CN103439688A - 一种用于分布式麦克风阵列的声源定位系统及定位方法 - Google Patents

一种用于分布式麦克风阵列的声源定位系统及定位方法 Download PDF

Info

Publication number
CN103439688A
CN103439688A CN2013103790534A CN201310379053A CN103439688A CN 103439688 A CN103439688 A CN 103439688A CN 2013103790534 A CN2013103790534 A CN 2013103790534A CN 201310379053 A CN201310379053 A CN 201310379053A CN 103439688 A CN103439688 A CN 103439688A
Authority
CN
China
Prior art keywords
sigma
gmm
sound source
module
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103790534A
Other languages
English (en)
Other versions
CN103439688B (zh
Inventor
陈喆
殷福亮
王舒文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201310379053.4A priority Critical patent/CN103439688B/zh
Publication of CN103439688A publication Critical patent/CN103439688A/zh
Application granted granted Critical
Publication of CN103439688B publication Critical patent/CN103439688B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明公开了一种用于分布式麦克风阵列的声源定位系统及其定位方法,所述的系统包括信号能量比计算模块A、数据库建立模块、GMM训练模块、信号能量比计算模块B和声源坐标计算模块;信号能量比计算模块A的输出端与数据库建立模块输入端连接;数据库建立模块输出端与GMM训练模块输入端连接,GMM训练模块输出端与声源坐标计算模块输入端连接;信号能量比计算模块B的输出端也与声源坐标计算模块输入端连接;声源坐标计算模块输出端输出声源坐标。由于本发明采用麦克风接收信号能量作为主要参数,仅与该麦克风和声源间的距离有关,故无需考虑阵列几何结构与尺寸信息,也无需考虑声音信号传输延迟时间、平稳性、宽带或窄带等因素。

Description

一种用于分布式麦克风阵列的声源定位系统及定位方法
技术领域
本发明涉及一种麦克风阵列的声源定位技术,特别是一种用于分布式麦克风阵列的声源定位系统及定位方法。
背景技术
麦克风阵列由多个麦克风排列组成,各麦克风同时采集并联合处理声音信号,在得到信号时域与频域信息的同时,还能够获得声音的空域(空间方位)信息。用麦克风阵列和目标的声音信息来获取目标位置是一种有效的定位方法。由于麦克风拾取声音属于被动探测方式,基于麦克风阵列的声源定位技术在军事探测、安全监控、音/视频会议系统、人机交互等领域应用广泛。
近年来,随着网络通信与移动计算技术的发展,麦克风阵列由规则几何拓扑结构发展为无特定几何形状和尺寸信息的分布式结构,这使得阵列的搭建、更改与应用更加灵活,但也带来了许多新的问题,导致已有的规则麦克风阵列定位理论和方法无法直接应用于分布式麦克风阵列中。
苏淳于2012年在公开号为CN102707262A的专利《一种基于麦克风阵列的声源定位系统》中,采用基于到达时间差的声源定位算法搭建了真实声场环境下基于麦克风阵列的声源定位系统。该系统先用广义互相关函数方法估计麦克风间接收信号的延迟时间,之后根据阵列的几何结构,建立几何关系的方程组求得声源位置。基于到达时间差的声源定位方法应用于传统的、结构规则且尺寸较小的麦克风阵列中,声源定位效果较好。但对于麦克风间距离较大的分布式阵列,受声音信号波长的影响,尤其对于(准)周期声音信号,直接估计麦克风间信号延迟时间会出现周期模糊现象,导致估计结果出现偏差甚至完全错误。此外,用计算两个信号互相关系数的方法来获得麦克风信号间的时延,需要大量数据参与运算,其计算复杂度较高,进行实时处理较难。
Carlos T I,Olivier C.发表的《Evaluation of a MUSIC-based real-time soundlocalization of multiple sound sources in real noisy environments 》 (InternationalConference on Intelligent Robots and Systems,Saint Louis,USA,2009:2027-2032.)基于空间谱估计技术来实现麦克风阵列声源定位。该方法建立各麦克风接收信号的相关矩阵,对其进行空间谱分解,划分出互相正交的信号子空间和噪声子空间,再估计空间谱峰来确定波达方向,进而确定声源位置。该技术虽然是阵列信号处理领域研究最广的定位方法,但其要求阵列中麦克风等间隔线性排列,而对于几何结构不规则的分布式阵列,该方法不再适用,并且该方法多适用于远场、窄带、平稳的声音信号,应用局限性较大。
发明内容
为解决现有技术存在的上述问题,本发明要实现一种算法简单、定位过程计算量小、易于实时实现,适用于几何结构不规则的分布式麦克风阵列的声源定位系统及定位方法。
为了实现上述目的,本发明的技术方案如下:一种用于分布式麦克风阵列的声源定位系统,包括信号能量比计算模块A、数据库建立模块、GMM训练模块、信号能量比计算模块B和声源坐标计算模块;所述的信号能量比计算模块A的输入端输入指纹采集点处各麦克风采集到的信号,输出端与数据库建立模块输入端连接;数据库建立模块输出端与GMM训练模块输入端连接,GMM训练模块输出端与声源坐标计算模块输入端连接;所述的信号能量比计算模块B的输入端输入未知位置处各麦克风采集到的信号,输出端也与声源坐标计算模块输入端连接;声源坐标计算模块输出端输出声源坐标;所述的GMM为高斯混合模型Gaussian Mixture Model的简称。
信号能量比计算模块A根据在各个指纹采集点处采集到的信号生成训练矢量,数据库建立模块将该训练矢量存储起来构成数据库,GMM训练模块根据数据库中的数据进行训练,获得GMM参数,该参数供声源坐标计算模块使用;信号能量比计算模块B采集未知位置的信号生成观测矢量,声源坐标计算模块根据该矢量和GMM参数计算出该未知位置处的声源坐标。
一种用于分布式麦克风阵列的声源定位方法,包括以下步骤:
A、在已部署好的麦克风阵列工作场地,将声源移动至事先确定好的各个指纹采集点处,将采集到的信号输入到信号能量比计算模块A,进行信号能量比计算,输出计算结果至数据库建立模块;所述的信号能量比计算对每个指纹采集点处采集的每帧信号进行一次计算;所述的信号能量比计算模块A的工作方法包括以下步骤:
首先检测输入信号的有效性,定义分布式麦克风阵列中麦克风数目为M,第1个麦克风接收到的输入为s1(n),当前帧在原始信号序列中的起始位置为start,信号帧长为L=qfs,qfs为信号采样频率,q为帧长对应的等效时间,其取值范围是0.05<q<0.5;则第1个麦克风的当前帧短时对数能量E1
E 1 = &Sigma; n = start start + L - 1 s 1 2 ( n )
将E1与信号/噪声判定阈值Ethr进行比较,若E1<Ethr,判定当前帧为噪声帧,否则,判定当前帧为信号帧;若当前帧为噪声帧,则估计背景噪声能量并更新阈值Ethr;更新阈值Ethr的方法为
if  Emin<E1
  Emin=E1
  Ethr=aEmin
end if
其中,Emin表示记录的第1个麦克风最小短时能量,a为一个门限因子,其取值范围1<a<100;
定义第m个麦克风接收到输入为sm(n),若当前帧为噪声帧,则第m个麦克风的背景噪声Em估计方法为
E m = &Sigma; n = start start + N - 1 s m 2 ( n ) , m = 1,2 , &CenterDot; &CenterDot; &CenterDot; , M
εm,curr=(1-b)·εm,old+b·Em
其中,εm,curr为第m个麦克风当前帧背景噪声能量估计值,εm,old为第m个麦克风前一次背景噪声能量估计值,b为平滑因子,表示平滑过程中当前帧能量Em所占比重,其取值范围0<b<1;
若当前帧为信号帧,去除第1个和第m个麦克风背景噪声能量的影响,之后以第1个麦克风信号能量作参考,计算第m个麦克风与第1个麦克风的修正后的信号能量比erm
er m = E m - &epsiv; m , curr E 1 - &epsiv; 1
然后将erm,m=2,3,…,M,共M-1个信号能量比组成能量比矢量ER,即
ER=[er2,er3,…,erM]T
B、将信号能量比计算模块A计算得到的信号能量比以及对应的指纹采集点坐标输入到数据库建立模块,并将其存储起来用于建立数据库,数据库建立模块只需离线执行一次,GMM训练模块输出的GMM参数输出至声源坐标计算模块;所述的数据库建立模块的工作方法包括以下步骤:
将声源移动到事先确定好的各个指纹采集点处,为保证有足够多的训练用矢量,降低指纹参数的随机误差,需在每个采集点多次计算输入信号能量比,并将能量比矢量与对应采集点坐标依次记录下来;设置一个平面区域,将每个能量比矢量ERi与对应采集点坐标SLi组成联合矢量,存储至数据库,即
x i = ER i SL i - - - ( 6 )
其中,i=1,2…,N,N表示数据库中共有N组数据;
C、将数据库中的数据输入到GMM训练模块,将其作为训练矢量,训练GMM,输出GMM参数至声源坐标计算模块,在数据库不变的情况下,GMM训练模块只需离线执行一次;所述的GMM训练模块的工作过程如下:
GMM用多个高斯分布函数的组合逼近任意形状的概率分布;假设GMM中具有K个高斯混合分量,那么对于D维的观测矢量xi,其联合概率分布表示为
p ( x i ; &Theta; ) = &Sigma; k = 1 K w k f k ( x i ; &mu; k , &Sigma; k ) - - - ( 7 )
其中,wk是第k个高斯分量的权值,满足
Figure BDA0000372645510000043
fk(xikk)为D维高斯概率分布函数,表达式为
f k ( x i ; &mu; k , &Sigma; k ) = 1 ( 2 &pi; ) D / 2 | &Sigma; k | 1 / 2 exp [ - 1 2 ( x i - &mu; k ) T &Sigma; k - 1 ( x i - &mu; k ) ] - - - ( 8 )
其中,μk是第k个高斯分量的均值矢量,Σk是第k个高斯分量的协方差矩阵,而
Figure BDA0000372645510000045
表示全部高斯混合分量的参数,也就是整个GMM的参数;
对于含有N组观测数据的数据集X=[x1,x2,…,xN],其对数似然函数表示为
log e p ( X ; &Theta; ) = &Sigma; i = i N log e p ( x i ; &Theta; ) - - - ( 9 )
用数据集X来训练GMM,就是找到一组参数Θ,使得对数似然函数logep(X;Θ)的期望最大,求解这一组参数采用的是期望最大化算法,即EM算法;EM算法是一种迭代算法,主要包括两个步骤:求期望的EXPECT步骤和最大化的MAXIMIZE步骤;对于GMM,其具体过程如下:
C1、采用K均值聚类方法确定参数初始值
Figure BDA0000372645510000052
C2、求期望步骤,即EXPECT步骤:求训练数据集中第i个数据在第k个高斯分量状态下的概率
p ( k i = k ; x i , &Theta; ( 0 ) ) = w k ( 0 ) f k ( x i ; &mu; k ( 0 ) , &Sigma; k ( 0 ) ) &Sigma; j = 1 K w j ( 0 ) f j ( x i ; &mu; j ( 0 ) , &Sigma; j ( 0 ) ) - - - ( 10 )
C3、最大化步骤,即MAXIMAZE步骤:求使logep的期望取最大值的Θ:各混合分量的均值矢量、方差以及权值,即
&mu; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) x i &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 11 )
&Sigma; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) ( x i - &mu; k ( 1 ) ) ( x i - &mu; k ( 1 ) ) T &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 12 )
w k ( 0 ) = 1 N &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 13 )
其中,上角标数字表示当前迭代次数;
C4、重复步骤C2和C3,直到达到收敛条件,迭代停止;
由此估计得到GMM参数
Figure BDA0000372645510000057
从而建立GMM;
D、在线定位阶段,声源处于某个未知位置,将采集到的信号输入到信号能量比计算模块B,进行信号能量比计算,输出计算结果至声源坐标计算模块,信号能量比计算每帧执行一次;所述的信号能量比计算模块B的工作过程与信号能量比计算模块A的工作过程相同;
E、将GMM参数与信号能量比计算模块B输出的信号能量比输入到声源坐标计算模块,进行声源坐标的计算,输出声源坐标;所述的声源坐标计算模块的工作过程如下:
高斯混合回归是一种多变量非线性回归模型,其在对数据的联合概率密度构造GMM之后,导出条件概率密度和回归函数;对于联合矢量 ER i SL i , 由训练GMM模块训练所得GMM参数可构成其联合概率密度:
p ( ER , SL ) = &Sigma; k = 1 K w k f k ( ER , SL ; &mu; k , &Sigma; k )
= &Sigma; k = 1 K w k f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) f k ( ER ; &mu; kE , &Sigma; kEE )     (14)
式中
&Sigma; k = 1 K w k = 1 , &mu; k = &mu; kE &mu; kS , &Sigma; k = &Sigma; kEE &Sigma; kES &Sigma; kSE &Sigma; kSS - - - ( 15 )
m k ( ER ) = &mu; kS + &Sigma; kSE &Sigma; kEE - 1 ( ER - &mu; kE ) - - - ( 16 )
&sigma; k 2 = &Sigma; kSS - &Sigma; kSE &Sigma; kEE - 1 &Sigma; kES - - - ( 17 )
其中,ER表示能量比矢量,SL表示与之对应的采集点坐标,ER|SL表示在SL采集点处采集得能量比为ER的情况;μkE与μkS分别表示ER和SL在第k个高斯分量上的均值矢量,ΣkEE和ΣkSS分别表示ER和SL在第k个高斯分量上的自相关矩阵;ΣkES和ΣkSE分别表示ER和SL、SL和ER在第k个高斯分量上的协方差矩阵;mk(ER)表示ER的期望,
Figure BDA0000372645510000067
表示方差;
计算边缘密度
p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) - - - ( 18 )
得到条件概率密度
p ( SL | ER ) = p ( ER , SL ) p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) - - - ( 19 )
根据式(19),在已知观测矢量ER′的情况下,计算其条件概率期望m(ER′),得到声源坐标估计值
Figure BDA0000372645510000071
S ^ L = m ( ER &prime; ) = E [ SL | ER = ER &prime; ] = &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) m k ( ER &prime; ) - - - ( 20 ) .
本发明所述的帧长对应的等效时间q的最佳值为0.2;所述的门限因子a的最佳值为a=4;所述的平滑因子b的最佳值为b=0.05。
本发明带来的有益效果如下:
1、本发明采用麦克风接收信号能量作为主要参数,它仅与该麦克风和声源间的距离有关,故无需考虑阵列几何结构与尺寸信息,也无需考虑声音信号传输延迟时间、平稳性、宽带或窄带等因素。
2、本发明采用声音信号能量比作为位置指纹参数,并进行有效信号输入检测以及背景噪声能量估计,从而消除背景噪声能量对真实信号能量比值的影响。
3、本发明用高斯混合回归(简称:GMR)实现信号能量比矢量到声源坐标的非线性映射,具有较高的定位精度与较快的映射速度。仿真测试结果显示,在本仿真条件下,本发明定位误差在0.5m之内的概率可达60%,在1m之内的概率达96%;定位速度与传统的基于位置指纹与概率的定位方法相当。
附图说明
本发明共有附图4张,其中:
图1是基于位置指纹与GMR的声源定位系统功能框图。
图2是信号能量比计算流程图。
图3是分布式麦克风阵列、指纹采集点以及声源分布示意图。
图4是GMR定位误差的累计分布示意图。
图中:1、信号能量比计算模块A,2、数据库建立模块,3、GMM训练模块,4、声源坐标计算模块,5、信号能量比计算模块B。
具体实施方式
下面结合附图对本发明进行进一步地描述。图1是基于位置指纹与GMR的声源定位系统功能框图。具体步骤如下:
A、在已部署好的麦克风阵列工作场地,将声源移动至事先确定好的各个指纹采集点处,将采集到的信号输入到信号能量比计算模块A,进行信号能量比计算,输出计算结果至数据库建立模块;所述的信号能量比计算对每个指纹采集点处采集的每帧信号进行一次;信号能量比计算流程如图2所示。所述的信号能量比计算模块A的工作方法包括以下步骤:
首先检测输入信号的有效性,定义分布式麦克风阵列中麦克风数目为M,第1个麦克风接收到输入为s1(n),当前帧在原始信号序列中的起始位置为start,信号帧长为L,则第1个麦克风的当前帧短时对数能量E1
E 1 = &Sigma; n = start start + L - 1 s 1 2 ( n )
将E1与信号/噪声判定阈值Ethr进行比较,若E1<Ethr,判定当前帧为噪声帧,否则,判定当前帧为信号帧;若当前帧为噪声帧,则估计背景噪声能量并更新阈值Ethr;更新阈值Ethr的方法为
if  Emin<E1
  Emin=E1
  Ethr=aEmin
end if
其中,Emin表示记录的第1个麦克风最小短时能量,a为一个门限因子,取值为a=4;
定义第m个麦克风接收到输入为sm(n),若当前帧为噪声帧,则第m个麦克风的背景噪声Em估计方法为
E m = &Sigma; n = start start + N - 1 s m 2 ( n ) , m = 1,2 , &CenterDot; &CenterDot; &CenterDot; , M
εm,curr=(1-b)·εm,old+b·Em
其中,εm,curr为第m个麦克风当前帧背景噪声能量估计值,εm,old为第m个麦克风前一次背景噪声能量估计值,b为平滑因子,表示平滑过程中当前帧能量Em所占比重,取值为b=0.05;
若当前帧为信号帧,去除第1个和第m个麦克风背景噪声能量的影响,之后以第1个麦克风信号能量作参考,计算第m个麦克风与第1个麦克风的修正后的信号能量比erm
er m = E m - &epsiv; m , curr E 1 - &epsiv; 1
然后将erm,m=2,3,…,M,共M-1个信号能量比组成能量比矢量ER,即
ER=[er2,er3,…,erM]T
B、将信号能量比计算模块A计算得到的信号能量比以及对应指纹采集点坐标输入到数据库建立模块,并将其存储起来用于建立数据库,数据库建立模块只需离线执行一次,GMM训练模块输出的GMM参数输出至声源坐标计算模块;所述的数据库建立模块的工作方法包括以下步骤:
将声源移动到事先确定好的各个指纹采集点处,为保证有足够多的训练用矢量,降低指纹参数的随机误差,需在在每个采集点多次计算输入信号能量比,并将能量比矢量与对应采集点坐标依次记录下来;设置一个平面区域,将每个能量比矢量ERi与对应采集点坐标SLi组成联合矢量,存储至数据库,即
x i = ER i SL i - - - ( 6 )
其中,i=1,2…,N,N表示数据库中共有N组数据。
C、将数据库中的数据输入到GMM训练模块,将其作为训练矢量,训练GMM,输出GMM参数至声源坐标计算模块,在数据库不变的情况下,GMM训练模块只需离线执行一次;所述的GMM训练模块的工作过程如下:
GMM用多个高斯分布函数的组合逼近任意形状的概率分布;假设GMM中具有K个高斯混合分量,那么对于D维的观测矢量xi,其联合概率分布表示为
p ( x i ; &Theta; ) = &Sigma; k = 1 K w k f k ( x i ; &mu; k , &Sigma; k ) - - - ( 7 )
其中,wk是第k个高斯分量的权值,满足
Figure BDA0000372645510000094
fk(xikk)为D维高斯概率分布函数,表达式为
f k ( x i ; &mu; k , &Sigma; k ) = 1 ( 2 &pi; ) D / 2 | &Sigma; k | 1 / 2 exp [ - 1 2 ( x i - &mu; k ) T &Sigma; k - 1 ( x i - &mu; k ) ] - - - ( 8 )
其中,μk是第k个高斯分量的均值矢量,Σk是第k个高斯分量的协方差矩阵,而
Figure BDA0000372645510000101
表示了全部高斯混合分量的参数,也就是整个GMM的参数;
对于含有N组观测数据的数据集X=[x1,x2,…,xN],其对数似然函数表示为
log e p ( X ; &Theta; ) = &Sigma; i = i N log e p ( x i ; &Theta; ) - - - ( 9 )
用数据集X来训练GMM,就是找到一组参数Θ,使得对数似然函数logep(X;Θ)的期望最大,求解这一组参数采用的是期望最大化算法,即EM算法;EM算法是一种迭代算法,主要包括两个步骤:求期望的EXPECT步骤和最大化的MAXIMIZE步骤;对于GMM,其具体过程如下:
C1、采用k均值聚类方法确定参数初始值
Figure BDA0000372645510000103
C2、EXPECT步骤:求训练数据集中第i个数据在第k个高斯分量状态下的概率
p ( k i = k ; x i , &Theta; ( 0 ) ) = w k ( 0 ) f k ( x i ; &mu; k ( 0 ) , &Sigma; k ( 0 ) ) &Sigma; j = 1 K w j ( 0 ) f j ( x i ; &mu; j ( 0 ) , &Sigma; j ( 0 ) ) - - - ( 10 )
C3、MAXIMIZE步骤:求使logep的期望取最大值的Θ:各混合分量的均值矢量、方差以及权值,即
&mu; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) x i &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 11 )
&Sigma; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) ( x i - &mu; k ( 1 ) ) ( x i - &mu; k ( 1 ) ) T &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 12 )
w k ( 0 ) = 1 N &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 13 )
其中,上角标数字表示当前迭代次数。
C4、重复步骤C2和C3,直到达到收敛条件,迭代停止;
由此就估计得到GMM参数
Figure BDA0000372645510000108
从而建立GMM;
D、在线定位阶段,声源处于某个未知位置,将采集到的信号输入到信号能量比计算模块B,进行信号能量比计算,输出计算结果至声源坐标计算模块,信号能量比计算每帧执行一次;所述的信号能量比计算模块B的工作过程与信号能量比计算模块A的工作过程相同;
E、将GMM参数与信号能量比计算模块B输出的信号能量比输入到声源坐标计算模块,进行声源坐标的计算,输出声源坐标;所述的声源坐标计算模块的工作过程如下:
高斯混合回归GMR是一种多变量非线性回归模型,其是在对数据的联合概率密度构造GMM之后,导出条件概率密度和回归函数;对于联合矢量 ER i SL i , 由训练GMM模块训练所得GMM参数可构成其联合概率密度:
p ( ER , SL ) = &Sigma; k = 1 K w k f k ( ER , SL ; &mu; k , &Sigma; k )
= &Sigma; k = 1 K w k f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) f k ( ER ; &mu; kE , &Sigma; kEE )   (14)
式中,
&Sigma; k = 1 K w k = 1 , &mu; k = &mu; kE &mu; kS , &Sigma; k = &Sigma; kEE &Sigma; kES &Sigma; kSE &Sigma; kSS - - - ( 15 )
m k ( ER ) = &mu; kS + &Sigma; kSE &Sigma; kEE - 1 ( ER - &mu; kE ) - - - ( 16 )
&sigma; k 2 = &Sigma; kSS - &Sigma; kSE &Sigma; kEE - 1 &Sigma; kES - - - ( 17 )
其中,ER表示能量比矢量,SL表示与之对应的采集点坐标,ER|SL表示在SL采集点处采集得能量比为ER的情况;μkE与μkS分别表示ER和SL在第k个高斯分量上的均值矢量,ΣkEE和ΣkSS分别表示ER和SL在第k个高斯分量上的自相关矩阵;ΣkES和ΣkSE分别表示ER和SL、SL和ER在第k个高斯分量上的协方差矩阵;mk(ER)表示ER的期望,
Figure BDA0000372645510000117
表示方差。
计算边缘密度
p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) - - - ( 18 )
得到条件概率密度
p ( SL | ER ) = p ( ER , SL ) p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) - - - ( 19 )
根据式(19),在已知观测矢量ER′的情况下,计算其条件概率期望m(ER′),得到声源坐标估计值
S ^ L = m ( ER &prime; ) = E [ SL | ER = ER &prime; ] = &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) m k ( ER &prime; ) - - - ( 20 ) .
下面通过测试实验来说明本发明带来的有益效果。
1、测试环境与条件
包含7个麦克风的分布式麦克风阵列工作于区域为一个10m×10m的矩形,矩形的四个顶点坐标分别为(0,0)m、(0,10)m、(10,0)m和(10,10)m。在区域中设置100个指纹采集点。选取不同的声音信号作为声源发出的信号,包括语音、乐器音、歌曲、乐曲、鸣笛声、按键音以及白噪声,在区域中设置20个声源位置。分布式麦克风阵列、指纹采集点以及声源的分布如图3所示。分别用确定性方法、概率法、神经网络(Artificial Neural Network,ANN)方法以及基于GMR的方法对声源位置依次进行估计,为满足需要,共建立四个数据库(如表1所示)。假设在训练、定位之前,各麦克风的增益按MADHU N,MARTIN R.发表的《Low-complexity,robust algorithm for sensor anomaly detection andself-calibration of microphone arrays.IET Signal Processing》[2011,5(1):97-103]的方法已校准好。采集声音信号时的采样频率为16KHz。
表1数据库说明
Figure BDA0000372645510000124
2、基于位置指纹与GMR的声源定位结果
分别基于数据库DB1、DB2与DB3,使用GMR方法实现声源定位。图4给出基于三种数据库、高斯分量为16个和24个情况下,GMR方法的误差累计分布。由图中可见,基于数据库DB1时,定位误差小于1m的概率低于使用数据库DB2和DB3情况,但除了一种情况外,其余5种情况的定位误差小于1m的概率均可达90%以上。
3、GMR声源定位与已有位置指纹声源定位效果比较
将GMR方法与已有的基于确定性方法、概率法、神经网络的位置指纹定位效果进行比较,结果如表2所示,其中定位所用时间是在主频为2.26GHz的HP笔记本电脑上测得的处理长度为140秒的信号数据时,程序执行所用时间,存储数据类型为双精度浮点型(即C语言中的double型)。
从表2可以看出,四类方法均能实现声源的有效定位。从定位误差角度评价,概率法定位误差最大,确定性方法居中,而BP神经网络法和GMR方法定位误差较小,定位误差小于0.5m的情况可达60%以上,明显优于其他方法。从定位速度角度评价,确定性方法计算量最小、速度最快,概率法和GMR方法定位速度相当,耗时约为确定性方法的3倍,而神经网络法定位速度非常慢,耗时为确定性方法的15倍或30倍。从存储数据量角度评价,广义回归神经网络(Generalized Regression Neural Network,GRNN)方法存储数据量较大(这是由于输入训练样本较多),确定性方法、径向基函数神经网络(Radial Basis FunctionNeural Network,RBF-NN)方法与反向传播神经网络(Back Propagation NeuralNetwork,BP-NN)方法存储量较小,概率法和GMR方法存储量居中。
综上所述,GMR方法能够在保证较快定位速度的同时,具有较高的定位精度,整体性能优于其余三类方法。
表2四类定位方法性能比较
Figure BDA0000372645510000141

Claims (2)

1.一种用于分布式麦克风阵列的声源定位系统,其特征在于:包括信号能量比计算模块A、数据库建立模块、GMM训练模块、信号能量比计算模块B和声源坐标计算模块;所述的信号能量比计算模块A的输入端输入指纹采集点处各麦克风采集到的信号,输出端与数据库建立模块输入端连接;数据库建立模块输出端与GMM训练模块输入端连接,GMM训练模块输出端与声源坐标计算模块输入端连接;所述的信号能量比计算模块B的输入端输入未知位置处各麦克风采集到的信号,输出端也与声源坐标计算模块输入端连接;声源坐标计算模块输出端输出声源坐标;所述的GMM为高斯混合模型Gaussian MixtureModel的简称;
信号能量比计算模块A根据在各个指纹采集点处采集到的信号生成训练矢量,数据库建立模块将该训练矢量存储起来构成数据库,GMM训练模块根据数据库中的数据进行训练,获得GMM参数,该参数供声源坐标计算模块使用;信号能量比计算模块B采集未知位置的信号生成观测矢量,声源坐标计算模块根据该矢量和GMM参数计算出该未知位置处的声源坐标;
一种用于分布式麦克风阵列的声源定位方法,包括以下步骤:
A、在已部署好的麦克风阵列工作场地,将声源移动至事先确定好的各个指纹采集点处,将采集到的信号输入到信号能量比计算模块A,进行信号能量比计算,输出计算结果至数据库建立模块;所述的信号能量比计算对每个指纹采集点处采集的每帧信号进行一次计算;所述的信号能量比计算模块A的工作方法包括以下步骤:
首先检测输入信号的有效性,定义分布式麦克风阵列中麦克风数目为M,第1个麦克风接收到的输入为s1(n),当前帧在原始信号序列中的起始位置为start,信号帧长为L=qfs,qfs为信号采样频率,q为帧长对应的等效时间,其取值范围是0.05<q<0.5;则第1个麦克风的当前帧短时对数能量E1
E 1 = &Sigma; n = start start + L - 1 s 1 2 ( n )
将E1与信号/噪声判定阈值Ethr进行比较,若E1<Ethr,判定当前帧为噪声帧,否则,判定当前帧为信号帧;若当前帧为噪声帧,则估计背景噪声能量并更新阈值Ethr;更新阈值Ethr的方法为
if  Emin<E1
  Emin=E1
  Ethr=aEmin
end if
其中,Emin表示记录的第1个麦克风最小短时能量,a为一个门限因子,其取值范围1<a<100;
定义第m个麦克风接收到输入为sm(n),若当前帧为噪声帧,则第m个麦克风的背景噪声Em估计方法为
E m = &Sigma; n = start start + N - 1 s m 2 ( n ) , m = 1,2 , &CenterDot; &CenterDot; &CenterDot; , M
εm,curr=(1-b)·εm,old+b·Em
其中,εm,curr为第m个麦克风当前帧背景噪声能量估计值,εm,old为第m个麦克风前一次背景噪声能量估计值,b为平滑因子,表示平滑过程中当前帧能量Em所占比重,其取值范围0<b<1;
若当前帧为信号帧,去除第1个和第m个麦克风背景噪声能量的影响,之后以第1个麦克风信号能量作参考,计算第m个麦克风与第1个麦克风的修正后的信号能量比erm
er m = E m - &epsiv; m , curr E 1 - &epsiv; 1
然后将erm,m=2,3,…,M,共M-1个信号能量比组成能量比矢量ER,即
ER=[er2,er3,…,erM]T
B、将信号能量比计算模块A计算得到的信号能量比以及对应指纹采集点坐标输入到数据库建立模块,并将其存储起来用于建立数据库,数据库建立模块只需离线执行一次,GMM训练模块输出的GMM参数输出至声源坐标计算模块;所述的数据库建立模块的工作方法包括以下步骤:
将声源移动到事先确定好的各个指纹采集点处,为保证有足够多的训练用矢量,降低指纹参数的随机误差,需在每个采集点多次计算输入信号能量比,并将能量比矢量与对应采集点坐标依次记录下来;设置一个平面区域,将每个能量比矢量ERi与对应采集点坐标SLi组成联合矢量,存储至数据库,即
x i = ER i SL i - - - ( 6 )
其中,i=1,2…,N,N表示数据库中共有N组数据;
C、将数据库中的数据输入到GMM训练模块,将其作为训练矢量,训练GMM,输出GMM参数至声源坐标计算模块,在数据库不变的情况下,GMM训练模块只需离线执行一次;所述的GMM训练模块的工作过程如下:
GMM用多个高斯分布函数的组合逼近任意形状的概率分布;假设GMM中具有K个高斯混合分量,那么对于D维的观测矢量xi,其联合概率分布表示为
p ( x i ; &Theta; ) = &Sigma; k = 1 K w k f k ( x i ; &mu; k , &Sigma; k ) - - - ( 7 )
其中,wk是第k个高斯分量的权值,满足
Figure FDA0000372645500000033
fk(xikk)为D维高斯概率分布函数,表达式为
f k ( x i ; &mu; k , &Sigma; k ) = 1 ( 2 &pi; ) D / 2 | &Sigma; k | 1 / 2 exp [ - 1 2 ( x i - &mu; k ) T &Sigma; k - 1 ( x i - &mu; k ) ] - - - ( 8 )
其中,μk是第k个高斯分量的均值矢量,Σk是第k个高斯分量的协方差矩阵,而
Figure FDA0000372645500000035
表示全部高斯混合分量的参数,也就是整个GMM的参数;
对于含有N组观测数据的数据集X=[x1,x2,…,xN],其对数似然函数表示为
log e p ( X ; &Theta; ) = &Sigma; i = i N log e p ( x i ; &Theta; ) - - - ( 9 )
用数据集X来训练GMM,就是找到一组参数Θ,使得对数似然函数logep(X;Θ)的期望最大,求解这一组参数采用的是期望最大化算法,即EM算法;EM算法是一种迭代算法,主要包括两个步骤:求期望的EXPECT步骤和最大化的MAXIMIZE步骤;对于GMM,其具体过程如下:
C1、采用K均值聚类方法确定参数初始值
Figure FDA0000372645500000041
C2、求期望步骤,即EXPECT步骤:求训练数据集中第i个数据在第k个高斯分量状态下的概率
p ( k i = k ; x i , &Theta; ( 0 ) ) = w k ( 0 ) f k ( x i ; &mu; k ( 0 ) , &Sigma; k ( 0 ) ) &Sigma; j = 1 K w j ( 0 ) f j ( x i ; &mu; j ( 0 ) , &Sigma; j ( 0 ) ) - - - ( 10 )
C3、最大化步骤,即MAXIMAZE步骤:求使logep的期望取最大值的Θ:各混合分量的均值矢量、方差以及权值,即
&mu; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) x i &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 11 )
&Sigma; k ( 1 ) = &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) ( x i - &mu; k ( 1 ) ) ( x i - &mu; k ( 1 ) ) T &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 12 )
w k ( 0 ) = 1 N &Sigma; i = 1 N p ( k i = k ; x i , &Theta; ( 0 ) ) - - - ( 13 )
其中,上角标数字表示当前迭代次数;
C4、重复步骤C2和C3,直到达到收敛条件,迭代停止;
由此估计得到GMM参数
Figure FDA0000372645500000046
从而建立GMM;
D、在线定位阶段,声源处于某个未知位置,将采集到的信号输入到信号能量比计算模块B,进行信号能量比计算,输出计算结果至声源坐标计算模块,信号能量比计算每帧执行一次;所述的信号能量比计算模块B的工作过程与信号能量比计算模块A的工作过程相同;
E、将GMM参数与信号能量比计算模块B输出的信号能量比输入到声源坐标计算模块,进行声源坐标的计算,输出声源坐标;所述的声源坐标计算模块的工作过程如下:
高斯混合回归是一种多变量非线性回归模型,其在对数据的联合概率密度构造GMM之后,导出条件概率密度和回归函数;对于联合矢量 ER i SL i , 由训练GMM模块训练所得GMM参数可构成其联合概率密度:
p ( ER , SL ) = &Sigma; k = 1 K w k f k ( ER , SL ; &mu; k , &Sigma; k )
= &Sigma; k = 1 K w k f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) f k ( ER ; &mu; kE , &Sigma; kEE )     (14)
式中
&Sigma; k = 1 K w k = 1 , &mu; k = &mu; kE &mu; kS , &Sigma; k = &Sigma; kEE &Sigma; kES &Sigma; kSE &Sigma; kSS - - - ( 15 )
m k ( ER ) = &mu; kS + &Sigma; kSE &Sigma; kEE - 1 ( ER - &mu; kE ) - - - ( 16 )
&sigma; k 2 = &Sigma; kSS - &Sigma; kSE &Sigma; kEE - 1 &Sigma; kES - - - ( 17 )
其中,ER表示能量比矢量,SL表示与之对应的采集点坐标,ER|SL表示在SL采集点处采集得能量比为ER的情况;μkE与μkS分别表示ER和SL在第k个高斯分量上的均值矢量,ΣkEE和ΣkSS分别表示ER和SL在第k个高斯分量上的自相关矩阵;ΣkES和ΣkSE分别表示ER和SL、SL和ER在第k个高斯分量上的协方差矩阵;mk(ER)表示ER的期望,
Figure FDA0000372645500000057
表示方差;
计算边缘密度
p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) - - - ( 18 )
得到条件概率密度
p ( SL | ER ) = p ( ER , SL ) p ( ER ) = &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( ER ; &mu; kE , &Sigma; kEE ) f k ( SL | ER ; m k ( ER ) , &sigma; k 2 ) - - - ( 19 )
根据式(19),在已知观测矢量ER′的情况下,计算其条件概率期望m(ER′),得到声源坐标估计值
S ^ L = m ( ER &prime; ) = E [ SL | ER = ER &prime; ] = &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) &Sigma; k = 1 K w k f k ( E R &prime; ; &mu; kE , &Sigma; kEE ) m k ( ER &prime; ) - - - ( 20 ) .
2.根据权利要求1所述的一种用于分布式麦克风阵列的声源定位系统,其特征在于:所述的帧长对应的等效时间q的最佳值为0.2;所述的门限因子a的最佳值为a=4;所述的平滑因子b的最佳值为b=0.05。
CN201310379053.4A 2013-08-27 2013-08-27 一种用于分布式麦克风阵列的声源定位系统及定位方法 Expired - Fee Related CN103439688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310379053.4A CN103439688B (zh) 2013-08-27 2013-08-27 一种用于分布式麦克风阵列的声源定位系统及定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310379053.4A CN103439688B (zh) 2013-08-27 2013-08-27 一种用于分布式麦克风阵列的声源定位系统及定位方法

Publications (2)

Publication Number Publication Date
CN103439688A true CN103439688A (zh) 2013-12-11
CN103439688B CN103439688B (zh) 2015-04-22

Family

ID=49693393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310379053.4A Expired - Fee Related CN103439688B (zh) 2013-08-27 2013-08-27 一种用于分布式麦克风阵列的声源定位系统及定位方法

Country Status (1)

Country Link
CN (1) CN103439688B (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839553A (zh) * 2014-03-15 2014-06-04 王岩泽 定点录音系统
CN104105049A (zh) * 2014-07-17 2014-10-15 大连理工大学 一种减少传声器使用数量的房间冲激响应函数测量方法
CN104469154A (zh) * 2014-12-05 2015-03-25 合肥国科声拓信息技术有限公司 一种基于麦克风阵列的摄像头引导装置及引导方法
CN104777450A (zh) * 2015-04-29 2015-07-15 西安电子科技大学 一种两级music麦克风阵列测向方法
CN104865555A (zh) * 2015-05-19 2015-08-26 河北工业大学 一种基于声音位置指纹的室内声源定位方法
CN104898091A (zh) * 2015-05-29 2015-09-09 复旦大学 基于迭代优化算法的麦克风阵列自校准声源定位系统
CN104977562A (zh) * 2015-01-16 2015-10-14 上海大学 完全分布式无线传感网中鲁棒性多声源定位方法
CN105388459A (zh) * 2015-11-20 2016-03-09 清华大学 分布式麦克风阵列网络的鲁棒声源空间定位方法
CN105388452A (zh) * 2015-10-30 2016-03-09 北京工业大学 基于生命探测飞行器的超宽带雷达多点分布式目标定位方法
CN105489219A (zh) * 2016-01-06 2016-04-13 广州零号软件科技有限公司 室内空间服务机器人分布式语音识别系统与产品
CN105976827A (zh) * 2016-05-26 2016-09-28 南京邮电大学 一种基于集成学习的室内声源定位方法
CN106019230A (zh) * 2016-05-27 2016-10-12 南京邮电大学 一种基于i-vector说话人识别的声源定位方法
CN106251877A (zh) * 2016-08-11 2016-12-21 珠海全志科技股份有限公司 语音声源方向估计方法及装置
CN106526541A (zh) * 2016-10-13 2017-03-22 杭州电子科技大学 基于分布矩阵决策的声音定位方法
CN106940439A (zh) * 2017-03-01 2017-07-11 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN107202976A (zh) * 2017-05-15 2017-09-26 大连理工大学 低复杂度的分布式麦克风阵列声源定位系统
CN107333120A (zh) * 2017-08-11 2017-11-07 吉林大学 一种基于麦克风阵列和立体视觉的集成传感器
CN108318862A (zh) * 2017-12-26 2018-07-24 北京大学 一种基于神经网络的声源定位方法
CN108333575A (zh) * 2018-02-02 2018-07-27 浙江大学 基于高斯先验与区间约束的移动声源时延滤波方法
CN109283491A (zh) * 2018-08-02 2019-01-29 哈尔滨工程大学 一种基于矢量探测单元的无人机定位系统
CN109597022A (zh) * 2018-11-30 2019-04-09 腾讯科技(深圳)有限公司 声源方位角运算、定位目标音频的方法、装置和设备
CN109635676A (zh) * 2018-11-23 2019-04-16 清华大学 一种从视频中定位音源的方法
CN110568406A (zh) * 2019-09-03 2019-12-13 浙江万里学院 一种能量衰减因子未知条件下基于声能的定位方法
CN110677782A (zh) * 2018-07-03 2020-01-10 国际商业机器公司 信号自适应噪声过滤器
CN110874909A (zh) * 2018-08-29 2020-03-10 杭州海康威视数字技术股份有限公司 监控方法、系统及可读存储介质
CN111694433A (zh) * 2020-06-11 2020-09-22 北京百度网讯科技有限公司 语音交互的方法、装置、电子设备及存储介质
CN112466325A (zh) * 2020-11-25 2021-03-09 Oppo广东移动通信有限公司 声源定位方法和装置,及计算机存储介质
CN112699735A (zh) * 2020-12-07 2021-04-23 中国人民解放军国防科技大学 基于深度学习的近场源定位方法
CN112925235A (zh) * 2021-01-21 2021-06-08 深圳市普渡科技有限公司 交互时的声源定位方法、设备和计算机可读存储介质
CN113281700A (zh) * 2021-04-20 2021-08-20 宜宾学院 一种无线电磁定位系统及方法
CN113450623A (zh) * 2021-06-01 2021-09-28 浙江工贸职业技术学院 一种演唱训练系统
CN114131600A (zh) * 2021-12-01 2022-03-04 中国人民解放军国防科技大学 基于高斯混合模型的机器人源搜索方案的生成方法及系统
CN114720943A (zh) * 2022-06-06 2022-07-08 深圳市景创科技电子股份有限公司 多声道声源定位方法及系统
CN115902774A (zh) * 2022-10-13 2023-04-04 广州成至智能机器科技有限公司 无人机声源定位方法、装置、无人机及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074236A (zh) * 2010-11-29 2011-05-25 清华大学 一种分布式麦克风的说话人聚类方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074236A (zh) * 2010-11-29 2011-05-25 清华大学 一种分布式麦克风的说话人聚类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEHREZ SOUDEN ET AL.: "DISTRIBUTED MICROPHONE ARRAY PROCESSING FOR SPEECH SOURCE SEPARATION WITH CLASSIFIER FUSION", 《MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012 IEEE INTERNATIONAL WORKSHOP ON》 *
周翠梅等: "基于高斯混合模型的说话人识别技术", 《2010年通信理论与信号处理学术年会论文集》 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839553A (zh) * 2014-03-15 2014-06-04 王岩泽 定点录音系统
CN104105049A (zh) * 2014-07-17 2014-10-15 大连理工大学 一种减少传声器使用数量的房间冲激响应函数测量方法
CN104469154A (zh) * 2014-12-05 2015-03-25 合肥国科声拓信息技术有限公司 一种基于麦克风阵列的摄像头引导装置及引导方法
CN104469154B (zh) * 2014-12-05 2017-09-26 合肥国科声拓信息技术有限公司 一种基于麦克风阵列的摄像头引导装置及引导方法
CN104977562A (zh) * 2015-01-16 2015-10-14 上海大学 完全分布式无线传感网中鲁棒性多声源定位方法
CN104977562B (zh) * 2015-01-16 2018-10-23 上海大学 完全分布式无线传感网中鲁棒性多声源定位方法
CN104777450A (zh) * 2015-04-29 2015-07-15 西安电子科技大学 一种两级music麦克风阵列测向方法
CN104865555A (zh) * 2015-05-19 2015-08-26 河北工业大学 一种基于声音位置指纹的室内声源定位方法
CN104865555B (zh) * 2015-05-19 2017-12-08 河北工业大学 一种基于声音位置指纹的室内声源定位方法
CN104898091B (zh) * 2015-05-29 2017-07-25 复旦大学 基于迭代优化算法的麦克风阵列自校准声源定位系统
CN104898091A (zh) * 2015-05-29 2015-09-09 复旦大学 基于迭代优化算法的麦克风阵列自校准声源定位系统
CN105388452A (zh) * 2015-10-30 2016-03-09 北京工业大学 基于生命探测飞行器的超宽带雷达多点分布式目标定位方法
CN105388459B (zh) * 2015-11-20 2017-08-11 清华大学 分布式麦克风阵列网络的鲁棒声源空间定位方法
CN105388459A (zh) * 2015-11-20 2016-03-09 清华大学 分布式麦克风阵列网络的鲁棒声源空间定位方法
CN105489219A (zh) * 2016-01-06 2016-04-13 广州零号软件科技有限公司 室内空间服务机器人分布式语音识别系统与产品
CN105976827B (zh) * 2016-05-26 2019-09-13 南京邮电大学 一种基于集成学习的室内声源定位方法
CN105976827A (zh) * 2016-05-26 2016-09-28 南京邮电大学 一种基于集成学习的室内声源定位方法
CN106019230A (zh) * 2016-05-27 2016-10-12 南京邮电大学 一种基于i-vector说话人识别的声源定位方法
CN106251877A (zh) * 2016-08-11 2016-12-21 珠海全志科技股份有限公司 语音声源方向估计方法及装置
CN106251877B (zh) * 2016-08-11 2019-09-06 珠海全志科技股份有限公司 语音声源方向估计方法及装置
CN106526541A (zh) * 2016-10-13 2017-03-22 杭州电子科技大学 基于分布矩阵决策的声音定位方法
CN106526541B (zh) * 2016-10-13 2019-01-18 杭州电子科技大学 基于分布矩阵决策的声音定位方法
CN106940439B (zh) * 2017-03-01 2019-05-21 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN106940439A (zh) * 2017-03-01 2017-07-11 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN107202976A (zh) * 2017-05-15 2017-09-26 大连理工大学 低复杂度的分布式麦克风阵列声源定位系统
CN107333120A (zh) * 2017-08-11 2017-11-07 吉林大学 一种基于麦克风阵列和立体视觉的集成传感器
CN107333120B (zh) * 2017-08-11 2020-08-04 吉林大学 一种基于麦克风阵列和立体视觉的集成传感器
CN108318862A (zh) * 2017-12-26 2018-07-24 北京大学 一种基于神经网络的声源定位方法
CN108318862B (zh) * 2017-12-26 2021-08-20 北京大学 一种基于神经网络的声源定位方法
CN108333575A (zh) * 2018-02-02 2018-07-27 浙江大学 基于高斯先验与区间约束的移动声源时延滤波方法
CN110677782B (zh) * 2018-07-03 2021-06-18 国际商业机器公司 信号自适应噪声过滤器
CN110677782A (zh) * 2018-07-03 2020-01-10 国际商业机器公司 信号自适应噪声过滤器
CN109283491A (zh) * 2018-08-02 2019-01-29 哈尔滨工程大学 一种基于矢量探测单元的无人机定位系统
CN110874909A (zh) * 2018-08-29 2020-03-10 杭州海康威视数字技术股份有限公司 监控方法、系统及可读存储介质
CN109635676A (zh) * 2018-11-23 2019-04-16 清华大学 一种从视频中定位音源的方法
CN109597022B (zh) * 2018-11-30 2023-02-17 腾讯科技(深圳)有限公司 声源方位角运算、定位目标音频的方法、装置和设备
US11967316B2 (en) 2018-11-30 2024-04-23 Tencent Technology (Shenzhen) Company Limited Audio recognition method, method, apparatus for positioning target audio, and device
CN109597022A (zh) * 2018-11-30 2019-04-09 腾讯科技(深圳)有限公司 声源方位角运算、定位目标音频的方法、装置和设备
WO2020108614A1 (zh) * 2018-11-30 2020-06-04 腾讯科技(深圳)有限公司 音频识别方法、定位目标音频的方法、装置和设备
CN110568406A (zh) * 2019-09-03 2019-12-13 浙江万里学院 一种能量衰减因子未知条件下基于声能的定位方法
CN110568406B (zh) * 2019-09-03 2021-07-20 浙江万里学院 一种能量衰减因子未知条件下基于声能的定位方法
CN111694433B (zh) * 2020-06-11 2023-06-20 阿波罗智联(北京)科技有限公司 语音交互的方法、装置、电子设备及存储介质
CN111694433A (zh) * 2020-06-11 2020-09-22 北京百度网讯科技有限公司 语音交互的方法、装置、电子设备及存储介质
CN112466325A (zh) * 2020-11-25 2021-03-09 Oppo广东移动通信有限公司 声源定位方法和装置,及计算机存储介质
CN112699735A (zh) * 2020-12-07 2021-04-23 中国人民解放军国防科技大学 基于深度学习的近场源定位方法
CN112925235A (zh) * 2021-01-21 2021-06-08 深圳市普渡科技有限公司 交互时的声源定位方法、设备和计算机可读存储介质
CN113281700A (zh) * 2021-04-20 2021-08-20 宜宾学院 一种无线电磁定位系统及方法
CN113281700B (zh) * 2021-04-20 2023-10-31 宜宾学院 一种无线电磁定位系统及方法
CN113450623A (zh) * 2021-06-01 2021-09-28 浙江工贸职业技术学院 一种演唱训练系统
CN114131600A (zh) * 2021-12-01 2022-03-04 中国人民解放军国防科技大学 基于高斯混合模型的机器人源搜索方案的生成方法及系统
CN114720943A (zh) * 2022-06-06 2022-07-08 深圳市景创科技电子股份有限公司 多声道声源定位方法及系统
CN115902774A (zh) * 2022-10-13 2023-04-04 广州成至智能机器科技有限公司 无人机声源定位方法、装置、无人机及存储介质
CN115902774B (zh) * 2022-10-13 2023-11-07 广州成至智能机器科技有限公司 无人机声源定位方法、装置、无人机及存储介质

Also Published As

Publication number Publication date
CN103439688B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN103439688B (zh) 一种用于分布式麦克风阵列的声源定位系统及定位方法
CN109712611B (zh) 联合模型训练方法及系统
CN111123192B (zh) 一种基于圆形阵列和虚拟扩展的二维doa定位方法
CN102565759B (zh) 一种基于子带信噪比估计的双耳声源定位方法
CN105204001A (zh) 一种声源定位的方法及系统
CN101893698B (zh) 噪声源测试分析方法及其装置
CN103995252A (zh) 一种三维空间声源定位方法
CN104064186A (zh) 一种基于独立分量分析的电气设备故障音检测方法
CN111259750A (zh) 一种基于遗传算法优化bp神经网络的水声目标识别方法
CN105388459A (zh) 分布式麦克风阵列网络的鲁棒声源空间定位方法
CN111798869B (zh) 一种基于双麦克风阵列的声源定位方法
CN110048416B (zh) S-g滤波和自适应mp算法的低频振荡模态辨识方法
CN106255027A (zh) 一种非线性音频系统的音质可听化评估方法及系统
CN103237345B (zh) 一种基于二元量化数据的声源目标迭代定位方法
CN104678359A (zh) 一种声场识别的多孔声全息方法
CN102279399A (zh) 一种基于动态规划的微弱目标频谱跟踪方法
CN111541255A (zh) 基于动力学系统的低频振荡模态识别方法及系统
CN112014791B (zh) 存在阵列误差的阵列pca-bp算法的近场源定位方法
CN104105049A (zh) 一种减少传声器使用数量的房间冲激响应函数测量方法
CN111859241B (zh) 一种基于声传递函数学习的非监督声源定向方法
Zheng et al. Spectral mask estimation using deep neural networks for inter-sensor data ratio model based robust DOA estimation
Yao et al. Improvement in the accuracy of estimating the time-of-flight in an ultrasonic ranging system using multiple square-root unscented Kalman filters
CN115097378A (zh) 一种基于卷积神经网络的非相干散射源检测与定位方法
Zhong et al. Particle filtering for 2-D direction of arrival tracking using an acoustic vector sensor
Pandey et al. Experimental validation of wideband SBL models for DOA estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20180827

CF01 Termination of patent right due to non-payment of annual fee