CN103459332B - 散气装置的运行方法 - Google Patents

散气装置的运行方法 Download PDF

Info

Publication number
CN103459332B
CN103459332B CN201180069939.8A CN201180069939A CN103459332B CN 103459332 B CN103459332 B CN 103459332B CN 201180069939 A CN201180069939 A CN 201180069939A CN 103459332 B CN103459332 B CN 103459332B
Authority
CN
China
Prior art keywords
gas
diffuser
scattered
air
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180069939.8A
Other languages
English (en)
Other versions
CN103459332A (zh
Inventor
川岸朋树
矢之根胜行
中原祯仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of CN103459332A publication Critical patent/CN103459332A/zh
Application granted granted Critical
Publication of CN103459332B publication Critical patent/CN103459332B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明涉及一种散气装置的运行方法,所述散气装置具有:散气部,所述散气部配置于活性污泥曝气槽内,喷出散气用气体;以及向所述散气部供给所述散气用气体的气体供给部,所述散气部构成为具有大致水平配置的1根以上的散气管,在所述散气管的铅垂上部形成有多个散气孔,在所述散气管下部形成有1个以上的污泥出入孔,以各散气管通过下述公式(I)算出的压力水头ΔH为所述散气管的内径d1的0.2~0.9倍的值的方式从所述气体供给部向所述散气部供给所述散气用气体,重复进行供给工序和停止工序,在所述供给工序中从所述气体供给部向所述散气部供给所述散气用气体,在所述停止工序中不向大气开放所述散气管内,并停止所述散气用气体的供给。

Description

散气装置的运行方法
技术领域
本发明涉及一种使用于活性污泥曝气槽中的散气的散气装置的运行方法。
背景技术
以往,将形成有多个散气孔的散气管配置于活性污泥曝气槽内,向槽内喷出空气等的散气用气体,从而对活性污泥进行处理。
在这样的活性污泥处理中,随着处理的继续,存在活性污泥在散气管内干燥固结,堆积于散气孔的周围,散气孔阻塞从而散气不稳定的情况。
作为解决这样的问题的方法,例如专利文献1中记载有这样的方法:向散气管供给清洗用液体,清洗散气管内,从而除去污泥。
专利文献2中记载有这样的散气管:在散气管的下部形成喷出口的同时,顶端向下方弯曲并开口。另外,在将鼓风机与该散气管连接的空气供给管上设有向大气压开放散气管内的压力的阀门。而且,随着鼓风机的停止空气的供给而停止散气,打开上述的阀门而向大气压开放散气管内的压力,从而使槽内的污泥从顶端的开口等逆流至散气管内。根据该方法,由于能够使在喷出口附近干燥而堆积的污泥湿润,所以接下来开始散气时,能够使湿润化的污泥流走。
专利文献3中记载有:设置向散气管的下方延长的延长管部,同时在该延长管部上设有开放部,从而将滞留于散气管内的污泥从开放部排出。另外,通过间歇性地对散气管供给水,从而在污泥干燥而肥大化前将污泥洗掉。
现有技术文献
专利文献
专利文献1:日本特开2004-305886号公报
专利文献2:日本特开2002-307091号公报
专利文献3:日本专利第3322206号公报
发明所要解决的课题
但是,记载于专利文献1的方法中,需要设置用于对散气管供给清洗用液体的清洗液体用管线,需要设备设置费用。
另外,记载于专利文献2的方法中,停止散气后,由于打开设于空气供给配管的阀门等而使散气管内的压力下降至大气压,所以槽内的污泥不仅流入散气管内,也大量地流入空气供给配管内。具体来说,空气供给配管内流入的污泥的高度相当于槽内的污泥的液面高度。如果大量的污泥这样地流入空气供给配管内,会产生下述问题:接下来开始散气时会对鼓风机施加较大的负荷,而且大量的污泥附着并干燥于空气供给配管内,将它们输送至散气管,阻塞散气孔。
另外,如专利文献3所记载的仅从位于散气管的下方的开放部将污泥排出的方法中,不容易将坚固地附着于散气孔周围的污泥剥离。因此,最终,需要并用间歇性地对散气管供给水的清洗法,需要用于供给水的设备设置费用。
发明内容
本发明是鉴于上述情况而做成的,提供一种不对鼓风机(气体供给部)施加过度的负荷,不另外设置设备,能够防止使散气孔阻塞的散气管中的污泥的干燥固结的散气装置的运行方法。
解决课题的手段
本发明人锐意研究的结果是发现:通过在散气管等的散气部的上部形成多个用于喷出散气用气体的散气孔,在下部形成用于活性污泥出入散气部内的污泥出入孔,反复向这样的散气部供给与停止散气用气体,从而能够解决上述课题。
解决上述课题的本发明具有下面的形态。
(1)作为一种散气装置的运行方法,所述散气装置具有:散气部,所述散气部配置于活性污泥曝气槽内,喷出散气用气体;以及向所述散气部供给所述散气用气体的气体供给部,所述散气部构成为具有大致水平配置的1根以上的散气管,在所述散气管的铅垂上部形成有多个散气孔,在所述散气管的下部形成有1个以上的污泥出入孔,以各散气管通过下述公式(I)算出的压力水头ΔH为所述散气管的内径d1的0.2~0.9倍的值的方式,从所述气体供给部向所述散气部供给所述散气用气体,重复进行供给工序和停止工序,在所述供给工序中从所述气体供给部向所述散气部供给所述散气用气体,在所述停止工序中不向大气开放所述散气管内,所述散气管内的压力被维持,并且停止所述散气用气体的供给。
公式(I):
Δ H = ρ ′ 2 g ( ρ - ρ ′ ) ( v C ) 2 ... ( I ) ,
其中,
ΔH:压力水头(m)
ρ:活性污泥的密度(kg/m3)
ρ′:散气用气体的密度(kg/m3)
v:来自各散气孔的散气用气体的喷出速度(m/sec)
C:下述公式(II)中所示的流出系数
g:重力加速度(m/s2)
公式(II):
C=0.597-0.011m+0.432m2···(II)
其中,m是下述公式(III)所示的开口比
公式(III):
m = ( A 0 A 1 ) = ( d 0 d 1 ) 2 ... ( I I I )
其中,
A0:各散气孔的面积(m2)
A1:散气管的截面积(铅垂于长度方向的面的内径基准的面积)(m2)
d0:各散气孔的直径(m)
d1:散气管的内径(m)
(2)记载于所述(1)的散气装置的运行方法,其特征在于,所述供给工序进行30分钟~12小时,所述停止工序进行15~600秒。
(3)记载于所述(2)的散气装置的运行方法,其特征在于,所述内径d1为10~100mm。
(4)记载于所述(1)至(3)中的任一项的散气装置的运行方法,其特征在于,所述散气孔的直径为1.5~30mm。
(5)一种散气装置,具有:散气部,所述散气部配置与活性污泥曝气槽内,喷出散气用气体;以及向所述散气部供给所述散气用气体的气体供给部,该散气装置的特征在于,
1)所述散气部构成为具有大致水平配置的1根以上的散气管,
2)所述气体供给部具有送气单元以及连结该送气单元与所述散气管的送气管,
3)在所述散气管的铅垂上部形成有多个散气孔,在所述散气管的下部形成有一个以上的污泥出入孔,
4)在所述送气管上,分支形成有用于将该送气管内的所述散气用气体放跑并排出至大气中的排气管,在停止供给所述散气用气体的工序中,所述送气单元与所述排气管连通,所述送气管的分支部分的下游侧的流路关闭,由此停止向所述散气管的所述散气用气体的供给,并且所述散气管不向大气开放,所述散气管内的压力被维持。
(6)记载于所述(5)的散气装置,在所述送气管的管内设有阀。
(7)记载于所述(6)的散气装置,其特征在于,所述阀是三通阀,所述三通阀与所述散气管、所述送气管以及排气管连接。
发明效果
根据本发明,不对鼓风机(气体供给部)施加过度的负荷,不另外设置设备,能够防止使散气孔阻塞的散气管中的污泥的干燥固结。
附图说明
图1是表示排水处理装置的一例的概略结构图。
图2A是沿着图1的排水处理装置所具有的散气管的长度方向的概略剖视图。
图2B是沿着与图1不同形态的排水处理装置所具有的散气管的长度方向的概略剖视图。
图3是表示散气部的其他形态的立体图。
图4A是表示散气部的其他形态的主视图。
图4B是表示散气部的其他形态的俯视图。
图5是表示排水处理装置的其他的一例的概略结构图。
符号说明
10排水处理装置
11活性污泥
12活性污泥曝气槽
13固液分离用膜组件
14吸引配管
15吸泵
16吸引单元
20散气装置
21散气管(散气部)
22气体供给部
23散气孔
24污泥出入孔
25鼓风机
26送气管
27排气管
28三通阀
29控制装置
30头管
31、32二通阀
具体实施方式
下面,参照附图对本发明的优选的实施方式详细地进行说明。
图1是概略地表示具有适宜本发明使用的散气装置的排水处理装置的一例的结构图。
该例的排水处理装置10具有:活性污泥曝气槽12,所述活性污泥曝气槽12被投入作为被处理水的活性污泥11;膜分离装置,所述膜分离装置浸泡于活性污泥曝气槽12内,具有固液分离用膜组件13;散气装置20,所述散气装置20用于向活性污泥曝气槽12内喷出散气用气体。固液分离用膜组件13在该例中构成为具有中空纤维膜等的分离膜。另外,固液分离用膜组件13构成为连接有由吸引配管14以及吸泵15等构成的吸引单元16,该固液分离用膜组件13能够进行抽滤。
散气装置20具有:一根大致水平配置于活性污泥曝气槽12内的底部附近的散气管(散气部)21,以及用于向该散气管21供给散气用气体的气体供给部22。散气管适合设置为其轴方向的坡度为1/50以内,优选是1/100以内。
该例的散气管21由铅垂于长度方向的截面(下面,称作铅垂截面。)是圆形的圆管构成,在其铅垂上部,沿着长度方向一排地形成有多个(图1的例子中为6个。)用于喷出散气用气体的圆形的散气孔23,另一方面,在周壁的下部,在该例中形成有1个用于活性污泥11出入散气管21内的圆形污泥出入孔24。具体来说,该例的散气孔23以及污泥出入孔24配置为各孔的中心位于与散气管21的轴线交叉的铅垂线(铅垂方向的垂线)与散气管21的周壁的交点。即,在该例中,散气孔23配置为各散气孔23的中心位于与散气管21的轴线交叉的铅垂上方的垂线与散气管21的周壁的交点。另外,污泥出入孔24配置为,污泥出入孔24的中心位于与散气管21的轴线交叉的铅垂下方的垂线与散气管21的周壁的交点。散气管21由例如聚碳酸酯、聚砜、聚乙烯、聚丙烯、丙烯酸树脂、ABS树脂、氯乙烯树脂等的合成树脂或者金属等构成。
另外这里的周壁的下部是指散气管21的位于轴线下侧的部分的周壁。如果污泥出入孔24的中心位于周壁的下部,则当作该污泥出入孔24形成于散气管21的下部。
污泥出入孔适合形成为,其中心位于在周壁上从由散气管21的轴线向铅垂下方引的线开始45°以内的范围,进一步优选为30°以内。
气体供给部22具有:作为送气单元的鼓风机25以及连接鼓风机25与散气管21的送气管26。该例中,送气管26,如图2A所示,连接于散气管21的一端21a,从鼓风机25将散气用气体供给至散气管21内。散气管21的污泥出入孔24形成于封闭的另一端21b附近,所述另一端21b在连接有送气管26的散气管21的一端21a的相反侧。另外,在该例的送气管26上,如图1所示,分支形成有用于将送气管26内的散气用气体放跑并排出至大气中的排气管27,在分支部分设有三通阀28。另外,该例的气体供给部22具有控制装置29,通过该控制装置29自动控制鼓风机25以及三通阀28的动作。
通过上述结构,本发明的散气装置的散气管为,在散气停止时管内压力也不向大气开放的结构。例如,图1中,由于采用三通阀28,以连通鼓风机25与排气管27的方式打开三通阀28的话,能够不停止鼓风机地停止供气,同时维持散气管的管内压力。
另外,阀的个数,如图2所示,可以采用2个阀,也可以是1个。
在本发明的散气装置的运行方法中,重复进行供给工序与停止工序,在所述供给工序中从气体供给部22向散气管21供给散气用气体,在所述停止工序中停止从气体供给部22供给散气用气体。
具体来说,首先通过控制装置29操作三通阀28,连通鼓风机25与散气管21,关闭排气管27侧。然后,使鼓风机25工作,将规定流量的散气用气体经由送气管26供给至散气管21(供给工序)。
这里,作为散气用气体,通常使用空气,也可以对应需要使用氧气等。另外,散气用气体的流量通常为活性污泥处理(生物处理)所必需的流量,但是在该例的排水处理装置这样用具有膜分离装置的装置进行散气的情况下,也可以从考虑有效地清洗膜分离装置的膜面的观点来决定散气用气体的流量。
接下来,进行规定时间的供给散气用气体的供给工序后,停止散气用气体向散气管21的供给(停止工序)。停止散气用气体的供给时,可以停止鼓风机25自身,也可以通过控制装置29操作三通阀28,连通鼓风机25与排气管27,关闭送气管26的分支部分的下游侧(散气管21侧)的流路。由此,在停止工序中,停止向散气管21的散气用气体的供给,并且,散气管21内不向大气压开放,维持散气管21内的压力(管内压力)。
接下来,进行规定时间的停止散气用气体的供给的停止工序后,再次进行供给工序,在所述供给工序中从气体供给部22向散气管21供给散气用气体。
这样,散气装置20具有散气管21,所述散气管21,在铅垂上部形成有多个喷出散气用气体的散气孔23,另一方面,在下部形成有1个以上的用于活性污泥11出入散气管21的污泥出入孔24,根据上述的重复供给工序与停止工序的运行方法,能够不对鼓风机25施加过度的负荷,不在排水处理装置上另外设置设备,防止使散气孔23阻塞的散气管21中的活性污泥11的干燥固结。
即,如该例,如果不在散气管21下部,而在上部设置散气孔23,则从供给工序切换至停止工序时,由于残存于散气管21内的散气用气体比活性污泥11比重低,所以从散气孔23向上方排出。于是,由于在该散气管21的下部形成有污泥出入孔24,所以随着这样排出散气用气体,活性污泥11会从污泥出入孔24流入散气管21内。如果这样在散气管21的上部形成散气孔23,在下部形成污泥出入孔24,则从供给工序切换至停止工序时,即使不向大气压开放散气管21内等地使其管内压力下降,散气管21内的散气用气体也会被排出,取而代之充满活性污泥11。因此,停止工序中散气管21内由于活性污泥11处于湿润状态,能够防止散气管21内的活性污泥11的干燥固结。
另外,在采用这样形成散气孔23与污泥出入孔24的散气管21的情况下,如上所述,由于即使不向大气压开放散气管21内地使管内压力下降,活性污泥11也能够流入散气管21内,所以能够避免向大气压开放散气管21内引起的不良情况。
即,切换至停止工序时,假如,操作三通阀28,使排气管27与散气管21侧的送气管26连通,而使管内压力下降至大气压,则不仅散气管21内,送气管26内也变为大气压。其结果,活性污泥曝气槽12内的活性污泥11不仅流入散气管21内,也大量流入送气管26内。具体来说,活性污泥11流入到送气管26内直至图1中符号L1所示位置(活性污泥曝气槽12中的活性污泥11的液面高度)。如果大量的活性污泥11这样流入送气管26内,则在下次供给工序中开始散气用气体的供给时,鼓风机25必须将大量活性污泥11从送气管26推出,所以会对鼓风机25施加过度的负荷。另外,大量的活性污泥11在送气管26内附着干燥,该干燥的活性污泥11被输送至散气管21,有使散气孔23阻塞的可能性。相对于此,切换至停止工序时,在维持压力不下降的情况下,即使活性污泥11流入送气管26内,也只会流入到符号L2所示位置(对应散气孔23的形成位置的高度)。因此,在下一个供给工序中重新进行散气用气体的供给时,不会对鼓风机25施加较大的负荷,在湿润状态的散气管21内将容易剥离的活性污泥11从污泥出入孔24、散气孔23排出至散气管21外面。
这样,能够防止阻塞散气孔23的散气管21中的活性污泥11的干燥固结。
这里持续散气用气体供给的时间,即,进行1次供给工序的时间,优选是30分钟~12小时。如果进行1次供给工序的时间不足30分钟,则鼓风机25的起动·停止频率、三通阀28的开闭频率增多,加快对鼓风机25、三通阀28造成机械性损伤。另一方面,如果进行1次供给工序的时间超过12小时,存在下述担忧:散气管21内的一部分活性污泥11干燥,在长期使用中阻塞散气孔23。
另外,停止散气用气体供给的时间,即,进行1次停止工序的时间,优选是15~600秒。如果进行1次停止工序的时间不足15秒,存在活性污泥11未充分流入散气管21内就切换至供给工序的担忧。另一方面,如果进行1次停止工序的时间超过600秒,存在活性污泥曝气槽12内的散气用气体量不足活性污泥11的生物处理所需要量的担忧。
另外,如该例这样,在活性污泥曝气槽12浸泡膜分离装置的情况下,停止工序时通过膜分离装置进行的过滤处理通常也需要停止。因此,如果进行1次停止工序的时间超过600秒,会使膜分离装置的处理水量下降。
另外,各供给工序中,将规定流量的散气用气体供给至散气管21时,优选是决定来自各散气孔23的散气用气体的喷出速度v(m/sec),各散气孔的面积A0(m2),散气管21的截面积(铅垂于长度方向的截面的内径基准面积)A1(m2),各散气孔23的内径d0(m),散气管21的内径d1(m),供给至一根散气管21的散气用气体的流量Q(m3/sec)以及散气孔23的数量,使得下述公式(I)算出的压力水头ΔH为散气管21的内径d1的0.2~0.9倍的值。
下述公式(I)是众所周知的作为孔口的流量计算所采用的公式。
数学式4:
Δ H = ρ ′ 2 g ( ρ - ρ ′ ) ( v C ) 2 ... ( I ) ,
其中,
ΔH:压力水头(m)
ρ:活性污泥的密度(kg/m3)
ρ′:散气用气体的密度(kg/m3)
v:来自各散气孔的散气用气体的喷出速度(m/sec)
C:下述式(II)中所示的流出系数
g:重力加速度(m/s2)
数学式5:
C=0.597-0.011m+0.432m2···(II)
其中,m是下述公式(III)所示的开口比
数学式6:
m = ( A 0 A 1 ) = ( d 0 d 1 ) 2 ... ( I I I ) ,
其中,
A0:各散气孔的面积(m2)
A1:散气管的截面积(铅垂于长度方向的面的内径基准的面积)(m2)
d0:各散气孔的直径(m)
d1:散气管的内径(m)
另外,图示例的散气装置20具有1根散气管21,但是也可以具有多根,那种情况下,通过公式(I)算出的各散气管21的压力水头ΔH的优选是散气管21的内径d1的0.2~0.9倍的值。另外,供给于1根散气管21的散气用气体的流量Q为,活性污泥曝气槽12中进行散气的全部流量除以散气管21的根数而得到的值。散气管21的根数对应活性污泥曝气槽12的形状、大小,另外具有膜分离装置的情况下,对应其形状、大小、设置数量等而任意地设定。
另外,在散气用气体是空气的情况下,将散气用气体的密度ρ′作为1.2(kg/m3)即可。活性污泥11的密度ρ,实际测量密度并采用其值。
另外,来自散气孔23的散气用气体的喷出速度v(m/sec)为,供给于1根散气管21的散气用气体的流量Q除以形成于该散气管21的散气孔23的总面积(1个散气孔的面积×形成于一根散气管的散气孔的总数)而得到的值。
另外,该例中,散气管21使用了铅垂截面是圆形的圆管,但是对铅垂截面的形状不做特别限定,例如,可以是椭圆形、四边形等的多边形。那样的情况下,在公式(III)中,由各散气孔23的面积A0以及散气管21的截面积A1的值求出m,使用该m算出压力水头ΔH,其值是内径d1的0.2~0.9倍即可。
另外,公式中,m为开口比,表示散气管21的截面积A1相对于各散气孔23的面积A0的比。C是流出系数。
这样,通过上述公式(I)算出的压力水头ΔH,即,作用于散气管21内的压力比相当于散气管21的内径d1的压力小,尤其是内径d1的0.2~0.9倍的值的话,向散气管21供给散气用气体时,即,供给工序中,活性污泥11也从污泥出入孔24流入散气管21内。因此,不仅停止工序时,在供给工序时散气管21也总是存在活性污泥11,保持散气管21内为湿润状态,进一步防止散气管21内的活性污泥11的干燥固结。
这里在公式(I)中的压力水头(ΔH)为不足内径d1的0.2倍的情况下,相对于散气管21的散气孔23的数量以及散气孔23的直径,供给于散气管21的散气用气体的量较少。因此,该情况下,从各散气孔23喷出的散气用气体的量容易产生偏差。具体来说,具有下述倾向:越形成于靠近散气管21的一端21a的位置的散气孔,越喷射大量的散气用气体,从形成于靠近另一端21b的位置的散气孔23喷出的散气用气体为较少量,散气管21的一端21a连接有送气管26。另一方面,在超过内径d1的0.9倍的值的情况下,供给工序中供给于散气管21内的散气用气体的量较多,因此,供给工序中存在于散气管21内的活性污泥11的量减少,难以将散气管21内维持于充分的湿润状态。
这里,气体供给量通过阀等设定为一定量,但是在鼓风机起动时间或者阀关闭时间,当然会瞬间地偏离设定量。
但是,重新进行气体供给时,通过在散气管内产生急剧的流量变动会提高散气管内的清洗效果。
因此,为了对散气管内施加急剧的流量变动,优选是对散气管供给偏离公式(I)的流量的时间为10秒以内。5秒以内更好。
另外,此时,优选是各散气孔23的直径(内径)被设定于1.5~30mm的范围内。如果不足1.5mm,存在容易被活性污泥11所包含的砂石、固体物等异物阻塞散气孔23的倾向。另外,从供给工序切换至停止工序,也存在下述倾向:由于表面张力的作用,散气管21内的散气用气体未从散气孔23排出,其结果,来自污泥出入孔24的活性污泥11的流入不充分。另一方面,如果超过30mm,则供给工序中从散气孔23喷出的散气用气体的气泡粗大化,散气用气体的溶解效率降低,存在散气量不足活性污泥11的生物处理所必需的量,活性污泥处理不高效的可能性。
另外,各散气孔23的形状不限定于圆形。
各散气孔23,如图示例,优选是以各孔的中心位于与散气管21的轴线交叉的铅垂线与周壁交点的方式形成一列。这样形成的话,从各散气孔23容易平衡地喷出散气用气体。
另外,如果散气孔23的各孔的中心位于与散气管21的轴线交叉的铅垂线与周壁的交点,则在停止散气用气体供给的停止工序时,更好的是通过从污泥出入孔流入的污泥,能够使污泥可靠地充满管内。
散气孔23设置于偏离与散气管21的轴线交叉的铅垂线与周壁交点的位置的情况下,由于散气管21内从散气孔以上的空间在停止供给散气用气体的停止工序中未被污泥充满,所以存在干燥污泥附着于连接于所述空间的散气管内壁的担忧。
另外,优选是各散气孔23以均等的间隔形成于散气管21的管的长度方向上。
污泥出入孔24只限于形成于散气管21的下部,但不限制其数量,可以形成1个以上。
污泥出入孔24的直径的优选是3mm以上。如果不足3mm,活性污泥11所包含的砂石、固体物容易阻塞污泥出入孔24。
另外,污泥出入孔24的优选是设置于最远离散气管21与送气管26的连接位置的位置。即,如该例,在送气管26仅连接于散气管21的一端21a的情况下,优选是污泥出入孔24形成于未连接送气管26的一侧的散气管21的端部(另一端)21b。一般,在散气管21内,由于散气管21与送气管26的连接位置附近管内压力最高,所以如果将污泥出入孔24设于该部分,存在下述担忧:活性污泥11不从污泥出入孔24出入,而散气用气体喷出。
另外,如图2B所示,在将送气管26连接于散气管21的两端21a、21b,从两端21a、21b向散气管21内供给散气用气体的形态的情况下,例如即使散气管21的长度为1m以上,也能使散气用气体从散气孔23均等地喷出,较适宜。这种情况下,污泥出入孔24的优选是形成于散气管21的长度方向的中心部附近。
散气孔23的直径与污泥出入孔24的直径的优选是分别满足上述适宜的范围,但是进一步,如果污泥出入孔24的直径形成比散气孔23的直径大,活性污泥11容易更圆滑地在污泥出入孔24中出入,较适宜。
散气管21的内径d1的优选是设定于10~100mm范围内。如果内径d1不足10mm,散气管21内容易被存在于活性污泥11的砂石、固体物等异物阻塞。另外,如果内径d1不足10mm,则成为公式(I)的范围内的,供给于每一根散气管的散气用气体的流量范围变小。
另外,也可以沿水平方向并排地配置多根散气管21,这种情况下,如果散气管21的内径d1为100mm以下,则能够紧密地配置散气管21,结果是,也能够紧密地配置散气孔23。该情况下,活性污泥曝气槽12内能够更均等地散气。
进一步如果内径d1为100mm以上,为了满足公式(I)的下限值(内径d1的0.2倍)所必需的「供给于每一根散气管的散气用气体的流量」变大。
以上的说明中作为散气部举例说明了散气管21,但是例如图3以及图4所示,也可以由平行配置的多个散气管21与连接于这些多个散气管21的两端的一组头管30构成散气部,送气管26分别连接于各头管30。该情况下,将散气用气体从送气管26供给至头管30,经由头管30供给至各散气管21。另外,该情况下,污泥出入孔24既可以形成于各散气管的下部(图3),也可以形成于各头管30的下部(图4)。
另外,作为气体供给部22,以上的例子中,作为送气单元展示有具有鼓风机25的构成,但是也可以采用压缩机代替鼓风机25。
另外,图1的例子的送气管26在分支部分设有三通阀28,但是也可以代替三通阀28,如图5所示,设置2个开闭阀(二通阀)31、32。该情况下,在供给工序中关闭设于排气管27的二通阀31,打开设于分支部分的下流侧(散气管21侧)的送气管26的二通阀32。在停止工序中,相反,打开设于排气管27的二通阀31,关闭分支部分的下游侧的二通阀32。由此,停止工序中,停止向散气管21的散气用气体的供给,并且,不向大气压开放散气管21内。
另外,本发明的运行方法中,也可以采用多个散气装置,所述散气装置具有:散气部以及用于将散气用气体供给至散气部的气体供给部。这种情况下,各散气装置之间,既可以使供给工序与停止工序切换的时间点相同,也可以错开各散气装置的时间点。尤其,在活性污泥曝气装置浸泡有膜分离装置的情况下,在没有气体的供给的情况下,膜分离装置的过滤处理通常也停止。因此,错开各散气装置的供给工序与停止工序切换的时间点,使至少某个散气装置处于供给工序,则活性污泥曝气槽中总是进行散气,不需停止膜分离装置的过滤处理。另外,这样地总是进行散气,在能够连续地实施活性污泥处理方面也较适宜。
另外,以上的例子中,展示说明了在活性污泥曝气槽12内浸泡有膜分离装置而构成的排水处理装置10,所述膜分离装置具有固液分离用膜组件13,但是本发明的运行方法也能够适用于不具有膜分离装置的水处理装置。
实施例1:
在图1的结构的排水处理装置中进行水处理。
固液分离用膜组件13使用的是SteraporeSADF(商品名称,三菱丽阳·工程株式会社制,聚偏氟乙烯制中空纤维膜)。被处理水的活性污泥11采用的是MLSS浓度大约9500mg/L的活性污泥。
散气管21使用的是内径d1为200mm(0.02m),长度为650mm的氯乙烯树脂制圆管,在散气管21的铅垂上部(与散气管的轴线交叉的铅垂线上)以均等的间隔形成有直径φ5mm(0.005m)的散气孔23。散气管的轴方向的坡度为1/100以内。另外,在图1中图示有6个散气孔23,但是本实施例1中,形成有5个。
送气管26仅连接于散气管21的一端21a,在未连接送气管26一侧的另一端21b附近,在周壁的下部形成有1个直径φ10mm的污泥出入孔24。鼓风机25采用罗茨鼓风机,以供给于每1根散气管的流量Q为60L/min(1.0×10-3m3/sec)的方式通过送气管26向散气管21供给散气用气体。散气用气体采用空气,散气用气体的密度ρ′为1.2kg/m3,活性污泥11的密度ρ为1000kg/m3,重力加速度g为9.8m/sec2
采用以上的数值通过公式(I)算出的管内压力水头ΔH为18mm(0.018m),是散气管21的内径d1的0.9倍的值,在本发明的优选范围内。
然后,该装置中,一边重复进行6小时的供给散气用气体的供给工序,接着,进行180秒的停止供给散气用气体的停止工序,一边进行水处理试验。
持续30天这样的水处理试验的结果是,散气管21上的13处散气孔23全部确认没被活性污泥11阻塞。
虽然散气管内21的内壁附着有少许污泥,但是污泥出入孔24中确认没被活性污泥11阻塞。
另外,30天的试验期间中,也确认活性污泥11没向固液分离用膜组件13附着,能够继续稳定的膜过滤。
实施例2:
除了形成有13处直径为φ4mm(0.004m)的散气孔23之外,全部与实施例1以相同的条件实施水处理试验。
采用以上的数值通过公式(I)算出的管内压力水头ΔH为6mm(0.006m),是散气管21的内径d1的0.6倍的值,在本发明的优选范围内。
持续30天这样的水处理试验的结果是,散气管21上的13处散气孔23全部确认没被活性污泥11阻塞。
虽然散气管内21的内壁附着有少许污泥,但是污泥出入孔24中确认没被活性污泥11阻塞。
另外,30天的试验期间中,也确认活性污泥11没向固液分离用膜组件13附着,能够继续稳定的膜过滤。
实施例3:
除了供给于每1根散气管的散气用气体的流量Q为50L/min(8.3×10-4m3/sec)之外,全部与实施例1以相同的条件实施水处理试验。
采用以上的数值通过公式(I)算出的管内压力水头ΔH为12mm(0.012m),是散气管21的内径d1的0.6倍的值,在本发明的优选范围内。
持续30天这样的水处理试验的结果是,散气管21上的5处散气孔23全部确认没被活性污泥11阻塞,污泥出入孔24也确认没被活性污泥11阻塞。另外,30天的试验期间中,也确认活性污泥11没向固液分离用膜组件13附着,能够继续稳定的膜过滤。
实施例4:
除了供给于每1根散气管的散气用气体的流量Q为55L/min(9.16×10-4m3/sec)之外,全部与实施例1以相同的条件实施水处理试验。
采用以上的数值通过公式(I)算出的管内压力水头ΔH为15mm(0.015m),是散气管21的内径d1的0.75倍的值,在本发明的优选范围内。
持续30天这样的水处理试验的结果是,散气管21上的5处散气孔23全部确认没被活性污泥11阻塞,污泥出入孔24也确认没被活性污泥11阻塞。另外,30天的试验期间中,也确认活性污泥11没向固液分离用膜组件13附着,能够继续稳定的膜过滤。
比较例1:
除了在散气管的周壁的下侧形成有5处直径φ5mm(0.005m)的散气孔23,采用未形成有污泥出入孔24的散气管之外,全部与实施例1以相同的条件进行7天水处理试验,结果是确认5处散气孔23中3处被阻塞。另外,确认在散气管21的内部有活性污泥11的固着。另外,试验结束后,位于确认阻塞的散气孔23的上部的中空纤维膜确认附着有活性污泥11。
比较例2:
除了连续供给散气用气体不停止之外,全部与实施例1以相同的条件进行10天水处理试验,结果是确认5处散气孔23中3处被阻塞。另外,确认在散气管21的内部有活性污泥11的固着。另外,试验结束后,位于确认阻塞的散气孔23的上部的中空纤维膜确认附着有活性污泥11。
比较例3:
除了供给于每1根散气管的散气用气体的流量Q为25L/min(4.17×10-4m3/sec)之外,全部与实施例1以相同的条件实施水处理试验。
采用以上的数值通过公式(I)算出的管内压力水头ΔH为3mm(0.003m),是散气管21的内径d1的0.15倍的值,在本发明的优选范围外。
持续15天这样的水处理试验的结果是,确认散气管21上的5处散气孔23中的3处被阻塞。另外,确认在散气管21的内部有活性污泥11的固着。另外,试验结束后,位于确认阻塞的散气孔23的上部的中空纤维膜确认附着有活性污泥11。
比较例4:
除了供给于每1根散气管的散气用气体的流量Q为70L/min(1.17×10-3m3/sec)之外,全部与实施例1以相同的条件实施水处理试验。
采用以上的数值通过公式(I)算出的管内压力水头ΔH为24mm(0.024m),是散气管21的内径d1的1.2倍的值,在本发明的优选范围外。
持续15天这样的水处理试验的结果是,确认散气管21上的5处散气孔23中的4处被阻塞。另外,确认在散气管21的内部有活性污泥11的固着。另外,试验结束后,位于确认阻塞的散气孔23的上部的中空纤维膜确认附着有活性污泥11。
比较例5:
在图1的结构的排水处理装置中进行水处理。
固液分离用膜组件13使用的是SteraporeSADF(商品名称,三菱丽阳·工程株式会社制,聚偏氟乙烯制中空纤维膜)。作为被处理水的活性污泥11采用的是MLSS浓度大约9500mg/L的活性污泥。
散气管21使用的是内径d1为8mm(0.008m),长度为200mm的氯乙烯树脂制圆管,在散气管21的铅垂上部(与散气管的轴线交叉的铅垂线上)以均等的间隔形成有直径φ1mm(0.001m)的散气孔23。散气管的轴方向的坡度为1/100以内。另外,在图1中图示有6个散气孔23,但本实施例1中,形成有5个。
送气管26仅连接于散气管21的一端21a,在未连接送气管26侧的另一端21b附近,在周壁的下部形成有1个直径φ3mm的污泥出入孔24。鼓风机25采用罗茨鼓风机,以供给于每1根散气管的流量Q为2L/min(3.3×10-5m3/sec)的方式通过送气管26向散气管21供给散气用气体。散气用气体采用空气,散气用气体的密度ρ′为1.2kg/m3,活性污泥11的密度ρ为1000kg/m3,重力加速度g为9.8m/sec2
采用以上的数值通过公式(I)算出的管内压力水头ΔH为12mm(0.012m),是散气管21的内径d1的1.5倍的值,在本发明的优选范围外。
然后,该装置中,一边重复进行6小时的供给散气用气体的供给工序,接着,进行180秒的停止供给散气用气体的停止工序,一边进行水处理试验。
持续7天这样的水处理试验的结果是,确认散气管21上的5处散气孔23中的4处被阻塞。另外,确认在散气管21的内部有活性污泥11的固着。另外,试验结束后,位于确认阻塞的散气孔23的上部的中空纤维膜确认附着有活性污泥11。
表1:
管内压/d1 污泥阻塞状况
实施例1 0.9 内壁附着有少许污泥30天OK
实施例2 0.3 30天OK附着有少许污泥
实施例3 0.6 30日OK
实施例4 0.75 30日OK
比较例3 0.15 15天,5处中3处阻塞
比较例4 1.2 15天,5处中4处阻塞
比较例5 1.5 7天,5处中4处阻塞
产业上的利用可能性
根据本发明,不对鼓风机(气体供给部)施加过度的负荷,不另外设置设备,能够防止使散气孔阻塞的散气管中的污泥的干燥固结。

Claims (7)

1.一种散气装置的运行方法,所述散气装置具有:散气部,所述散气部配置于活性污泥曝气槽内,喷出散气用气体;以及向所述散气部供给所述散气用气体的气体供给部,该运行方法的特征在于,
所述散气部构成为具有大致水平配置的1根以上的散气管,
在所述散气管的铅垂上部形成有多个散气孔,在所述散气管的下部形成有1个以上的污泥出入孔,
以各散气管通过下述公式(I)算出的压力水头ΔH为所述散气管的内径d1的0.2~0.9倍的值的方式,从所述气体供给部向所述散气部供给所述散气用气体,
重复进行供给工序和停止工序,在所述供给工序中从所述气体供给部向所述散气部供给所述散气用气体,在所述停止工序中不向大气开放所述散气管内,所述散气管内的压力被维持,并停止所述散气用气体的供给,
公式(I):
Δ H = ρ ′ 2 g ( ρ - ρ ′ ) ( v C ) 2 ... ( I ) ,
其中,
ΔH:压力水头,单位为m,
ρ:活性污泥的密度,单位为kg/m3
ρ′:散气用气体的密度,单位为kg/m3
v:来自各散气孔的散气用气体的喷出速度,单位为m/sec,
C:下述公式(II)中所示的流出系数,
g:重力加速度,单位为m/s2
公式(II):
C=0.597-0.011m+0.432m2···(II),
其中,m是下述公式(III)所示的开口比,
公式(III):
m = ( A 0 A 1 ) = ( d 0 d 1 ) 2 ... ( I I I ) ,
其中,
A0:各散气孔的面积,单位为m2
A1:散气管的截面积、即铅垂于长度方向的面的内径基准的面积,单位为m2
d0:各散气孔的直径,单位为m,
d1:散气管的内径,单位为m。
2.根据权利要求1所述的散气装置的运行方法,其特征在于,所述供给工序进行30分钟~12小时,所述停止工序进行15~600秒。
3.根据权利要求2所述的散气装置的运行方法,其特征在于,所述内径d1为10~100mm。
4.根据权利要求1至3的任一项所述的散气装置的运行方法,其特征在于,所述散气孔的直径为1.5~30mm。
5.一种散气装置,具有:散气部,所述散气部配置在活性污泥曝气槽内,喷出散气用气体;以及向所述散气部供给所述散气用气体的气体供给部,该散气装置的特征在于,
所述散气部构成为具有大致水平配置的1根以上的散气管,
所述气体供给部具有送气单元以及连结该送气单元与所述散气管的送气管,
在所述散气管的铅垂上部形成有多个散气孔,在所述散气管的下部形成有一个以上的污泥出入孔,
在所述送气管上,分支形成有用于将该送气管内的所述散气用气体放跑并排出至大气中的排气管,在停止供给所述散气用气体的工序中,所述送气单元与所述排气管连通,所述送气管的分支部分的下游侧的流路关闭,由此停止向所述散气管的所述散气用气体的供给,并且所述散气管不向大气开放,所述散气管内的压力被维持。
6.根据权利要求5所述的散气装置,其特征在于,在所述送气管的管内设有阀。
7.根据权利要求6所述的散气装置,其特征在于,所述阀是三通阀,
所述三通阀与所述散气管、所述送气管以及排气管连接。
CN201180069939.8A 2011-04-01 2011-04-01 散气装置的运行方法 Expired - Fee Related CN103459332B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058414 WO2012137276A1 (ja) 2011-04-01 2011-04-01 散気装置の運転方法

Publications (2)

Publication Number Publication Date
CN103459332A CN103459332A (zh) 2013-12-18
CN103459332B true CN103459332B (zh) 2016-06-08

Family

ID=46968717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180069939.8A Expired - Fee Related CN103459332B (zh) 2011-04-01 2011-04-01 散气装置的运行方法

Country Status (6)

Country Link
US (1) US20140076802A1 (zh)
EP (1) EP2695861A4 (zh)
JP (1) JP5871184B2 (zh)
KR (3) KR20170066711A (zh)
CN (1) CN103459332B (zh)
WO (1) WO2012137276A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201791932A1 (ru) * 2015-07-07 2018-06-29 Ксилеко, Инк. Устройство для подачи большого количества газа в ферментативный бульон
US11485650B2 (en) * 2017-07-14 2022-11-01 Besser Tech Holdings Llc System for recovering fat, oil and grease from wastewater
CN109821459B (zh) * 2019-04-01 2023-08-22 北京清大元农生物科技有限公司 一种蚯蚓粪便基液液体肥基液均衡式进气激荡装置及其生产方法
CN112479540A (zh) * 2019-09-12 2021-03-12 广州新致晟环保科技有限公司 污泥干化装置及其使用方法
CN111268811A (zh) * 2020-03-25 2020-06-12 新昌县科博机械有限公司 一种污水处理用多通道型曝气机构
CN115259494B (zh) * 2022-07-26 2023-07-25 广西百年沁泉水业有限公司 一种饮用水处理系统及其处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307091A (ja) * 2001-04-16 2002-10-22 Kubota Corp 散気装置の洗浄方法
CN2644419Y (zh) * 2003-09-19 2004-09-29 蒋康豫 膜片曝气器
JP2010131481A (ja) * 2008-12-02 2010-06-17 Mitsubishi Rayon Eng Co Ltd 曝気用散気装置および散気方法
CN101821206A (zh) * 2007-10-10 2010-09-01 东丽株式会社 细小气泡散气管、细小气泡散气装置和浸渍型膜分离装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429818B2 (zh) * 1972-09-27 1979-09-26
JPS559437Y2 (zh) * 1975-09-26 1980-02-29
JPH081185A (ja) * 1994-06-21 1996-01-09 Ooshio Kogyo Kk 処理槽における水中給気管装置
DE69823389T2 (de) * 1997-12-05 2005-05-04 Mitsubishi Rayon Co., Ltd. Verfahren und vorrichtung zur wasserbehandlung
JP3322206B2 (ja) 1998-03-06 2002-09-09 栗田工業株式会社 浸漬型膜分離装置
US6706189B2 (en) * 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
JP2000343095A (ja) * 1999-06-02 2000-12-12 Mitsubishi Rayon Co Ltd 活性汚泥処理装置
JP2001170677A (ja) * 1999-12-22 2001-06-26 Kubota Corp 高濃度汚水の散気装置
JP4530621B2 (ja) 2003-04-07 2010-08-25 株式会社クボタ 散気装置の洗浄方法
JP2005052773A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 排水処理装置
JP4361432B2 (ja) * 2004-07-02 2009-11-11 株式会社西原 水処理装置
JP5324117B2 (ja) * 2008-03-31 2013-10-23 株式会社クボタ 散気装置及び散気装置を備えた膜濃縮装置を有する水処理施設

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307091A (ja) * 2001-04-16 2002-10-22 Kubota Corp 散気装置の洗浄方法
CN2644419Y (zh) * 2003-09-19 2004-09-29 蒋康豫 膜片曝气器
CN101821206A (zh) * 2007-10-10 2010-09-01 东丽株式会社 细小气泡散气管、细小气泡散气装置和浸渍型膜分离装置
JP2010131481A (ja) * 2008-12-02 2010-06-17 Mitsubishi Rayon Eng Co Ltd 曝気用散気装置および散気方法

Also Published As

Publication number Publication date
KR20170066711A (ko) 2017-06-14
KR20130127524A (ko) 2013-11-22
US20140076802A1 (en) 2014-03-20
EP2695861A4 (en) 2014-08-06
CN103459332A (zh) 2013-12-18
EP2695861A1 (en) 2014-02-12
WO2012137276A1 (ja) 2012-10-11
KR20160006252A (ko) 2016-01-18
JPWO2012137276A1 (ja) 2014-07-28
JP5871184B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
CN103459332B (zh) 散气装置的运行方法
JP5062140B2 (ja) 散気装置の運転方法および散気装置
ES2376303T3 (es) Aparato y procedimiento para oxigenar aguas residuales.
JP5532819B2 (ja) 散気装置の運転方法
JP5803293B2 (ja) 散気装置
CA2398461A1 (en) Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
JP5073076B2 (ja) 膜分離ユニット
US8876089B2 (en) Method and apparatus to keep an aerator full of air
WO2013146613A1 (ja) 浸漬型膜分離装置
JP2013017979A (ja) 散気装置
WO2008009484A2 (de) Belüfter
JP2004313938A (ja) 散気装置の目詰まり防止運転方法
JP2006205119A (ja) 浸漬型膜分離装置の使用方法および浸漬型膜分離装置
JP5235632B2 (ja) 曝気用散気装置および散気方法
JP2014000572A (ja) 散気装置の運転方法
JP6335401B2 (ja) 散気装置及び散気孔カバー
JP4618899B2 (ja) 汚泥移送装置
US20190337827A1 (en) Apparatus and Method for Aerating Wastewater
JP2017209618A (ja) 散気装置および散気方法
JP2017070897A (ja) 散気運転方法
TWI411583B (zh) 散氣裝置的運轉方法
JP4559108B2 (ja) 気体拡散装置
JP2011218265A (ja) 散気装置
JP2019063707A (ja) 散気装置の洗浄方法及び散気装置
JP2019111461A (ja) 散気装置、散気方法、及び水処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Japan Tokyo Marunouchi Chiyoda Ku, 1-1-1

Patentee after: Mitsubishi Kasei Corporation

Address before: Japan Tokyo Marunouchi Chiyoda Ku, 1-1-1

Patentee before: Mitsubishi Reiyon Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20190401