CN103425070A - 一种用于控制浅水观察级迷你水下机器人的方法 - Google Patents

一种用于控制浅水观察级迷你水下机器人的方法 Download PDF

Info

Publication number
CN103425070A
CN103425070A CN2013103557671A CN201310355767A CN103425070A CN 103425070 A CN103425070 A CN 103425070A CN 2013103557671 A CN2013103557671 A CN 2013103557671A CN 201310355767 A CN201310355767 A CN 201310355767A CN 103425070 A CN103425070 A CN 103425070A
Authority
CN
China
Prior art keywords
carry out
program
underwater robot
return
finished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103557671A
Other languages
English (en)
Other versions
CN103425070B (zh
Inventor
牛阿丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO YUANCHUANG ROBOT AUTOMATION Co Ltd
Original Assignee
QINGDAO YUANCHUANG ROBOT AUTOMATION Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO YUANCHUANG ROBOT AUTOMATION Co Ltd filed Critical QINGDAO YUANCHUANG ROBOT AUTOMATION Co Ltd
Priority to CN201310355767.1A priority Critical patent/CN103425070B/zh
Publication of CN103425070A publication Critical patent/CN103425070A/zh
Application granted granted Critical
Publication of CN103425070B publication Critical patent/CN103425070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)

Abstract

本发明公开了一种用于控制浅水观察级迷你水下机器人的方法,包括控制建构、通信架构,控制实现了下位机主控制板控制三个水下推进器转动、控制摄像头切换、控制水下LED灯的开关及其亮度调节、水下各种自动功能的实现(自动定海、自动上浮下潜、自动前进);通信实现了甲板单元与水下机器人之间的双向通信、水下机器人主控芯片与协处理器ATmega8之间的通信,制定了之间通信相关的通信协议,水下机器人可以完成甲板单元控制指令的接收,甲板单元可以实现对水下机器人发送的状态信息的接收。此外,本发明并且讨论了基于增量式PID算法实现自动定深的可行性,通过实验验证机数据分析证明了其自动定深功能的准确性。

Description

一种用于控制浅水观察级迷你水下机器人的方法
技术领域
本发明属于自动化控制技术领域,尤其涉及一种用于控制浅水观察级迷你水下机器人的方法。
背景技术
随着人们对海洋了解的不断深入,人类身体条件的限制已经不能满足水下工作时间、工作效率以及工作强度的要求,水下机器人的出现,作为人类开发、探索、利用海洋的助手,在水产养殖、水下观察、海底作业等方面发挥着越来越重要的作用,如何利用水下机器人有效地开发利用海洋生物能源、水资源、金属资源成为摆在人们面前的一个重要问题。
目前,国外已经有了一系列商业化的水下机器人产品,经过50多年的发展,已经成为一个重要的产业链,加拿大、英国、美国、法国、德国等在其技术研究和开发方面一直处于领先地位,世界上水下机器人的产品种类超过270种,全世界超过270家企业及公司提供水下机器人进出口、设计及售后服务,现有产品按照使用方式可以分为:载人水下机器人、有缆水下机器人(AUV)、无缆水下机器人(水下机器人);按照重量级尺寸又分为:大型水下机器人、中型水下机器人、小型水下机器人、超小型水下机器人,然而,大中小型水下机器人由于其体积巨大、操作复杂、成本较高,往往需要数人协同作业且需要船只大功率发电机等配合使用,其应用受到限制,而大部分水下工作,如水工结构检查、渔类行为观察、海水养殖网箱检查、水产养殖、渔业、海上石油平台、核电站、潮汐电站、海上风力发电厂、商业潜水水下作业支援、有毒液体、浅水场地检查、犯罪现场搜索、水下搜救科研教育、科学研究、水下考古、水下生物观察等这些活动基本都发生在100米以下的水深,因此应用于浅水的水下机器人前景非常的广阔。
mini-水下机器人作为浅水级探测机器人中的一员,由于其控制灵活、操作携带方便,受到各行各业的欢迎,得到了迅猛的发展,其中不乏各种商业的mini-水下机器人出现,荷兰SEASCAPE公司水下机器人BuilderMini-150、水下机器人BuilderMini-300、水下机器人BuilderMini-600系列,耐压分别为70米、120米、200米,其中水下机器人BuilderMini-150长400mm,宽250mm,高200mm,在空气中重4.5kg,有两个水平推进器,一个垂直推进器,时速达1m/s,配置了540线带云台彩色摄像机,2个10w的LED,配置8mm正浮力缆,使用PAL信号格式6MHZ带宽的复合视频信号,使用220-240VAC50Hz交流电供电,总功率可达300W,可以搭载水下声纳、USBL超短基线等设备,是一款mini观察级的水下机器人。
加拿大Inuktun公司的VideoRayPro3E水下机器人System,长305mm,宽225mm,高21mm,在空气中3.8kg,水下耐压150米,有两个水平推进器,一个垂直推进器,前后装有两个摄像机,前置570线彩色摄像机,后置430线黑白摄像机,有两个20w的卤素灯,系统使用100-240V交流电供电,总功率为800W,使用直径8mm的零浮力缆传输数据,使用PAL信号格式6MHZ带宽的复合视频信号。
美国JWFishers公司的Sealine2水下机器人,长430mm,宽350mm,高300mm,在空气中重约12kg,能下潜最大深度200m,有2个垂直推进器1个水平推进器和1个侧向推进器,前置带云台570线彩色摄像机,两个前置100w卤素灯,可携带机械手,scan-650扫描声纳等水下设备。
美国SEABOTIEX公司的LBV150-4水下机器人,长530mm,宽245mm,高254mm,在空气中重约11kg,水下耐压150米,配置两个水平推进器,一个垂直推进器,一个侧推推进器,前置520线带云台摄像机,能够自动聚焦及放大,摄像机周围分布LED灯阵列,使用PAL信号格式6MHZ带宽的复合视频信号,系统使用110~130/210~240交流电供电,总功率可达1000W,电缆使用直径8mm的零浮力缆。
综上所见,mini-水下机器人由于其携带方便、成本低、布放安装较为简单、控制灵活、在水中特别是狭小的水域中能灵活的运动,能广泛使用于浅海、湖泊、水库等水域,这些优点将使其成为未来水下机器人产品中的新宠,在水下世界发挥着日益重要的作用。
从水下机器人产品的控制算法及软件系统的角度来看,水下机器人与陆地上的机器人有明显的不同,陆地机器人的控制一般是线性的,可以建立较为成熟的控制模型,但是水下机器人由于其复杂的水下环境,加上本身机器人形状的不规则性,往往很难建立准确的数学模型,加上水流等因素的影响,水下机器人的控制算法需要较好的鲁棒性及适应性,控制算法的通用性也收到机器人形状及类型的限制,就目前发展情况而言,水下机器人的控制算法有:神经网络控制、模糊控制、自适应控制、PID控制等,这是为了适应复杂的水下环境,需要相对来说比较复杂的控制算法,但如何将这些控制算法移植到水下机器人的控制系统中,仍是一个有待考究的严峻考验。
发明内容
本发明实施例的目的在于提供一种用于控制浅水观察级迷你水下机器人的方法,旨在解决水下机器人的控制算法与控制系统结合的问题。
本发明实施例是这样实现的,一种用于控制浅水观察级迷你水下机器人的方法,该用于控制浅水观察级迷你水下机器人的方法包括以下步骤:
步骤一,程序初始化,485通信模块接收打开;
步骤二,判断是否完成控制信息的接收,是否完成标志置位,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否执行自动功能,若是Y,转步骤四;若是N,转步骤十四;
步骤四,判断是否执行自动定向程序,若是Y,转步骤五;若是N,转步骤六;
步骤五,执行自动定向程序,执行完毕后转到步骤六;
步骤六,判断是否执行自动定深程序,若是Y,转步骤步骤七;若是N,转步骤八;
步骤七,执行自动定深程序,执行完毕后转到步骤八;
步骤八,判断是否执行自动上浮程序,若是Y,转步骤九;若是N,转步骤十;
步骤九,执行自动上浮程序,执行完毕后转到步骤十;
步骤十,判断是否执行自动下潜程序,若是Y,转步骤十一;若是N,转步骤十二;
步骤十一,执行自动下潜程序,执行完毕后转到步骤十二;
步骤十二,判断是否执行自动航速程序,若是Y,转步骤十三;若是N,转步骤十四;
步骤十三,执行自动航速程序,执行完毕后转到步骤十四;
步骤十四,执行控制3个电机转速子程序;
步骤十五,执行控制舵机角度子程序;
步骤十六,执行控制摄像头切换、LED亮度子程序;
步骤十七,控制485模块发送打开,采集发送10字节。
进一步,用于控制浅水观察级迷你水下机器人的方法的通信系统流程步骤如下:
步骤一,串口接收中断;
步骤二,判断是否收到帧头,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否接受完11字节,若是Y,转步骤四;若是N,转步骤八;
步骤四,判断CRC8,若是Y,转步骤五;若是N,转步骤七;
步骤五,数据存到控制信息缓存;
步骤六,控制信息接收完成标志置位;
步骤七,发送缓冲及标志;
步骤八,返回。
进一步,用于控制浅水观察级迷你水下机器人的方法的多功能按键控制流程步骤具体内容如下:
步骤一,初始化按键次数;
步骤二,判断是否检测到按键,若是Y,转下一步步骤三;若是N,则转步骤一;
步骤三,按键次数加1;
步骤四,判断次数是否短按,若是Y,转步骤六;若是N,转步骤五;
步骤五,判断次数是否长按,若是Y,转步骤七;若是N,转步骤二;
步骤六,短按操作;
步骤七,长按操作,执行完毕转步骤八;
步骤八,结束。
进一步,用于控制浅水观察级迷你水下机器人的方法的开关LED灯按键处理流程步骤具体内容如下:
步骤一:判断是否开关LED灯,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤四;
步骤三:执行开灯程序;
步骤四:执行关灯程序,执行完毕返回主程序;
步骤五:判断是否执行LED亮度等级程序,若是Y,转步骤六;若是N,则返回主程序;
步骤六:执行亮度等级程序,执行完毕返回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的摄像头切换按键处理流程步骤具体内容如下:
步骤一:判断是否执行摄像头切换,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤三;
步骤三:执行前后摄像头切换程序;
步骤四:执行前后灯切换程序,执行完毕返回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的自动下潜指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动下潜功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆下潜速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动下潜程序,执行完毕后返回主程序;
步骤五:执行自动下潜程序,执行完毕返后回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的自动上浮指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动上浮功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆上浮速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动上浮程序,执行完毕后返回主程序;
步骤五:执行自动上浮程序,执行完毕返后回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的自动航速指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动航速功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆航向、航速子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动航速程序,执行完毕后返回主程序;
步骤五:执行自动航速程序,执行完毕返后回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的自动定向指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定向功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆方向子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定向程序,执行完毕后返回主程序;
步骤五:执行自动定向程序,执行完毕返后回主程序;
用于控制浅水观察级迷你水下机器人的方法的自动定深指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定深功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆深度子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定深程序,执行完毕后返回主程序;
步骤五:执行自动定深程序,执行完毕返后回主程序。
进一步,用于控制浅水观察级迷你水下机器人的方法的自动定深系统包括PID控制器、H桥电机驱动器、垂直水下推进器、深度计;
给定深度函数hr(t)经过负反馈节点,依次与PID控制器、H桥电机驱动器、垂直水下推进器相连接,垂直水下推进器与深度计相连接,并输出函数hc(t);深度计将信号反馈到节点,与PID控制器相连接。
本发明提供的用于控制浅水观察级迷你水下机器人的方法,包括控制建构、通信架构,实现了下位机主控制板控制三个水下推进器转动、控制摄像头切换、控制水下LED灯的开关及其亮度调节、水下各种自动功能的实现(自动定海、自动上浮下潜、自动前进);通信实现了甲板单元与水下机器人之间的双向通信、水下机器人主控芯片与协处理器ATmega8之间的通信,制定了之间通信相关的通信协议,水下机器人可以完成甲板单元控制指令的接收,甲板单元可以实现对水下机器人发送的状态信息的接收。本发明并且讨论了基于增量式PID算法实现自动定深的可行性,通过实验验证机数据分析证明了其自动定深功能的准确性。
附图说明
图1是本发明实施例提供的用于控制浅水观察级迷你水下机器人的方法的流程图;
图2是本发明实施例提供的通信系统的流程图;
图3是本发明实施例提供的多功能按键控制的流程图;
图4是本发明实施例提供的开关LED灯按键处理流程图;
图5是本发明实施例提供的摄像头切换按键处理流程图;
图6是本发明实施例提供的自动下潜指令按键处理流程图;
图7是本发明实施例提供的自动上浮指令按键处理流程图;
图8是本发明实施例提供的自动航速指令按键处理流程图;
图9是本发明实施例提供的自动定向指令按键处理流程图;
图10是本发明实施例提供的自动定深指令按键处理流程图;
图11是本发明实施例提供的自动定深系统框图;
图中:1、PID控制器;2、H桥电机驱动器;3、垂直水下推进器;4、深度计。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明提供的用于控制浅水观察级迷你水下机器人的方法的流程。为了便于说明,仅仅示出了与本发明相关的部分。
本发明的用于控制浅水观察级迷你水下机器人的方法,该用于控制浅水观察级迷你水下机器人的方法包括以下步骤:
步骤一,程序初始化,485通信模块接收打开;
步骤二,判断是否完成控制信息的接收,是否完成标志置位,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否执行自动功能,若是Y,转步骤四;若是N,转步骤十四;
步骤四,判断是否执行自动定向程序,若是Y,转步骤五;若是N,转步骤六;
步骤五,执行自动定向程序,执行完毕后转到步骤六;
步骤六,判断是否执行自动定深程序,若是Y,转步骤步骤七;若是N,转步骤八;
步骤七,执行自动定深程序,执行完毕后转到步骤八;
步骤八,判断是否执行自动上浮程序,若是Y,转步骤九;若是N,转步骤十;
步骤九,执行自动上浮程序,执行完毕后转到步骤十;
步骤十,判断是否执行自动下潜程序,若是Y,转步骤十一;若是N,转步骤十二;
步骤十一,执行自动下潜程序,执行完毕后转到步骤十二;
步骤十二,判断是否执行自动航速程序,若是Y,转步骤十三;若是N,转步骤十四;
步骤十三,执行自动航速程序,执行完毕后转到步骤十四;
步骤十四,执行控制3个电机转速子程序;
步骤十五,执行控制舵机角度子程序;
步骤十六,执行控制摄像头切换、LED亮度子程序;
步骤十七,控制485模块发送打开,采集发送10字节。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的通信系统流程步骤如下:
步骤一,串口接收中断;
步骤二,判断是否收到帧头,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否接受完11字节,若是Y,转步骤四;若是N,转步骤八;
步骤四,判断CRC8,若是Y,转步骤五;若是N,转步骤七;
步骤五,数据存到控制信息缓存;
步骤六,控制信息接收完成标志置位;
步骤七,发送缓冲及标志;
步骤八,返回。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的多功能按键控制流程步骤具体内容如下:
步骤一,初始化按键次数;
步骤二,判断是否检测到按键,若是Y,转下一步步骤三;若是N,则转步骤一;
步骤三,按键次数加1;
步骤四,判断次数是否短按,若是Y,转步骤六;若是N,转步骤五;
步骤五,判断次数是否长按,若是Y,转步骤七;若是N,转步骤二;
步骤六,短按操作;
步骤七,长按操作,执行完毕转步骤八;
步骤八,结束。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的开关LED灯按键处理流程步骤具体内容如下:
步骤一:判断是否开关LED灯,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤四;
步骤三:执行开灯程序;
步骤四:执行关灯程序,执行完毕返回主程序;
步骤五:判断是否执行LED亮度等级程序,若是Y,转步骤六;若是N,则返回主程序;
步骤六:执行亮度等级程序,执行完毕返回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的摄像头切换按键处理流程步骤具体内容如下:
步骤一:判断是否执行摄像头切换,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤三;
步骤三:执行前后摄像头切换程序;
步骤四:执行前后灯切换程序,执行完毕返回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的自动下潜指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动下潜功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆下潜速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动下潜程序,执行完毕后返回主程序;
步骤五:执行自动下潜程序,执行完毕返后回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的自动上浮指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动上浮功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆上浮速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动上浮程序,执行完毕后返回主程序;
步骤五:执行自动上浮程序,执行完毕返后回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的自动航速指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动航速功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆航向、航速子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动航速程序,执行完毕后返回主程序;
步骤五:执行自动航速程序,执行完毕返后回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的自动定向指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定向功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆方向子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定向程序,执行完毕后返回主程序;
步骤五:执行自动定向程序,执行完毕返后回主程序;
用于控制浅水观察级迷你水下机器人的方法的自动定深指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定深功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆深度子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定深程序,执行完毕后返回主程序;
步骤五:执行自动定深程序,执行完毕返后回主程序。
作为本发明实施例的一优化方案,用于控制浅水观察级迷你水下机器人的方法的自动定深系统包括PID控制器、H桥电机驱动器、垂直水下推进器、深度计;
给定深度函数hr(t)经过负反馈节点,依次与PID控制器、H桥电机驱动器、垂直水下推进器相连接,垂直水下推进器与深度计相连接,并输出函数hc(t);深度计将信号反馈到节点,与PID控制器相连接。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
本发明的用于控制浅水观察级迷你水下机器人的方法,通过甲板单元上的按键、摇杆及相应控制算法的配合可以实现对浅水观察级迷你-水下机器人在水中完成各种自动功能的控制,从而完成其耐压100米,自带电池,利用水下摄像机在水下进行观察的活动。
用于控制浅水观察级迷你水下机器人的方法主要由七大控制模块组成:迷你-水下机器人运动控制主程序、通信系统控制程序、多功能按键控制程序、开关灯控制、摄像头切换控制、迷你-水下机器人自动定深控制、迷你-水下机器人自动定向控制、摄像头云台控制。
图1是本发明提供的用于控制浅水观察级迷你水下机器人的方法的流程图包括17个步骤,各步骤具体内容如下:
S101:程序初始化,485通信模块接收打开;
S102:判断是否完成控制信息的接收,是否完成标志置位,若是Y,转下一步S103;若是N,则转S102;
S103:判断是否执行自动功能,若是Y,转S104;若是N,转S114;
S104:判断是否执行自动定向程序,若是Y,转S105;若是N,转S106;
S105:执行自动定向程序,执行完毕后转到S106;
S106:判断是否执行自动定深程序,若是Y,转S107;若是N,转S108;
S107:执行自动定深程序,执行完毕后转到S108;
S108:判断是否执行自动上浮程序,若是Y,转S109;若是N,转S1010;
S109:执行自动上浮程序,执行完毕后转到S110;
S110:判断是否执行自动下潜程序,若是Y,转S111;若是N,转S112;
S111:执行自动下潜程序,执行完毕后转到S112;
S112:判断是否执行自动航速程序,若是Y,转S113;若是N,转S114;
S113:执行自动航速程序,执行完毕后转到S114;
S114:执行控制3个电机转速子程序;
S115:执行控制舵机角度子程序;
S116:执行控制摄像头切换、LED亮度子程序;
S117:控制485模块发送打开,采集发送10字节。
图2是本发明提供的通信系统设计程序流程图。共包含8个步骤,各步骤具体内容如下:
S201:串口接收中断;
S202:判断是否收到帧头,若是Y,转下一步S203;若是N,则转S202;
S203:判断是否接受完11字节,若是Y,转S204;若是N,转S208;
S204:判断CRC8,若是Y,转S205;若是N,转S207;
S205:数据存到控制信息缓存;
S206:控制信息接收完成标志置位;
S207:发送缓冲及标志;
S208:返回。
图3是本发明提供的多功能按键控制程序流程图。共包含8个步骤,各步骤具体内容如下:
S301:初始化按键次数;
S302:判断是否检测到按键,若是Y,转下一步S303;若是N,则转S301;
S303:按键次数加1;
S304:判断次数是否短按,若是Y,转S306;若是N,转S305;
S305:判断次数是否长按,若是Y,转S307;若是N,转S302;
S306:短按操作;
S307:长按操作,执行完毕转S308;
S308:结束。
图4是本发明提供的开关LED灯按键处理流程图。共包含6个步骤,各步骤具体内容如下:
S401:判断是否开关LED灯,若是Y,转S402;若是N,则返回主程序;
S402:判断按键计数,若是短按,转下一步S403;若是长按,则转S404;
S403:执行开灯程序;
S404:执行关灯程序,执行完毕返回主程序;
S405:判断是否执行LED亮度等级程序,若是Y,转S406;若是N,则返回主程序;
S406:执行亮度等级程序,执行完毕返回主程序。
图5是本发明提供的摄像头切换按键处理流程图。共包含4个步骤,各步骤具体内容如下:
S501:判断是否执行摄像头切换,若是Y,转S502;若是N,则返回主程序;
S502:判断按键计数,若是短按,转下一步S503;若是长按,则转S503;
S503:执行前后摄像头切换程序;
S504:执行前后灯切换程序,执行完毕返回主程序。
图6是本发明提供的自动下潜指令按键处理流程图。共包含5个步骤,各步骤具体内容如下:
S601:判断是否执行自动下潜功能,若是Y,转S602;若是N,则返回主程序;
S602:执行记忆下潜速度;
S603:判断按键计数,若是短按,转下一步S605;若是长按,则转S604;
S604:取消自动下潜程序,执行完毕后返回主程序;
S605:执行自动下潜程序,执行完毕返后回主程序。
图7是本发明提供的自动上浮指令按键处理流程图。共包含5个步骤,各步骤具体内容如下:
S701:判断是否执行自动上浮功能,若是Y,转S702;若是N,则返回主程序;
S702:执行记忆上浮速度;
S703:判断按键计数,若是短按,转下一步S705;若是长按,则转S704;
S704:取消自动上浮程序,执行完毕后返回主程序;
S705:执行自动上浮程序,执行完毕返后回主程序。
图8是本发明提供的自动航速指令按键处理流程图。共包含5个步骤,各步骤具体内容如下:
S801:判断是否执行自动航速功能,若是Y,转S802;若是N,则返回主程序;
S802:执行记忆航向、航速子程序;
S803:判断按键计数,若是短按,转下一步S805;若是长按,则转S804;
S804:取消自动航速程序,执行完毕后返回主程序;
S805:执行自动航速程序,执行完毕返后回主程序。
图9是本发明提供的自动定向指令按键处理流程图。共包含5个步骤,各步骤具体内容如下:
S901:判断是否执行自动定向功能,若是Y,转S902;若是N,则返回主程序;
S902:执行记忆方向子程序;
S903:判断按键计数,若是短按,转下一步S905;若是长按,则转S904;
S904:取消自动定向程序,执行完毕后返回主程序;
S905:执行自动定向程序,执行完毕返后回主程序。
图10是本发明提供的自动定深指令按键处理流程图。共包含5个步骤,各步骤具体内容如下:
S1001:判断是否执行自动定深功能,若是Y,转S1002;若是N,则返回主程序;
S1002:执行记忆深度子程序;
S1003:判断按键计数,若是短按,转下一步S1005;若是长按,则转S1004;
S1004:取消自动定深程序,执行完毕后返回主程序;
S1005:执行自动定深程序,执行完毕返后回主程序。
图11是本发明提供的自动定深系统框图。共包含4个模块,分别是PID控制器1、H桥电机驱动器2、垂直水下推进器3、深度计4。各部分的连接关系为:给定深度函数hr(t)经过负反馈节点,依次与PID控制器1、H桥电机驱动器2、垂直水下推进器3相连接,垂直水下推进器3与深度计4相连接,并输出函数hc(t);深度计将信号反馈到节点,与PID控制器1相连接。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用于控制浅水观察级迷你水下机器人的方法,其特征在于,该用于控制浅水观察级迷你水下机器人的方法包括以下步骤:
步骤一,程序初始化,485通信模块接收打开;
步骤二,判断是否完成控制信息的接收,是否完成标志置位,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否执行自动功能,若是Y,转步骤四;若是N,转步骤十四;
步骤四,判断是否执行自动定向程序,若是Y,转步骤五;若是N,转步骤六;
步骤五,执行自动定向程序,执行完毕后转到步骤六;
步骤六,判断是否执行自动定深程序,若是Y,转步骤步骤七;若是N,转步骤八;
步骤七,执行自动定深程序,执行完毕后转到步骤八;
步骤八,判断是否执行自动上浮程序,若是Y,转步骤九;若是N,转步骤十;
步骤九,执行自动上浮程序,执行完毕后转到步骤十;
步骤十,判断是否执行自动下潜程序,若是Y,转步骤十一;若是N,转步骤十二;
步骤十一,执行自动下潜程序,执行完毕后转到步骤十二;
步骤十二,判断是否执行自动航速程序,若是Y,转步骤十三;若是N,转步骤十四;
步骤十三,执行自动航速程序,执行完毕后转到步骤十四;
步骤十四,执行控制3个电机转速子程序;
步骤十五,执行控制舵机角度子程序;
步骤十六,执行控制摄像头切换、LED亮度子程序;
步骤十七,控制485模块发送打开,采集发送10字节。
2.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的通信系统流程步骤如下:
步骤一,串口接收中断;
步骤二,判断是否收到帧头,若是Y,转下一步步骤三;若是N,则转步骤二;
步骤三,判断是否接受完11字节,若是Y,转步骤四;若是N,转步骤八;
步骤四,判断CRC8,若是Y,转步骤五;若是N,转步骤七;
步骤五,数据存到控制信息缓存;
步骤六,控制信息接收完成标志置位;
步骤七,发送缓冲及标志;
步骤八,返回。
3.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的多功能按键控制流程步骤具体内容如下:
步骤一,初始化按键次数;
步骤二,判断是否检测到按键,若是Y,转下一步步骤三;若是N,则转步骤一;
步骤三,按键次数加1;
步骤四,判断次数是否短按,若是Y,转步骤六;若是N,转步骤五;
步骤五,判断次数是否长按,若是Y,转步骤七;若是N,转步骤二;
步骤六,短按操作;
步骤七,长按操作,执行完毕转步骤八;
步骤八,结束。
4.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的开关LED灯按键处理流程步骤具体内容如下:
步骤一:判断是否开关LED灯,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤四;
步骤三:执行开灯程序;
步骤四:执行关灯程序,执行完毕返回主程序;
步骤五:判断是否执行LED亮度等级程序,若是Y,转步骤六;若是N,则返回主程序;
步骤六:执行亮度等级程序,执行完毕返回主程序。
5.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的摄像头切换按键处理流程步骤具体内容如下:
步骤一:判断是否执行摄像头切换,若是Y,转步骤二;若是N,则返回主程序;
步骤二:判断按键计数,若是短按,转下一步步骤三;若是长按,则转步骤三;
步骤三:执行前后摄像头切换程序;
步骤四:执行前后灯切换程序,执行完毕返回主程序。
6.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的自动下潜指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动下潜功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆下潜速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动下潜程序,执行完毕后返回主程序;
步骤五:执行自动下潜程序,执行完毕返后回主程序。
7.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的自动上浮指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动上浮功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆上浮速度;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动上浮程序,执行完毕后返回主程序;
步骤五:执行自动上浮程序,执行完毕返后回主程序。
8.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的自动航速指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动航速功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆航向、航速子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动航速程序,执行完毕后返回主程序;
步骤五:执行自动航速程序,执行完毕返后回主程序。
9.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的自动定向指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定向功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆方向子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定向程序,执行完毕后返回主程序;
步骤五:执行自动定向程序,执行完毕返后回主程序;
用于控制浅水观察级迷你水下机器人的方法的自动定深指令按键处理流程步骤具体内容如下:
步骤一:判断是否执行自动定深功能,若是Y,转步骤二;若是N,则返回主程序;
步骤二:执行记忆深度子程序;
步骤三:判断按键计数,若是短按,转下一步步骤五;若是长按,则转步骤四;
步骤四:取消自动定深程序,执行完毕后返回主程序;
步骤五:执行自动定深程序,执行完毕返后回主程序。
10.如权利要求1所述的用于控制浅水观察级迷你水下机器人的方法,其特征在于,用于控制浅水观察级迷你水下机器人的方法的自动定深系统包括PID控制器、H桥电机驱动器、垂直水下推进器、深度计;
给定深度函数hr(t)经过负反馈节点,依次与PID控制器、H桥电机驱动器、垂直水下推进器相连接,垂直水下推进器与深度计相连接,并输出函数hc(t);深度计将信号反馈到节点,与PID控制器相连接。
CN201310355767.1A 2013-08-15 2013-08-15 一种用于控制浅水观察级迷你水下机器人的方法 Active CN103425070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310355767.1A CN103425070B (zh) 2013-08-15 2013-08-15 一种用于控制浅水观察级迷你水下机器人的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310355767.1A CN103425070B (zh) 2013-08-15 2013-08-15 一种用于控制浅水观察级迷你水下机器人的方法

Publications (2)

Publication Number Publication Date
CN103425070A true CN103425070A (zh) 2013-12-04
CN103425070B CN103425070B (zh) 2016-07-20

Family

ID=49649980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310355767.1A Active CN103425070B (zh) 2013-08-15 2013-08-15 一种用于控制浅水观察级迷你水下机器人的方法

Country Status (1)

Country Link
CN (1) CN103425070B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808689A (zh) * 2015-05-15 2015-07-29 厦门大学 一种迷你型水下机器人的控制方法
CN104820433A (zh) * 2015-05-31 2015-08-05 厦门大学 一种用于控制水下探测机器人的方法
CN105929841A (zh) * 2016-06-29 2016-09-07 天津深之蓝海洋设备科技有限公司 一种rov姿态控制方法及系统
CN106303184A (zh) * 2016-10-12 2017-01-04 青岛罗博飞海洋技术有限公司 一种水下摄像机
CN109634220A (zh) * 2018-12-27 2019-04-16 北京理工大学 一种六自由度机器人运动控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202445A (ja) * 1995-01-20 1996-08-09 Mitsubishi Heavy Ind Ltd 自律型水中ロボットの制御装置
CN201325591Y (zh) * 2008-08-28 2009-10-14 国核电站运行服务技术有限公司 耐辐照水下监测机器人
CN101825903A (zh) * 2010-04-29 2010-09-08 哈尔滨工程大学 一种遥控水下机器人水面控制方法
WO2012148874A2 (en) * 2011-04-26 2012-11-01 Bp Corporation North America Inc. Systems and methods for rov multitasking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202445A (ja) * 1995-01-20 1996-08-09 Mitsubishi Heavy Ind Ltd 自律型水中ロボットの制御装置
CN201325591Y (zh) * 2008-08-28 2009-10-14 国核电站运行服务技术有限公司 耐辐照水下监测机器人
CN101825903A (zh) * 2010-04-29 2010-09-08 哈尔滨工程大学 一种遥控水下机器人水面控制方法
WO2012148874A2 (en) * 2011-04-26 2012-11-01 Bp Corporation North America Inc. Systems and methods for rov multitasking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐海滨: "超小型潜水器结构改进及控制系统的集成", 《万方学位论文》 *
崔胜国等: "基于Windows的大型ROV控制系统软件设计", 《仪器仪表学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808689A (zh) * 2015-05-15 2015-07-29 厦门大学 一种迷你型水下机器人的控制方法
CN104820433A (zh) * 2015-05-31 2015-08-05 厦门大学 一种用于控制水下探测机器人的方法
CN104820433B (zh) * 2015-05-31 2017-08-29 厦门大学 一种用于控制水下探测机器人的方法
CN105929841A (zh) * 2016-06-29 2016-09-07 天津深之蓝海洋设备科技有限公司 一种rov姿态控制方法及系统
CN106303184A (zh) * 2016-10-12 2017-01-04 青岛罗博飞海洋技术有限公司 一种水下摄像机
CN109634220A (zh) * 2018-12-27 2019-04-16 北京理工大学 一种六自由度机器人运动控制方法及系统

Also Published As

Publication number Publication date
CN103425070B (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN103425070B (zh) 一种用于控制浅水观察级迷你水下机器人的方法
CN203601547U (zh) 水下机器人
CN104215988B (zh) 一种水下目标定位方法
CN208506594U (zh) 无人平台集群协同控制系统
CN104267643B (zh) 水下机器人目标定位识别系统
Christ et al. The ROV manual: a user guide for observation class remotely operated vehicles
CN104317302B (zh) 智能化水下机器人系统
CN104210629B (zh) 一种水下路障躲避方法
WO2021082792A1 (zh) 一种海洋声学牧场养殖方法
CN204045001U (zh) 一种基于物联网的水下环境远程监控系统
CN103998186A (zh) 具有行走及游泳的复合移动功能的多关节海底机器人及海底探测系统
CN104071318A (zh) 一种水下搜救机器人
CN104916207A (zh) 一种青少年国防科学素养教育培训专用的无人深潜器组合式鱼缸装置
KR102018089B1 (ko) 수중에서 드론 간 탈착이 가능한 임무 수행 시스템
Xiang et al. Research progresses on equipment technologies used in safety inspection, repair, and reinforcement for deepwater dams
CN205378034U (zh) 漂浮拍摄装置
CN107344605B (zh) 一种拖曳式自主深度水下观测系统
Fattah et al. R3Diver: Remote robotic rescue diver for rapid underwater search and rescue operation
Miao et al. Development of a low-cost remotely operated vehicle for ocean exploration
CA3218354A1 (en) An underwater probe or submersible
Wang et al. Design of HD video surveillance system for deep-sea biological exploration
CN111994235B (zh) 一种电动可控收缩圈结构及环形智能水下机器人
Olejnik Trends in the development of unmanned marine technology
Tangi et al. Development, sea trial and application of Haidou autonomous and remotely-operated vehicle for full-depth ocean detection
CN106017424A (zh) 一种单人浅水摄影测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant