | 2012-11-27 | 2013-02-27 | 北京理工大学 | Sub-aperture polarization imaging system |
Non-Patent Citations (1)
Title |
---|
J.SCOTT TYO: ""Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error"", 《OPTICS LETTERS》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104834105B (en) * | 2015-04-03 | 2017-04-05 | 北京空间机电研究所 | A kind of utilization array lenses realize the imaging system of Polarization Detection |
CN104834105A (en) * | 2015-04-03 | 2015-08-12 | 北京空间机电研究所 | Imaging system using array lens to realize polarization detection |
CN105049690A (en) * | 2015-07-06 | 2015-11-11 | 中国科学院遥感与数字地球研究所 | Portable polarization digital camera and imaging method |
WO2017004898A1 (en) * | 2015-07-06 | 2017-01-12 | 中国科学院遥感与数字地球研究所 | Portable polarized digital camera and imaging method therefor |
CN105049690B (en) * | 2015-07-06 | 2017-06-09 | 中国科学院遥感与数字地球研究所 | Portable polarization digital camera and its imaging method |
CN105445952A (en) * | 2015-12-05 | 2016-03-30 | 西北工业大学 | High photosensitive real time polarization imaging minimal deviation array and imaging device thereof |
CN105445952B (en) * | 2015-12-05 | 2017-11-03 | 西北工业大学 | The micro- inclined array and its imaging device of high photosensitive real-time polarization imaging |
CN108206901B (en) * | 2016-12-16 | 2020-09-22 | 深圳超多维科技有限公司 | Light field camera |
CN108206902A (en) * | 2016-12-16 | 2018-06-26 | 深圳超多维光电子有限公司 | A kind of light-field camera |
CN108206901A (en) * | 2016-12-16 | 2018-06-26 | 深圳超多维光电子有限公司 | A kind of light-field camera |
CN108206902B (en) * | 2016-12-16 | 2020-09-22 | 深圳超多维科技有限公司 | Light field camera |
CN107014490A (en) * | 2017-04-17 | 2017-08-04 | 大连理工大学 | One kind point focal plane type real-time polarization imaging system |
CN107589551A (en) * | 2017-07-24 | 2018-01-16 | 西安电子科技大学 | A kind of multiple aperture polarization imaging device and system |
CN107589551B (en) * | 2017-07-24 | 2019-07-16 | 西安电子科技大学 | A multi-aperture polarization imaging device and system |
CN108267226A (en) * | 2018-02-09 | 2018-07-10 | 中国科学院长春光学精密机械与物理研究所 | A kind of polarization imaging detection system simultaneously |
CN109405972A (en) * | 2018-11-29 | 2019-03-01 | 天津津航技术物理研究所 | A kind of EO-1 hyperion polarized imaging system |
CN111856770B (en) * | 2019-04-26 | 2022-07-19 | 曹毓 | Polarization imaging device |
CN111856770A (en) * | 2019-04-26 | 2020-10-30 | 曹毓 | Polarization imaging equipment |
CN111537072A (en) * | 2020-04-22 | 2020-08-14 | 中国人民解放军国防科技大学 | A polarization information measurement system and method of an array polarization camera |
CN111537072B (en) * | 2020-04-22 | 2022-11-11 | 中国人民解放军国防科技大学 | Polarization information measuring system and method of array type polarization camera |
US20210333150A1 (en) * | 2020-04-24 | 2021-10-28 | Facebook Technologies, Llc | Polarimetric imaging camera |
CN111351790B (en) * | 2020-04-24 | 2021-09-14 | 上海御微半导体技术有限公司 | Defect detection device |
CN111351790A (en) * | 2020-04-24 | 2020-06-30 | 上海御微半导体技术有限公司 | Defect detection device |
US11781913B2 (en) * | 2020-04-24 | 2023-10-10 | Meta Platforms Technologies, Llc | Polarimetric imaging camera |
CN113706398A (en) * | 2020-05-22 | 2021-11-26 | 西北工业大学 | Device and method for generating high dynamic image in motion scene |
CN112924028A (en) * | 2021-01-25 | 2021-06-08 | 长春理工大学 | Light field polarization imaging detection system for sea surface oil spill |
CN112924028B (en) * | 2021-01-25 | 2023-11-07 | 长春理工大学 | A light field polarization imaging detection system for oil spills on the sea surface |
US11756978B2 (en) | 2021-02-24 | 2023-09-12 | Meta Platforms Technologies, Llc | Multi-spectral image sensor |
CN113252168A (en) * | 2021-04-28 | 2021-08-13 | 南京航空航天大学 | Polarization spectrum imaging system based on four-phase modulation |
CN113473033A (en) * | 2021-07-02 | 2021-10-01 | 广州爱闪思光电科技有限公司 | High dynamic imaging device |
CN115597710A (en) * | 2022-10-08 | 2023-01-13 | 长春理工大学(Cn) | Microlens array module integrated field of view polarization imaging spectrometer system and imaging method |
CN115597710B (en) * | 2022-10-08 | 2024-03-08 | 长春理工大学 | Microlens array module integration view field polarization imaging spectrometer system and imaging method |
Also Published As
Publication number | Publication date |
---|---|
CN103472592B (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103472592B (en) | A snapshot high-throughput polarization imaging method and polarization imager | |
CN102944305B (en) | Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput | |
US9681057B2 (en) | Exposure timing manipulation in a multi-lens camera | |
CN103323113B (en) | Multispectral imager based on light fieldd imaging technique | |
US9048153B2 (en) | Three-dimensional image sensor | |
EP3129813B1 (en) | Low-power image change detector | |
CN103234527B (en) | Multispectral light-field camera | |
CN106872037B (en) | Fast illuminated compact optical field imaging full-polarization spectrum detection device and method | |
US11781913B2 (en) | Polarimetric imaging camera | |
US10783652B2 (en) | Plenoptic imaging apparatus, method, and applications | |
CN110505379B (en) | A high-resolution light field imaging method | |
CN102099916A (en) | Light field image sensor, method and applications | |
CN101960861A (en) | Sensor with multi-perspective image capture | |
EP2730900A2 (en) | Mixed material multispectral staring array sensor | |
CN107589551B (en) | A multi-aperture polarization imaging device and system | |
CN109104582B (en) | Real-time super-resolution polarization infrared photoelectric imaging method | |
WO2019179462A1 (en) | Microlens array imaging system | |
CN1702452B (en) | Digital micromirror multi-target imaging spectrometer device | |
CN107014490A (en) | One kind point focal plane type real-time polarization imaging system | |
CN203163728U (en) | Multi-spectral light field camera | |
CN111201783A (en) | Imaging apparatus and method and image processing apparatus and method | |
JP4532968B2 (en) | Focus detection device | |
CN114967165A (en) | Wavefront sensing system and wavefront information decoding method using dual-channel polarization coding | |
CN106949967A (en) | The fast compact channel modulation type optical field imaging full-polarization spectrum detection device of illuminated and method | |
WO2017120640A1 (en) | Image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |