CN103427604A - 开关电路 - Google Patents

开关电路 Download PDF

Info

Publication number
CN103427604A
CN103427604A CN2013101811235A CN201310181123A CN103427604A CN 103427604 A CN103427604 A CN 103427604A CN 2013101811235 A CN2013101811235 A CN 2013101811235A CN 201310181123 A CN201310181123 A CN 201310181123A CN 103427604 A CN103427604 A CN 103427604A
Authority
CN
China
Prior art keywords
voltage
circuit
switching circuit
transistor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101811235A
Other languages
English (en)
Other versions
CN103427604B (zh
Inventor
博比·雅各布·丹尼尔
威廉默斯·朗厄塞格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Semiconductor Hong Kong Ltd
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN103427604A publication Critical patent/CN103427604A/zh
Application granted granted Critical
Publication of CN103427604B publication Critical patent/CN103427604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3381Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement using a single commutation path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种开关电路及其操作方法。开关电路包括:开关晶体管,用于根据施加到开关晶体管的控制端的控制信号来控制开关电路的操作;调整电路,用于产生控制信号;以及检测电路,用于在开关晶体管处于关闭状态时检测控制端的电压,并根据检测到的电压产生驱动信号。调整电路用于基于所产生的驱动信号来产生控制信号。

Description

开关电路
技术领域
本发明涉及开关电路,如转换器。
背景技术
在自激振荡转换器中,例如边界导通模式的降压转换器,需要通过检测电压摆幅中的最低电压来决定何时打开开关,以便尽量减少硬开关。硬开关会使开关产生很大的功率损耗。在漏极电压摆幅的最低值打开场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,即MOSFET)开关可以降低功率损耗,因此有助于提高操作效率。
为能够更好地理解,图1A示出了传统的临界导通模式的降压转换器10的电路图。图1B示出了在一个开关周期持续时间内场效应晶体管开关12的栅极11和漏极13的电压和输出电流15的变化。
在周期的第一部分中(即在第一行程中),栅极电压11处于高值,并且场效应晶体管开关12是打开的。电感器中的电流15被检测到线性上升到预定的峰值,然后开关关闭,并且进入周期的第二部分(即第二行程)。在第二行程中,场效应晶体管开关12的栅极电压11处于低值,电感器中的电流线性下降,直至达到零。当电感器中的电流达到零时,场效应晶体管开关12的漏极13的电压由于漏极电容和电感间的谐振而摆动。当栅极电压回复到高值(场效应晶体管开关12因此切换至打开),对场效应晶体管12的漏极电容器充电消失,电流15再次线性上升。
如上文所述,在漏极电压摆幅的低值(即在电压的谷值)打开场效应晶体管开关12以便降低至场效应晶体管开关12的功率损耗被认为是优选的。
在常规的实施方式中,通过检测集成电路(IC)中的电容器的一端来检测电压谷值,电容器的另一端与漏极相连。这种公知的检测电压谷值的方法如图2所示。这就需要:(1)可从集成电路访问的漏极节点,和(2)IC内部的高压电容器。
对于仅靠控制器控制的集成电路,这是不可行的,因为漏极节点是无法访问的。此外,这将需要与内部的高电压(HV)电容器相连的额外的引脚(则集成电路就必须要具备高压器件),或者与外部的高电压电容器相连的额外的引脚。这将导致成本的增加和准确性的降低。
一种已知的可替代方式是使用从场效应晶体管漏极到控制器的检测引脚的电容来检测电压谷值。然而,这样做的缺点是需要额外的高压电容器和高压电阻器。
发明内容
根据本发明的一个方面,提供了一种根据独立权利要求的开关电路。
实施例中介绍的电压谷值检测的概念,只使用被电路控制器驱动的开关的控制部分(例如,场效应晶体管开关的栅极,或者双极型晶体管的基极)。
根据本发明的一个方面,提供了一种开关电路,包括开关晶体管,用于根据施加到开关晶体管的控制端的控制信号来控制开关电路的操作;调整电路,用于产生控制信号;检测电路,用于在开关晶体管处于关闭状态时检测控制端的电压,并根据检测到的电压产生驱动信号;其中调整电路用于根据所产生的驱动信号来产生控制信号。
因此,实施例可以检测场效应晶体管开关的栅极电压,该场效应晶体管开关的栅极与控制器集成电路的驱动引脚相连,以检测电压的谷值。因此,控制器引脚提供双重功能,从而不再需要使用专门的电压谷值检测引脚。
根据本发明的另一方面,提供了一种控制开关电路的方法,该开关电路包括具有控制端的开关晶体管,该方法包括:产生控制信号;向开关晶体管的控制端施加控制信号;在开关晶体管处于关闭状态时检测控制端的电压;根据检测到的电压产生驱动信号;其中,所述控制信号是根据产生的驱动信号而产生的。
因此,实施例可以通过检测与外部场效应晶体管开关的栅极相连的集成电路控制器引脚的电压或电流,以检测电压谷值。
附图说明
图1A是传统的临界导通模式的降压转换器的电路图;
图1B示出的是图1A中转换器在一个开关周期内栅极电压,漏极电压和输出电流的变化;
图2示出的是应用公知的方法在开关电路中检测电压谷值的电路;
图3A是根据本发明的一个实施例的开关电路的电路图;
图3B示出的是图3A中的开关电路的漏极电压,米勒电容电流和驱动电压的变化;
图4示出的是根据本发明的一个实施例的开关电路的模拟结果。
具体实施方式
本发明的实施例使用从开关的控制端得到的信息来检测电压摆幅中的最低电压(即电压的谷值)。提供一种具有双重功能的控制端,因而不需要专用的谷值检测端。
图3A示出根据本发明的一个实施例的开关电路50的电路图。该开关电路50包括连接到场效应晶体管54的栅极的调整电路52。调整电路52适用于产生施加到场效应晶体管54的栅极的驱动信号DRIVER。该驱动信号因而作为场效应晶体管54的控制操作控制信号。因此,场效应晶体管54适用于根据施加到场效应晶体管54的栅极的驱动信号DRIVER来控制开关电路50的操作。
开关电路50还包括检测电路,该检测电路适用于在场效应晶体管54处于关闭状态时检测场效应晶体管的栅极端的电压。基于检测到的电压,开关电路50产生驱动信号VGATENEGSNS。
这里所述的检测电路包括与调整电路52的晶体管58串联的电阻器56。检测电路还包括比较器60,该比较器60具有与场效应晶体管54的栅极端连接的第一输入端60a和与基准电压(在本实施方式中,基准电压为-100mV)连接的第二输入端。因此,比较器60适用于比较场效应晶体管54的栅极端的电压与基准电压,并基于比较结果生成驱动信号VGATENEGSNS。
驱动信号VGATENEGSNS被提供至调整电路52,调整电路52根据驱动信号VGATENEGSNS产生控制信号DRIVER。
因此,所描述的实施例适用于检测场效应晶体管54的栅极的驱动信号DRIVER的电压。使用该栅极电压,通过确定栅极电压在往上的方向上穿过预定负值的时间,来检测电压谷值。值得注意的是,漏栅极电容器62存在于场效应晶体管的漏极和栅极之间。这被称为米勒电容器62,在高压场效应晶体管开关中通常具有较高的电容值。通过米勒电容器(Miller Capacitor)62的电流可被用来识别驱动信号DRIVER中谷值电压发生的时间。
作为说明,图3B示出的是图3A中的开关电路在开关周期的第二行程中的漏极电压、米勒电容电流和驱动电压的变化。
在开关周期的第二行程中,场效应晶体管54被关闭,栅极电压V(DRIVER)64(通过低侧场效应晶体管)被驱动到接地(0伏)。
这里,场效应晶体管54被设计为具有较大下拉电流的能力,来确保快速关闭。这种较大下拉电流的能力是通过与电阻器56并联的二极管62维持的。
输出电流线性下降,直至达到零。当输出电流变为零,漏极电压V(DRAIN)66开始向下摆动,场效应晶体管向栅-漏米勒电容I(MillerCap)68提供正电流(而不是下拉)。
通过用电阻器56,至栅-漏米勒电容I68的电流的变化可以被看作是负电压摆幅/栅极电压V(DRIVER)64的变化。值得注意的是,栅极电压V(DRIVER)64在漏极电压V(DRAIN)66的电压谷值/摆幅时达到零伏。因此,可以通过检测栅极电压V(DRIVER)64达到零或从负值穿过零的时间来检测电压谷值。
在图3A的实施例中,检测电路中的比较器60适用于比较栅极电压V(DRIVER)64与基准电压,基准电压是-100mV。因此,可以理解的是,这样的布置可以表示就在栅极电压V(DRIVER)64达到零或从负值穿过零之前的一个实例。
在可替代的实施例中,参考电压的取值范围可为-0.5伏到0.5伏,优选为-0.25伏到0.25伏,并且更为优选为-0.1伏到0.1伏。因此,可以理解的是,根据时间和/或精度的要求,基准电压选择的值应接近零(0)伏。
至于图4,示出了根据本发明的一个实施例的开关电路的仿真结果。开关电路适用于通过检测施加到场效应晶体管栅极(参照3A和3B相关所述)的驱动信号VN(DRIVER)的电压,来检测电压谷值(发生在场效应晶体管开关的漏极电压VN(DRAIN)内)。
在此,VN(GATENEGSNS)信号是检测电路的比较器输出的控制信号。该控制信号标识施加到场效应晶体管的栅极的驱动信号VN(DRIVER)电压值为负(即具有负的值)的时间。
发生在场效应晶体管的漏极电压VN(DRAIN)上的电压谷值在控制信号VN(GATENEGSNS)处于下降沿时被检测到,因为它是在驱动信号VN(DRIVER)变为正值时发生的。此时,场效应晶体管开关打开(可以通过驱动信号VN(DRIVER)和场效应晶体管的漏极电压VN(DRAIN)的变化看出)。
应当理解,实施例可以适用于其他使用在连接到开关控制端的引脚检测电压/电流电压谷值的思想来检测电压谷值的开关电路中。因此,实施例可以用于具有控制器芯片的电路,该控制器芯片驱动外部开关,其中,电压谷值检测被用于控制开关的开关。使用控制器的“驱动”引脚,可以确定开启开关的时刻。因此,实施例可以提供具有双重功能的“驱动”引脚,从而不需要单独的/专用的电压谷值检测引脚。
各种修改对于本领域技术人员将是显而易见的。
如果需要的话,可平行放置另一个NMOS与上述驱动NMOS-电阻-二极管(NMOS-Resistance-diode)并联,以确保在关闭开关期间有足够的驱动。这第二个NMOST可以被设置为仅当开关关闭的时候处于打开状态。

Claims (10)

1.一种开关电路,其特征在于,包括:
开关晶体管,用于根据施加到所述开关晶体管的控制端的控制信号来控制所述开关电路的操作;
调整电路,用于产生所述控制信号;
检测电路,用于在所述开关晶体管处于关闭状态时检测所述控制端的电压,并根据检测到的电压产生驱动信号;
其中,所述调整电路用于基于所产生的驱动信号来产生所述控制信号。
2.根据权利要求1所述的开关电路,其特征在于,所述检测电路用于在所述开关晶体管处于关闭状态时,基于所述检测到的电压与基准电压的比较结果来产生所述驱动信号。
3.根据权利要求2所述的开关电路,其特征在于,所述基准电压的取值范围为-0.5伏到0.5伏。
4.根据前述任一项权利要求所述的开关电路,其特征在于,所述检测电路包括与调整电路中的晶体管串联连接的电阻器。
5.根据权利要求4所述的开关电路,其特征在于,所述检测电路还包括与所述电阻器并联连接的二极管。
6.根据前述任一项权利要求所述的开关电路,其特征在于,所述开关电路是开关转换器。
7.根据前述任一项权利要求所述的开关电路,其特征在于,所述开关晶体管是场效应晶体管,所述控制端包括所述场效应晶体管的栅极。
8.一种控制开关电路的方法,所述开关电路包括具有控制端的开关晶体管,其特征在于,所述方法包括:
产生控制信号;
向所述开关晶体管的所述控制端施加所述控制信号;
在所述开关晶体管处于关闭状态时检测所述控制端的电压;
根据检测到的电压产生驱动信号;
其中,所述控制信号是基于产生的所述驱动信号而产生的。
9.根据权利要求8所述的方法,其特征在于,所述产生驱动信号的步骤包括:
在所述开关晶体管处于关闭状态时,比较检测到的电压与基准电压;和
基于比较的结果产生驱动信号。
10.根据权利要求8或9所述的方法,其特征在于,所述开关电路是开关转换器。
CN201310181123.5A 2012-05-18 2013-05-16 开关电路 Active CN103427604B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12168496.3A EP2665172B1 (en) 2012-05-18 2012-05-18 Soft-switching circuit
EP12168496.3 2012-05-18

Publications (2)

Publication Number Publication Date
CN103427604A true CN103427604A (zh) 2013-12-04
CN103427604B CN103427604B (zh) 2018-04-27

Family

ID=46172682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310181123.5A Active CN103427604B (zh) 2012-05-18 2013-05-16 开关电路

Country Status (5)

Country Link
US (1) US9128500B2 (zh)
EP (1) EP2665172B1 (zh)
CN (1) CN103427604B (zh)
ES (1) ES2608797T3 (zh)
PL (1) PL2665172T3 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249520A (zh) * 2017-08-29 2019-09-17 富士电机株式会社 检测装置、控制装置及逆变器装置
CN111224536A (zh) * 2020-04-16 2020-06-02 上海瞻芯电子科技有限公司 抗米勒效应功率模块的驱动装置及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9661711B2 (en) * 2013-08-19 2017-05-23 Infineon Technologies Austria Ag Multi-function pin for light emitting diode (LED) driver
US9891643B2 (en) * 2014-12-05 2018-02-13 Vidatronic, Inc. Circuit to improve load transient behavior of voltage regulators and load switches
WO2019084899A1 (en) 2017-11-03 2019-05-09 Dialog Semiconductor (Uk) Limited Switch driver
US10826376B1 (en) 2019-11-05 2020-11-03 Semiconductor Components Industries, Llc Switch controller and compensation method of valley detection error
US11418137B1 (en) * 2021-04-20 2022-08-16 Texas Instruments Incorporated Motor driver current sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119287A (ja) * 1999-10-20 2001-04-27 Isei Denshi Kofun Yugenkoshi 高速、低ノイズ出力バッファ
CN1445928A (zh) * 2002-01-17 2003-10-01 三菱电机株式会社 功率半导体元件的驱动电路
US20090066402A1 (en) * 2007-09-12 2009-03-12 Mitsubishi Electric Corporation Gate drive circuit
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077404A (ja) * 1992-11-03 1995-01-10 Texas Instr Deutschland Gmbh トランジスタ駆動回路配置
US5572416A (en) * 1994-06-09 1996-11-05 Lucent Technologies Inc. Isolated input current sense means for high power factor rectifier
US7061301B2 (en) * 2003-12-19 2006-06-13 Power Integrations, Inc. Method and apparatus switching a semiconductor switch with a multi-state drive circuit
CN1684348B (zh) * 2004-04-16 2010-10-20 深圳赛意法微电子有限公司 具有便于驱动器与变换器电路配合使用的控制接口的驱动器
US7570100B2 (en) * 2004-08-16 2009-08-04 Texas Instruments Incorporated Potential and rate adjust header switch circuitry reducing transient current
US7359222B2 (en) * 2005-09-15 2008-04-15 Power Integrations, Inc. Method and apparatus to improve regulation of a power supply
US7898823B2 (en) 2007-05-08 2011-03-01 Leadtrend Technology Corp. Quasi-resonant fly-back converter without auxiliary winding
WO2009037613A1 (en) 2007-09-18 2009-03-26 Nxp B.V. Control of a half bridge resonant converter for avoiding capacitive mode
US8193797B2 (en) * 2008-04-16 2012-06-05 Nxp B.V. Self-oscillating switched mode converter with valley detection
KR101445842B1 (ko) * 2008-05-29 2014-10-01 페어차일드코리아반도체 주식회사 컨버터
US7936189B2 (en) * 2008-12-04 2011-05-03 Stmicroelectronics S.R.L. Driver circuit and method for reducing electromagnetic interference
US8018742B2 (en) * 2009-02-04 2011-09-13 Grenergy Opto, Inc. Full-range-duty PWM signal generation method, apparatus, and system using same
JP5343986B2 (ja) * 2011-01-25 2013-11-13 株式会社デンソー 電子装置
US8466982B2 (en) * 2011-06-06 2013-06-18 Omnivision Technologies, Inc. Low common mode driver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119287A (ja) * 1999-10-20 2001-04-27 Isei Denshi Kofun Yugenkoshi 高速、低ノイズ出力バッファ
CN1445928A (zh) * 2002-01-17 2003-10-01 三菱电机株式会社 功率半导体元件的驱动电路
US20090066402A1 (en) * 2007-09-12 2009-03-12 Mitsubishi Electric Corporation Gate drive circuit
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249520A (zh) * 2017-08-29 2019-09-17 富士电机株式会社 检测装置、控制装置及逆变器装置
CN110249520B (zh) * 2017-08-29 2021-03-23 富士电机株式会社 检测装置、控制装置及逆变器装置
US10998812B2 (en) 2017-08-29 2021-05-04 Fuji Electric Co., Ltd. Detection device, control device, and inverter device
CN111224536A (zh) * 2020-04-16 2020-06-02 上海瞻芯电子科技有限公司 抗米勒效应功率模块的驱动装置及电子设备

Also Published As

Publication number Publication date
US20130307505A1 (en) 2013-11-21
ES2608797T3 (es) 2017-04-17
US9128500B2 (en) 2015-09-08
EP2665172B1 (en) 2016-10-12
EP2665172A1 (en) 2013-11-20
CN103427604B (zh) 2018-04-27
PL2665172T3 (pl) 2017-03-31

Similar Documents

Publication Publication Date Title
CN103427604A (zh) 开关电路
US9680377B2 (en) Inverting buck-boost converter drive circuit and method
US8362812B2 (en) Switching gate driver
JP4053425B2 (ja) 同期式dc−dcコンバータ
US7397264B2 (en) Method for testing power MOSFET devices
US7459945B2 (en) Gate driving circuit and gate driving method of power MOSFET
CN110165872B (zh) 一种开关控制电路及其控制方法
US8299820B2 (en) Circuit including a resistor arrangement for actuation of a transistor
US20150171852A1 (en) Gate driver circuit
US20070139839A1 (en) Overcurrent detection circuit and switching circuit
US7940092B2 (en) Gate driver circuit for H bridge circuit
US11165421B1 (en) Driving circuit for switching element and switching circuit
US20110075452A1 (en) Detecting device for the midpoint voltage of a transistor half bridge circuit
US10218258B1 (en) Apparatus and method for driving a power stage
CN101561687A (zh) 一种带有源负电流调制的同步升压电路及其控制方法
US10637348B1 (en) Dead-time control for half-bridge driver circuit
US20100072967A1 (en) Converter control circuit
JP6090007B2 (ja) 駆動回路
CN110943722B (zh) 驱动电路
US9876425B2 (en) Control circuit for power converter
CN102694470A (zh) 开关电路及dc-dc转换器
Hochberg et al. Analyzing a gate-boosting circuit for fast switching
TW200428775A (en) Method and apparatus for determining the switching state of a transistor
US10622991B2 (en) Switch driver
CN111937308A (zh) 控制切换的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160520

Address after: No 802 Sai Wan Road, Grand Cayman, Cayman Islands

Applicant after: Silergy Corp.

Address before: Holland Ian Deho Finn

Applicant before: Koninkl Philips Electronics NV

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210305

Address after: 15 / F, Bank of China Life Insurance Building, 136 des Voeux Road Central, Hong Kong, China

Patentee after: Silicon semiconductor (Hong Kong) Ltd.

Address before: 802 Sai Wan Road, grand caiman, Cayman Islands

Patentee before: Silergy Corp.