CN103422428A - 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统 - Google Patents

主梁设置刚性铰的斜拉桥的横向风振反应的控制系统 Download PDF

Info

Publication number
CN103422428A
CN103422428A CN2013103803680A CN201310380368A CN103422428A CN 103422428 A CN103422428 A CN 103422428A CN 2013103803680 A CN2013103803680 A CN 2013103803680A CN 201310380368 A CN201310380368 A CN 201310380368A CN 103422428 A CN103422428 A CN 103422428A
Authority
CN
China
Prior art keywords
girder
stayed bridge
bridge
fluid damper
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103803680A
Other languages
English (en)
Inventor
丁幼亮
耿方方
葛文浩
宋永生
王高新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2013103803680A priority Critical patent/CN103422428A/zh
Publication of CN103422428A publication Critical patent/CN103422428A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,在设置刚性铰处的主梁梁跨底板的左右两侧与下方桥塔的联结处各设置两个流体阻尼器,所述流体阻尼器均布置在竖直平面内且位于同侧的两个流体阻尼器以所对应的桥塔横梁的纵向中轴线对称分布;流体阻尼器的一端与桥塔横梁连接,另一端与主梁梁跨底板连接。对称设置的两个流体阻尼器提供扭转阻尼力,并通过有限元模型计算和确定流体阻尼器的设计参数,能够有效抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应,方便快捷且准确度高,给主梁设置刚性铰的斜拉桥桥梁工程建设提供便利有效的控制方法。

Description

主梁设置刚性铰的斜拉桥的横向风振反应的控制系统
技术领域
本发明属于桥梁结构工程领域,特别是针对设置刚性铰的斜拉桥主梁因强风作用而引起的横向风振反应的控制系统。
背景技术
现代大跨度斜拉桥的主梁长度越来越长。主梁越长,温度作用下的温度变形及其对斜拉桥结构的影响越大。为了减少主梁温度变形对斜拉桥受力的影响,同时保证主梁的连续性,刚性铰作为一种新型构造设计应用于斜拉桥。如我国浙江嘉绍大桥的主梁全长2680m,其结构设计方案中在主梁中跨跨中区域设置刚性铰。此种构造方式将主梁在刚性铰处断开并设置伸缩缝,释放伸缩缝两端主梁的纵向温度变形,从而降低全桥温度效应。然而,嘉绍大桥的动力响应分析结果表明,主梁中跨跨中区域设置刚性铰后,主梁中跨的横向位移显著增大,增加了主梁中跨结构风致作用下的不稳定性,需要研究适宜的减振控制措施。
对此,常规的主梁横向风振反应控制方法是在桥塔与主梁联接处横向设置流体阻尼器,或者在主梁跨中区域设置横向调频质量阻尼器。这些方法对于主梁因设置刚性铰导致的横向风振反应的控制效果较差。这主要是由于设置刚性铰的梁跨会产生显著的扭转振型,而扭转振型导致了横向风振反应增大。然而,常规的控制方法仅对主梁横向弯曲振型导致的横向风振反应是有效的,对于扭转振型导致的横向风振反应则控制效果较差。为此,寻找有效抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应是十分必要的。
发明内容
要解决的技术问题:针对现有技术的不足,本发明提供一种设置刚性铰的主梁斜拉桥主梁的横向风振反应的控制系统,解决现有技术中在桥塔与主梁联接处横向设置流体阻尼器或者在主梁跨中区域设置横向调频质量阻尼器等常规控制方法对扭转振型导致的横向风振反应则控制效果较差的技术问题。
技术方案:为解决上述技术问题,本发明采用以下技术方案:
主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,在设置刚性铰处的主梁梁跨底板的左右两侧与下方桥塔的联结处各设置两个流体阻尼器,所述流体阻尼器均布置在竖直平面内且位于同侧的两个流体阻尼器以所对应的桥塔横梁的纵向中轴线对称分布;流体阻尼器的一端与桥塔横梁连接,另一端与主梁梁跨底板连接。
进一步的,在本发明中,所述流体阻尼器的轴向与主梁纵向的交角为30°~60°。在该范围内均有效,但不同角度的设置会导致流体阻尼器的设计参数及对抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应的效果不一样。
优选的,在本发明中,所述流体阻尼器的轴向与主梁纵向的交角为45°。此时对抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应效果最佳。
流体阻尼器的设计参数阻尼系数c和阻尼指数α的确定方法包括顺序执行的以下步骤:
(1)建立主梁设置刚性铰的斜拉桥有限元模型,计算斜拉桥有限元模型在脉动风作用下的主梁横向风振反应,获得主梁跨中横向位移的均方根值;
(2)在斜拉桥有限元模型中,在设置刚性铰处的主梁梁跨底板的左右两侧与下方桥塔的联结处各设置两个流体阻尼器,形成带流体阻尼器的斜拉桥有限元分析模型,计算带流体阻尼器的斜拉桥有限元分析模型在脉动风作用下的主梁横向风振反应,对流体阻尼器的不同阻尼系数c和阻尼指数α的进行取值,获得不同阻尼系数c和阻尼指数α对应的主梁跨中横向位移的均方根值;
(3)计算主梁梁跨的跨中横向位移的减振率β,β=(安装流体阻尼器前的主梁跨中横向位移的均方根值-安装阻尼器后的主梁跨中横向位移的均方根值)/安装流体阻尼器前的主梁跨中横向位移的均方根值×100%;
(4)绘制流体阻尼器选取不同阻尼系数c和阻尼指数α时的主梁跨中横向位移的减振率β图,根据该图确定最大的主梁跨中横向位移的减振率β及其对应的阻尼系数c和阻尼指数α,此时的阻尼系数c和阻尼指数α即所求设计参数。
有益效果:本发明在主梁设置刚性铰的斜拉桥的主梁梁跨底板的两端与下方桥塔的联结处各设置一个流体阻尼器以提供扭转阻尼力,并通过有限元模型计算和确定流体阻尼器的设计参数。实验证明,安装流体阻尼器后的减振率能达到50%左右,能够有效抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应,方便快捷且准确度高,给主梁设置刚性铰的斜拉桥桥梁工程建设提供便利有效的控制方法。
附图说明
图1是本发明的主梁设置刚性铰的斜拉桥体系布置示意图;
图2是主梁设置刚性铰的斜拉桥主梁横向位移反应图;
图3是本发明的流体阻尼器在主梁和桥塔之间的安装示意图;
图4是本发明的流体阻尼器在主梁和桥塔之间的横断面布置图;
图5是不同流体阻尼器参数取值时的跨中横向位移的减振率β图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,为某斜拉桥体系布置示意图,主梁上有7个梁跨,其中在中间梁跨的跨中位置1设置有刚性铰。
如图1和图4所示,在设置刚性铰的主梁的梁跨底板的左右两侧与下方桥塔的联结处2各设置两个流体阻尼器3,所述流体阻尼器3均布置在竖直平面内且位于同侧的两个流体阻尼器3以所对应的桥塔横梁4的纵向中轴线对称分布;流体阻尼器3的一端与桥塔横梁4通过支座5连接,另一端与主梁梁跨底板通过连接件6连接,所述流体阻尼器3的轴向与主梁1纵向的交角为45°。通过在主梁梁跨底板的两端与下方桥塔的联结处对称设置两个流体阻尼器3以提供扭转阻尼力,抑制主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应。
流体阻尼器3的设计参数阻尼系数c和阻尼指数α的确定方法包括顺序执行的以下步骤:
(1)建立主梁设置刚性铰的斜拉桥有限元模型,计算斜拉桥有限元模型在脉动风作用下的主梁横向风振反应,获得跨中横向位移的均方根值;斜拉桥限元模型在脉动风作用下的主梁横向风振反应属于本领域专业技术人员公知技术。
图2为设置刚性铰的主梁横向位移的均方根值。由图2可知,由于设置刚性铰的梁跨的扭转振型导致了横向风振反应增大,设置刚性铰的梁跨的横向风振反应相比其他梁跨显著增大。
(2)在斜拉桥有限元模型中,在设置刚性铰处的主梁1梁跨底板的左右两侧与下方桥塔的联结处2各设置两个流体阻尼器3,形成带流体阻尼器的斜拉桥有限元分析模型;对流体阻尼器3的不同阻尼系数c和阻尼指数α的进行取值,其中流体阻尼器3的阻尼系数c取值范围为2000~12000kN·(s/m)α,取值间隔为1000kN·(s/m)α,阻尼指数α取值范围为0.1~1.0,取值间隔为0.1,计算带流体阻尼器的斜拉桥有限元分析模型在脉动风作用下的主梁横向风振反应,获得不同阻尼系数c和阻尼指数α对应的跨中横向位移的均方根值。
(3)计算主梁梁跨的跨中横向位移的减振率β,β=(安装流体阻尼器3前的跨中横向位移的均方根值-安装流体阻尼器3后的跨中横向位移的均方根值)/安装流体阻尼器3前的跨中横向位移的均方根值×100%;
(4)绘制流体阻尼器3选取不同阻尼系数c和阻尼指数α时的跨中横向位移的减振率β图,根据该图确定最大的跨中横向位移的减振率β及其对应的阻尼系数c和阻尼指数α,此时的阻尼系数c和阻尼指数α即所求设计参数。如图5所示,最大减振率β为50.18%,对应的阻尼系数c为7000kN·(s/m)0.2,对应的阻尼指数α为0.2。
有限元计算结果表明,采用上述控制系统前主梁跨中横向位移的均方根值为4.700mm,采用上述控制系统后主梁跨中横向位移的均方根值减小为2.342mm,减振率为50.18%,有效抑制了主梁设置刚性铰的斜拉桥因强风作用引起的主梁横向风振反应。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,其特征在于:在设置刚性铰处的主梁(1)梁跨底板的左右两侧与下方桥塔的联结处(2)各设置两个流体阻尼器(3),所述流体阻尼器(3)均布置在竖直平面内且位于同侧的两个流体阻尼器(3)以所对应的桥塔横梁(4)的纵向中轴线对称分布;流体阻尼器(3)的一端与桥塔横梁(4)连接,另一端与主梁(1)梁跨底板连接。
2.根据权利要求1所述的主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,其特征在于:所述流体阻尼器(3)的轴向与主梁纵向的交角为30°~60°。
3.根据权利要求1所述的主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,其特征在于:所述流体阻尼器(3)的轴向与主梁纵向的交角为45°。
4.根据权利要求1所述的主梁设置刚性铰的斜拉桥的横向风振反应的控制系统,其特征在于:流体阻尼器(3)的设计参数阻尼系数c和阻尼指数α的确定方法包括顺序执行的以下步骤:
(1)建立主梁设置刚性铰的斜拉桥有限元模型,计算斜拉桥有限元模型在脉动风作用下的主梁横向风振反应,获得主梁跨中横向位移的均方根值;
(2)在斜拉桥有限元模型中,在设置刚性铰处的主梁(1)梁跨底板的左右两侧与下方桥塔的联结处(2)各设置两个流体阻尼器(3),形成带流体阻尼器的斜拉桥有限元分析模型,对流体阻尼器(3)的不同阻尼系数c和阻尼指数α的进行取值,计算带流体阻尼器的斜拉桥有限元分析模型在脉动风作用下的主梁横向风振反应,获得不同阻尼系数c和阻尼指数α对应的主梁跨中横向位移的均方根值;
(3)计算主梁跨中横向位移的减振率β,β=(安装流体阻尼器(3)前的主梁跨中横向位移的均方根值-安装流体阻尼器(3)后的主梁跨中横向位移的均方根值)/安装流体阻尼器(3)前的主梁跨中横向位移的均方根值×100%;
(4)绘制流体阻尼器(3)选取不同阻尼系数c和阻尼指数α时的主梁跨中横向位移的减振率β图,根据该图确定最大的主梁跨中横向位移的减振率β及其对应的阻尼系数c和阻尼指数α,此时的阻尼系数c和阻尼指数α即所求设计参数。
CN2013103803680A 2013-08-28 2013-08-28 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统 Pending CN103422428A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013103803680A CN103422428A (zh) 2013-08-28 2013-08-28 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103803680A CN103422428A (zh) 2013-08-28 2013-08-28 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统

Publications (1)

Publication Number Publication Date
CN103422428A true CN103422428A (zh) 2013-12-04

Family

ID=49647780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013103803680A Pending CN103422428A (zh) 2013-08-28 2013-08-28 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统

Country Status (1)

Country Link
CN (1) CN103422428A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106284056A (zh) * 2016-08-31 2017-01-04 中国路桥工程有限责任公司 大跨度桥梁弹塑性减震系统
CN107893368A (zh) * 2017-11-13 2018-04-10 安徽省交通控股集团有限公司 设有斜置式桥梁抗震阻尼器的大跨度漂浮体系斜拉桥

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349712A (en) * 1991-11-07 1994-09-27 Public Works Research Institute, Ministry Of Construction Variable damper for bridges and bridge
CN101343858A (zh) * 2008-08-18 2009-01-14 中铁大桥勘测设计院有限公司 一种大跨度桥梁的位移混合控制装置
CN102345279A (zh) * 2011-10-25 2012-02-08 中国水电顾问集团华东勘测设计研究院 一种高地震烈度区水工建筑物闸墩连接结构及施工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349712A (en) * 1991-11-07 1994-09-27 Public Works Research Institute, Ministry Of Construction Variable damper for bridges and bridge
CN101343858A (zh) * 2008-08-18 2009-01-14 中铁大桥勘测设计院有限公司 一种大跨度桥梁的位移混合控制装置
CN102345279A (zh) * 2011-10-25 2012-02-08 中国水电顾问集团华东勘测设计研究院 一种高地震烈度区水工建筑物闸墩连接结构及施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊春辉: "《基于流体阻尼器的大跨度斜拉桥结构振动被动控制》", 《中国学位论文全文数据库》, 24 August 2011 (2011-08-24) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106284056A (zh) * 2016-08-31 2017-01-04 中国路桥工程有限责任公司 大跨度桥梁弹塑性减震系统
CN106284056B (zh) * 2016-08-31 2017-12-05 中国路桥工程有限责任公司 大跨度桥梁弹塑性减震系统
CN107893368A (zh) * 2017-11-13 2018-04-10 安徽省交通控股集团有限公司 设有斜置式桥梁抗震阻尼器的大跨度漂浮体系斜拉桥

Similar Documents

Publication Publication Date Title
CN103410083B (zh) 多塔斜拉桥结构纵向风致响应的混合控制系统
CN105787183A (zh) 确定斜拉桥合理成桥索力的综合算法
CN208311664U (zh) 一种门型抗震支吊架
Wei et al. Modal analysis of a cable-stayed bridge
CN105468827A (zh) 一种斜置式桥梁抗震阻尼器及其参数优化方法
CN102425099B (zh) 大悬臂波-桁组合pc桥梁及其制造方法
CN103422428A (zh) 主梁设置刚性铰的斜拉桥的横向风振反应的控制系统
CN106400670B (zh) 一种悬索斜拉二次吊杆组合式大跨度桥结构
CN103422422B (zh) 具有抑制纵向地震响应的多塔斜拉桥支承体系及工作方法
Ma et al. Case study of three-dimensional aeroelastic effect on critical flutter wind speed of long-span bridges
CN204185770U (zh) 高烈度地震区悬索桥索塔减震组合横梁
CN103382740A (zh) 带可调节撑杆的弦支门式刚架结构
CN203373663U (zh) 一种滑轮式钢绞线限位工装
CN201826579U (zh) 八度地震区百万机组火力发电厂的主厂房
CN203367915U (zh) 离相封闭母线用可调导体伸缩结构
CN209429268U (zh) 一种钢框架梁拼接点处支吊点的加固结构
CN203603023U (zh) 斜拉桥塔梁墩固结结构
CN203361327U (zh) 带可调节撑杆的弦支门式刚架结构
CN202646927U (zh) 电缆桥架的转弯支架
CN203867271U (zh) 直筒加劲双椭圆连体烟囱
CN105178185A (zh) 斜拉桥主梁斜向阻尼约束系统
CN208183506U (zh) 一种多塔长联斜拉桥支撑体系
CN205957134U (zh) 用于锅炉烟风道的新型吊挂结构
CN204475851U (zh) 无支撑悬挑板用外框梁内压型钢结构
CN106192723A (zh) 一种刚性与粘滞性组合约束结构和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131204