CN103459995A - 光学波长分光装置及其制造方法 - Google Patents

光学波长分光装置及其制造方法 Download PDF

Info

Publication number
CN103459995A
CN103459995A CN2012800013000A CN201280001300A CN103459995A CN 103459995 A CN103459995 A CN 103459995A CN 2012800013000 A CN2012800013000 A CN 2012800013000A CN 201280001300 A CN201280001300 A CN 201280001300A CN 103459995 A CN103459995 A CN 103459995A
Authority
CN
China
Prior art keywords
substrate
dividing device
optical wavelength
grating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800013000A
Other languages
English (en)
Other versions
CN103459995B (zh
Inventor
柯正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103459995A publication Critical patent/CN103459995A/zh
Application granted granted Critical
Publication of CN103459995B publication Critical patent/CN103459995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29308Diffractive element having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2024Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure of the already developed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/203Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure comprising an imagewise exposure to electromagnetic radiation or corpuscular radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种光学波长分光装置(10)包括一第一基板(11);一输入单元(12),形成于该第一基板(11)上,并具有一狭缝(121)以接收一光学讯号;一光栅(13),形成于该第一基板(11)上,用于从该光学讯号产生一第一光束用于输出;以及一第二基板(15),覆盖在该输入单元(12)和该光栅(13)的顶部上。其中,该输入单元(12)以及该光栅(13)系利用高能量光源曝光从一光阻层形成。

Description

光学波长分光装置及其制造方法
相关申请案参照
本申请案为一美国正式申请案,根据35U.S.C.§119请求美国临时案之优先权,临时案申请号为61/557,387,申请日为11/08/2011。
著作权公告
此专利文件中的部份揭露内容受著作权保护。著作权所有人同意任何人对此专利揭露内容进行复制,但前提是复制的揭露内容必须和美国专利局(United States Patent and Trademark Office)档案或记录中的揭露内容相符,著作权所有人对于除上述状况之外的其余任何状况均保留全部著作权权利。
技术领域
本发明系关于一种波长分光装置,尤指一种可缩小体积与降低成本的光学波长分光装置及其制造方法。
背景技术
光通讯是一种利用光作为传输媒介的任何通信,而光通讯系统包含有一用以将讯息编码成光讯号的发射器、一用来传输讯号的信道以及用来将接受到的光讯号再生成原讯息的接收器。该接收器包含一用以接收该光学讯号的输入狭缝以及一使不同方向之该光学讯号散射与绕射后输出的光栅。在其他的光学应用之中,如光谱仪或光学分析仪等等,光栅在这些应用中都扮演着相当重要的角色。
由于硅的微加工具有各式各样的衍生性,故最适合被当作先进技术来制造微电子机械学系统(MEMS)的装置。然,很多微系统的应用中,都会有着材料基础、几何学、宽深比、尺寸、形状、微结构精确度问题,以及许多无法透过主流硅微加工科技来满足的需求。LIGA(Lithography,Electroplating,and Molding),乃一种结合微影、电镀以及制模的微制造程序,可令微结构于制造时具有高精确度,并令微结构的高度可达到数百甚至数千微米的厚度。由于光栅结构具有小间距的原因,故LIGA(Lithography,Electroplating,andMolding)的脱模过程良率是不足以满足制造垂直光栅的要求。
美国专利US7034935号揭示一种具有侦测数组的高性能微小光谱仪,可光学耦合一厚光波导结构,于厚光波导结构之输出面外部则有一聚焦平面。该侦测数组系安装于该厚光波导结构上,并与该聚焦平面间有着固定的距离。由于光谱仪是由很多组件所组合而成,因此很明显的,美国专利US7034935号中的光谱仪会因为体积的关系而难以堪称实用。
美国专利US7485869号揭示一种用于真空紫外光范围的光谱工具。由于该光谱工具是由很多组件所组合而成,因此很明显的,美国专利US7485869号中的光谱工具会因为体积的关系而难以堪称实用。
美国专利US2010053611号揭示一种具有高密度沟槽的绕射光栅结构,包含一具有连续不断凹陷特征的梯形基板,以及配置于该基板上的多层堆栈材料。该绕射光栅虽然是透过半导体制程来成形,但其并非属于Soc(系统单晶片)的结构。
因此,能提供一种体积相对较小的光处理装置,实为一刻不容缓的议题。
发明内容
本发明之一目的在于提供一种光学波长分光装置,以达到缩小体积以及降低制造成本之功效。
本发明之另一目的在于提供一种光学波长分光装置,以利用高能量光源曝光技术来达到SoC(系统单芯片)之制造功效。
为达上述目的,本发明之实现技术如下:
一种光学波长分光装置,包含:一第一基板;一输入单元,系形成于该第一基板上,并具有一狭缝,以接收一光学讯号;一光栅,系形成于该第一基板上,用于从该光学讯号产生一第一光束用于输出;以及一第二基板,系覆盖于该输入单元与该光栅的顶部上;其中,该输入单元以及该光栅系利用高能量光源曝光从一光阻层形成,且该高能量光源的波长范围介于系0.01奈米至100奈米之间。
于上述的光学波长分光装置中,其中,该高能量光源系为X光、软X光或超紫外光中之任一者。
于上述的光学波长分光装置中,其中,该狭缝的宽度介于5微米至500微米之间。
于上述的光学波长分光装置中,其中,该光栅具有凹面、凸面或平面的轮廓(Profile),且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述的组合态样。
于上述的光学波长分光装置中,其中,该第一基板与该第二基板系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。
于上述的光学波长分光装置中,更包含一光学反射单元,系形成于该第一基板上,用以反射来自于该光栅的该第一光束。
于上述的光学波长分光装置中,其中,该光学反射单元利用该高能量光源对该光阻层进行曝光所形成。
本发明之另一实施例,即在提供一种光学波长分光装置之制造方法,该方法包含下列步骤:(a)提供一第一基板;(b)于该第一基板上形成一光阻层;(c)利用一高能量光源透过一高能量光源光罩对该光阻层进行曝光,且该高能量光源之波长范围介于系0.01奈米至100奈米之间;(d)对该光阻层显影(Development),以形成一具有一狭缝之输入单元与一光栅;(e)于该第一基板、该输入单元与该光栅表面镀上一反射层;以及(f)将一第二基板覆盖于该输入单元与该光栅上。
于上述的光学波长分光装置之制造方法中,其中,该高能量光源系为X光、软X光或超紫外光中之任一者。
于上述的光学波长分光装置中,其中,该狭缝的宽度介于5微米至500微米之间。
于上述的光学波长分光装置之制造方法中,其中,该光栅具有凹面、凸面或平面的整体轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述的组合态样。
于上述的光学波长分光装置之制造方法中,其中,该第一基板与该第二基板系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。
于上述的光学波长分光装置之制造方法中,其中,该光阻层的厚度介于10微米至1000微米之间。
于上述的光学波长分光装置之制造方法中,其中,该高能量光源光罩包含一第三基板、一形成于该第三基板上之金属层、复数形成于该金属层上方之金属图样以及一形成于该第三基板底面之硅层。
于上述的光学波长分光装置之制造方法中,其中,该高能量光源光罩之该第三基板材质为氮化硅(Si3N4)或碳化硅(SiC),且该第三基板之厚度介于1微米至5微米之间。
于上述的光学波长分光装置之制造方法中,其中,该金属层系为一厚度介于10奈米至200奈米之间的钛层,且该复数金属图样均为一厚度介于1微米至10微米之间的金图样。
于上述的光学波长分光装置之制造方法中,在步骤(c)之后,更包含将该高能量光源光罩与该第一基板旋转一倾斜角度,以透过二次曝光来形成一光学反射单元的步骤。
于上述的光学波长分光装置之制造方法中,在步骤(c)之后,更包含透过一相对于该第一基板具有一倾斜角度之光罩体进行第二次曝光来形成一光学反射单元的步骤。
于上述的光学波长分光装置之制造方法中,更包含于100℃至200℃的温度下,对该输入单元、该光栅以及该光学反射单元进行硬烤的步骤。
于上述的光学波长分光装置之制造方法中,更包含于该第一基板、该输入单元、该光栅以及该光学反射单元表面镀上一高反射镀层的步骤。
为使本发明之光学波长分光装置及其制造方法与上述其他目的、特征及功效能更明显易懂,兹藉由下述具体之实施例,并配合所附之图式,对本发明一详细说明如下。
附图说明
图1(a)与图1(b)为本发明光学波长分光装置之示意图。
图2(a)与图2(b)分别为本发明光栅之俯视图与侧面剖视图。
图3至图9为本发明光学波长分光装置之制造过程示意图。
具体实施方式
对光学通讯装置来说,一些基本的组件,如光栅等,是可以透过半导体制程来制造出来,但某些则无法。因此,如何能将光学通讯装置的所有组件都利用半导体制程而制造出来,实为一有意义的议题。
图1(a)为本发明光学波长分光装置之示意图,如图所示:本发明之光学波长分光装置10主要由一第一基板11、一具有一狭缝121之输入单元12、一光栅13、一输出单元(图未示)以及一第二基板(图未示)所组成。该输入单元12形成于该第一基板11上,并可经由该狭缝121接收一光学讯号,且该狭缝121的宽度介于5微米(μm)至500微米之间。该光栅13形成于该第一基板11上,用于从该光学讯号产生一第一光束(散焦聚焦光束)用于输出,并将其射入该输出单元(图未示)。该光栅具有凹面、凸面或平面的轮廓,且其表面呈现连续薄片态样、锯齿态样、火焰态样、正弦曲线态样或上述的组合态样。一般来说,不同波长的光学讯号就会于该输出单元的不同方向聚集。该光栅13系用来增加特定绕射层级的绕射效率,最适当的光学讯号波长大约介于200奈米(nm)至2000奈米之间。该输出单元(图未示)系用以输出来自该光栅13的该第一光束(散焦聚焦光束)。外部传感器(图未示)则接收来自于该输出单元的该第一光束,以进行后续处理。该第二基板(图未示)系覆盖于该输入单元12以及该光栅13上,因此,该第一基板11与该第二基板(图未示)之间的空间即可视为一光学波导管,用以接收与传送光学讯号。
此外,该输入单元12与该光栅13系经由一高能量光源对一光阻层曝光而形成的。该高能量光源系为X光、软X光或超紫外光中之任一者。X光的波长为0.01奈米至1奈米;软X光的波长为0.1奈米至10奈米;超紫外光的波长则为10奈米至120奈米。该第一基板11与该第二基板(图未示)系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。再者,于光学电信以区域光学通讯领域中,会因为表面粗糙度限制的关系,故该高能量光源的波长介于0.1奈米至1奈米会比1奈米至100奈米来的恰当。
图1(b)亦为本发明光学波长分光装置之示意图,如图所示:该光学波长分光装置10更包含有一形成于该第一基板11上之光学反射单元14,用以反射来自该光栅13的该第一光束。如此一来,外部传感器(图未示)就能根据使用者的需求而放置于该光学波长分光装置10的任何方向与位置(尤指上方或下方),且该光学反射单元14亦经由该高能量光源对该光阻层曝光而形成的。
图2(a)与图2(b)分别为本发明光栅13之俯视图与侧面剖视图,如图所示:于经过高能量光源曝光之后,光栅13表面各邻接波峰之间的间距大约为3微米,且其表面粗糙度大约为5奈米至10奈米。因此,该光栅13即可适用于光学电信及光学通讯领域之中。
图3至图9为本发明光学波长分光装置之制造过程示意图,如图所示:为制造光学波长分光装置,首先,会提供一第一基板11,并于该第一基板11上形成一厚度为10微米至1000微米的光阻层111。该光学波长分光装置中的所有组件都将透过该光阻层111才形成。该光阻层111的材质为SU-8或PMMA(聚甲基丙烯酸甲酯)。随后,该光阻层111就会被一高能量光源30(如X光、软X光或超紫外光等)透过一高能量光源光罩20进行曝光。该高能量光源光罩20包含一第三基板201,其材质为氮化硅(Si3N4)或碳化硅(SiC),且其厚度介于1微米至5微米之间。该高能量光源光罩20更包含一形成于该第三基板201上且厚度介于10奈米至200奈米之钛层204(金属层)、一形成于该钛层204上之复数金图样203(金属图样)以及一形成于该第三基板201底面之硅层202。部份的高能量光源30将被厚度介于1微米至10微米的复数金图样203遮蔽,且该高能量光源光罩20上之该金图样203会藉由该高能量光源的曝光后,转移到该光阻层111上。
举例来说,经过该高能量光源曝光之后,光阻层111上经过该高能量光源曝光的区域就会进行显影。经过显影之后,光阻层111上经过曝光的区域就会形成具有狭缝121的输入单元12(示于图1(a))以及光栅13。甚者,在显影之前,可将该高能量光源光罩20与该第一基板11一同旋转一倾斜角度(例如45度),以透过第二次曝光来形成光学反射单元14;亦或是透过一相对于该第一基板具有一倾斜角度之光罩体(图未示)进行第二次曝光来形成该光学反射单元。此外,为增加输入单元12、该光栅13以及该光学反射单元14的结构强度,可于100℃至200℃的温度下,对该输入单元12、该光栅13以及该光学反射单元14进行硬烤。
由于该输入单元12、该光栅13以及该光反射单元14均为利用高能量光源于该光阻层111曝光形成,也就是形成于该第一基板11上,故可达到SoC的目的。
为加强该第一基板11、该输入单元12、该光栅13以及该光学反射单元14的反射率,故可增加于该第一基板11、该输入单元12、该光栅13以及该光学反射单元14表面镀上一高反射率镀层(金或铝)112的步骤。最后,再将一表面镀有该高反射率镀层(金或铝)112的第二基板15覆盖于该输入单元12与该光栅13上。因此,于图9中,该第一基板11与该第二基板15之间的空间就可视为一光学波导管,用于该输入单元12与传感器(图未示)之间接收/传送光学讯号。
另,复数第一连接单元(图未示)系形成为该第一基板11上,以作为与该第二基板15结合的桥梁。透过复数第一连接单元(图未示)的结合,该光学波长分光装置的结构稳固性就会因此而增强。
在详细说明上述本发明的各项较佳实施例之后,熟悉该项技术人士可清楚的了解,在不脱离下述申请专利范围与精神下可进行各种变化与改变,如限位单元的各种实施态样等等,亦不受限于说明书之实施例的实施方式。

Claims (20)

1.一种光学波长分光装置,包含:
一第一基板;
一输入单元,系形成于该第一基板上,并具有一狭缝,以接收一光学讯号;
一光栅,系形成于该第一基板上,可根据该光学讯号产生输出之一第一光束;以及
一第二基板,系覆盖于该输入单元与该光栅上;
其中,该输入单元以及该光栅系利用一高能量光源对一光阻层进行曝光所形成,且该高能量光源的波长范围介于系0.01奈米至100奈米之间。
2.如申请专利范围第1项所述之光学波长分光装置,其中,该高能量光源系为X光、软X光或超紫外光中之任一者。
3.如申请专利范围第1项所述之光学波长分光装置,其中,该狭缝的宽度介于5微米至500微米之间。
4.如申请专利范围第1项所述之光学波长分光装置,其中,该光栅具有凹面、凸面或平面的整体轮廓,且其光栅间距(Grating Pitch)表面形状呈现高低二阶式形态(Laminar Type)、锯齿形态(Sawtooth Type)、闪耀角形态(Blaze Type)、正弦曲线形态(Sinusoidal Type)或上述之形态组合。
5.如申请专利范围第1项所述之光学波长分光装置,其中,该第一基板与该第二基板系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。
6.如申请专利范围第1项所述之光学波长分光装置,更包含一光学反射单元,系形成于该第一基板上,用以反射来自于该光栅的该第一光束。
7.如申请专利范围第6项所述之光学波长分光装置,其中,该光学反射单元利用该高能量光源对该光阻层进行曝光所形成。
8.一种光学波长分光装置之制造方法,该方法包含下列步骤:
(a)提供一第一基板;
(b)于该第一基板上形成一光阻层;
(c)利用一高能量光源透过一高能量光源光罩对该光阻层进行曝光,且该高能量光源之波长范围介于系0.01奈米至100奈米之间;
(d)对该光阻层显影,以形成一具有一狭缝之输入单元与一光栅;
(e)于该第一基板、该输入单元与该光栅表面镀上一反射层;以及
(f)将一第二基板覆盖于该输入单元与该光栅上。
9.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该高能量光源系为X光、软X光或超紫外光中之任一者。
10.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该狭缝的宽度介于5微米至500微米之间。
11.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该光栅具有凹面、凸面或平面的整体轮廓,且其光栅间距(Grating Pitch)表面形状呈现高低二阶式形态(Laminar Type)、锯齿形态(Sawtooth Type)、闪耀角形态(Blaze Type)、正弦曲线形态(Sinusoidal Type)或上述之形态组合。
12.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该第一基板与该第二基板系为半导体基板、玻璃基板、金属基板或塑料基板中之任一者。
13.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该光阻层的厚度介于10微米至1000微米之间。
14.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,该高能量光源光罩包含一第三基板、一形成于该第三基板上之金属层、形成于该金属层上方之金属光罩图样层以及一形成于该第三基板底面之硅层。
15.如申请专利范围第14项所述之光学波长分光装置之制造方法,其中,该高能量光源光罩之该第三基板材质为氮化硅(Si3N4)或碳化硅(SiC),且该第三基板之厚度介于1微米至5微米之间。
16.如申请专利范围第14项所述之光学波长分光装置之制造方法,其中,该金属层系为一厚度介于10奈米至200奈米之间的钛层,且该金属光罩图样层为一厚度介于1微米至10微米之间的金光罩图样层。
17.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,在步骤(c)之后,更包含将该高能量光源光罩与该第一基板旋转一倾斜角度,以透过第二次曝光来形成一光学反射单元的步骤。
18.如申请专利范围第8项所述之光学波长分光装置之制造方法,其中,在步骤(c)之后,更包含透过一相对于该第一基板具有一倾斜角度之光罩体进行第二次曝光来形成一光学反射单元的步骤。
19.如申请专利范围第17项所述之光学波长分光装置之制造方法,更包含于100℃至200℃的温度下,对该输入单元、该光栅以及该光学反射单元进行硬烤的步骤。
20.如申请专利范围第17项所述之光学波长分光装置之制造方法,更包含于该第一基板、该输入单元、该光栅以及该光学反射单元表面镀上一高反射率镀层的步骤。
CN201280001300.0A 2011-11-08 2012-09-07 光学波长分光装置及其制造方法 Active CN103459995B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161557387P 2011-11-08 2011-11-08
US61/557,387 2011-11-08
US13/556,154 2012-07-23
US13/556,154 US9157798B2 (en) 2011-11-08 2012-07-23 Optical wavelength dispersion device and method of manufacturing the same
PCT/CN2012/081110 WO2013067846A1 (en) 2011-11-08 2012-09-07 Optical wavelength dispersion device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
CN103459995A true CN103459995A (zh) 2013-12-18
CN103459995B CN103459995B (zh) 2016-05-18

Family

ID=48223760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280001300.0A Active CN103459995B (zh) 2011-11-08 2012-09-07 光学波长分光装置及其制造方法

Country Status (4)

Country Link
US (2) US9157798B2 (zh)
CN (1) CN103459995B (zh)
TW (1) TWI465861B (zh)
WO (1) WO2013067846A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104621A1 (zh) * 2017-11-30 2019-06-06 柯正浩 光学分波装置
WO2019104623A1 (zh) * 2017-11-30 2019-06-06 柯正浩 光学分波装置及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715050B2 (en) * 2011-11-25 2017-07-25 Cheng-Hao KO Optical wavelength dispersion device and method of manufacturing the same
TWI510774B (zh) * 2014-04-03 2015-12-01 Oto Photonics Inc 光譜儀、光譜儀的波導片的製造方法及其結構
CN106415222B (zh) 2014-04-03 2018-06-08 台湾超微光学股份有限公司 光谱仪、光谱仪的波导片的制造方法及其结构
TWI715599B (zh) 2016-07-12 2021-01-11 台灣超微光學股份有限公司 光譜儀模組及其製作方法
TWI644135B (zh) * 2017-11-30 2018-12-11 柯正浩 Optical demultiplexing device and method of manufacturing same
US10620445B2 (en) * 2017-11-30 2020-04-14 Cheng-Hao KO Optical wavelength dispersion device and manufacturing method therefor
US10613259B2 (en) * 2017-11-30 2020-04-07 Cheng-Hao KO Optical wavelength dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477883B2 (zh) * 1983-10-24 1992-12-09 Nippon Telegraph & Telephone
JP2003139611A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 分光光度計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611246A1 (de) * 1986-04-04 1987-10-15 Kernforschungsz Karlsruhe Verfahren zum herstellen eines passiven optischen bauelements mit einem oder mehreren echelette-gittern und nach diesem verfahren hergestelltes bauelement
DE4434814A1 (de) * 1994-09-29 1996-04-04 Microparts Gmbh Infrarotspektrometrischer Sensor für Gase
DE19528919A1 (de) * 1995-08-07 1997-02-20 Microparts Gmbh Mikrostrukturiertes Infrarot-Absorptionsphotometer
CN1236335C (zh) * 2003-09-22 2006-01-11 吉林大学 有机聚合物阵列波导光栅及其制作方法
WO2005103771A1 (en) * 2004-04-23 2005-11-03 Parriaux Olivier M High efficiency optical diffraction device
US7289208B2 (en) * 2004-08-30 2007-10-30 Ahura Corporation Low profile spectrometer and Raman analyzer utilizing the same
US20070030484A1 (en) * 2005-08-08 2007-02-08 Acton Research Corporation Spectrograph with segmented dispersion device
US7447403B2 (en) * 2005-10-19 2008-11-04 Mcgill University Integrated etched multilayer grating based wavelength demultiplexer
US7889991B2 (en) * 2007-02-12 2011-02-15 Jds Uniphase Corporation Planar lightwave circuit based tunable 3 port filter
JP4905193B2 (ja) * 2007-03-16 2012-03-28 コニカミノルタセンシング株式会社 凹面回折ミラー及びこれを用いた分光装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477883B2 (zh) * 1983-10-24 1992-12-09 Nippon Telegraph & Telephone
JP2003139611A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 分光光度計

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104621A1 (zh) * 2017-11-30 2019-06-06 柯正浩 光学分波装置
WO2019104623A1 (zh) * 2017-11-30 2019-06-06 柯正浩 光学分波装置及其制造方法
CN110383128A (zh) * 2017-11-30 2019-10-25 柯正浩 光学分波装置及其制造方法
CN110392853A (zh) * 2017-11-30 2019-10-29 柯正浩 光学分波装置

Also Published As

Publication number Publication date
CN103459995B (zh) 2016-05-18
WO2013067846A1 (en) 2013-05-16
US20150153648A1 (en) 2015-06-04
US9157799B2 (en) 2015-10-13
US9157798B2 (en) 2015-10-13
US20130114928A1 (en) 2013-05-09
TWI465861B (zh) 2014-12-21
TW201321903A (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
CN103459995A (zh) 光学波长分光装置及其制造方法
US11163175B2 (en) Device for forming a field intensity pattern in the near zone, from incident electromagnetic waves
US7881432B2 (en) X-ray focusing device
CN103782208A (zh) 光学波长分光装置及其制造方法
US7720335B2 (en) Hybrid planar lightwave circuit with reflective gratings
US20110188806A1 (en) Optical multiplexer/demultiplexer systems configured with non-periodic gratings
US11378733B2 (en) Integrated freeform optical couplers
US20090225424A1 (en) Micro-optical diffraction grid and process for producing the same
US11808947B2 (en) Optical wavelength dispersion device and manufacturing method therefor
US7820365B1 (en) Method to fabricate a tilted logpile photonic crystal
US20030007752A1 (en) Sensor head
Ogunsola et al. Chip-level waveguide-mirror-pillar optical interconnect structure
KR100433624B1 (ko) 초소형 프리즘 어레이 금형 제조방법
WO2019104623A1 (zh) 光学分波装置及其制造方法
TWI644135B (zh) Optical demultiplexing device and method of manufacturing same
Hruby et al. LIGA: metals, plastics, and ceramics
Jaax et al. Optical and THz Galois diffusers
JPH05206015A (ja) X線マスクおよびその製造方法
KR100441881B1 (ko) 광학용 초소형 구조물 어레이 금형의 제조방법
JP2008008969A (ja) 反射防止構造体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant