CN103420670B - Low-temperature sintered microwave ceramic material and preparation method thereof - Google Patents
Low-temperature sintered microwave ceramic material and preparation method thereof Download PDFInfo
- Publication number
- CN103420670B CN103420670B CN201310346515.2A CN201310346515A CN103420670B CN 103420670 B CN103420670 B CN 103420670B CN 201310346515 A CN201310346515 A CN 201310346515A CN 103420670 B CN103420670 B CN 103420670B
- Authority
- CN
- China
- Prior art keywords
- zno
- tio
- bao
- additive
- major ingredient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000654 additive Substances 0.000 claims abstract description 70
- 230000000996 additive effect Effects 0.000 claims abstract description 68
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 54
- 238000000498 ball milling Methods 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 19
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000005469 granulation Methods 0.000 claims abstract description 6
- 230000003179 granulation Effects 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 238000009766 low-temperature sintering Methods 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims 12
- 239000011230 binding agent Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000000465 moulding Methods 0.000 abstract description 5
- 238000007873 sieving Methods 0.000 abstract description 3
- 238000010304 firing Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 description 38
- 238000005245 sintering Methods 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 239000012071 phase Substances 0.000 description 12
- 230000010354 integration Effects 0.000 description 7
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002075 main ingredient Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000001238 wet grinding Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- -1 silver metals Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种低温烧结微波陶瓷材料及其制备方法,属于材料技术领域。包括BaO-ZnO-TiO2主料、第一添加剂BaCu(B2O5)、第二添加剂复合氧化物和第三添加剂MnO2。首先以BaCO3、ZnO和TiO2为原料合成BaO-ZnO-TiO2主料,然后以BaCO3、CuO和B2O3为原料合成第一添加剂,再以BaCO3、ZnO、TiO2、SiO2和B2O3为原料合成第二添加剂,再将第一、二、三添加剂添加到主料中,经球磨、干燥、过筛、造粒、成型和排胶处理后在空气中于850~940℃下烧成。本发明提供的低温烧结微波陶瓷材料,经检测具有高的Q值,近零且系列化的频率温度系数,适中的介电常数和良好的工艺稳定性。
A low-temperature sintered microwave ceramic material and a preparation method thereof belong to the field of material technology. It includes BaO-ZnO-TiO 2 main material, first additive BaCu (B 2 O 5 ), second additive composite oxide and third additive MnO 2 . Firstly, BaO-ZnO-TiO 2 main material was synthesized from BaCO 3 , ZnO and TiO 2 , then the first additive was synthesized from BaCO 3 , CuO and B 2 O 3 , and then BaCO 3 , ZnO, TiO 2 , SiO 2 and B 2 O 3 as raw materials to synthesize the second additive, and then add the first, second, and third additives to the main material, and after ball milling, drying, sieving, granulation, molding and debinding, it will be heated in the air at 850 Firing at ~940°C. The low-temperature sintered microwave ceramic material provided by the invention has high Q value, nearly zero and serialized frequency temperature coefficient, moderate dielectric constant and good process stability after testing.
Description
技术领域technical field
本发明属于材料技术领域,涉及微波陶瓷材料及其制备方法,尤其是一种低温烧结的微波陶瓷材料及其制备方法。The invention belongs to the technical field of materials, and relates to a microwave ceramic material and a preparation method thereof, in particular to a low-temperature sintered microwave ceramic material and a preparation method thereof.
背景技术Background technique
微电子器件和集成器件的快速发展对电子设备小型化、轻量化提出了高要求,单一的有源器件集成已经无法满足生产应用,无源器件必须小型化成为一种趋势,但传统所用大体积的金属谐振腔使微带电路的集成变得困难。微波多芯片组件(MMCM)模块因具有重量轻、体积小、成本低和可靠性高的技术特点而被广泛应用,实现这一技术的有效途径是发展多层片式元件。低温共烧陶瓷(Low Temperature Co-fired ceramic,LTCC)技术因为其具有较高的集成密度、较好的高频特性等优点,已经成为了实现当前电子元器件集成化的一种主要方式。LTCC技术采用的是多层布线结构,是一种三维立体组装的无源器件集成及无源有源器件混合集成技术,能够实现无源元件(电阻、电容、电感、滤波器)与传输线的集成,又可表面贴装IC元件,为实现器件的小型化、多重功能的模块化和提高信号的可靠性方面扮演了重要的角色。LTCC技术使用的互连导体一般都是具有优异导电特性的银金属,其熔点比较低约为961℃,这就要求用在LTCC技术上的陶瓷材料必须要在950℃以下烧结致密。此外,当前商业化应用的低温共烧陶瓷材料大都属于玻璃-陶瓷(glass-ceramic)体系,其介电常数偏小,介电损耗偏大,主要应用于介质基板材料,如美国Ferro公司的A6(εr=5.7,tgδ=0.0012)、Dupont公司的951(εr=7.85,tgδ=0.0063),而具有中高介电常数的微波介电性能优异的商用低温共烧介质陶瓷材料还比较匮乏。The rapid development of microelectronic devices and integrated devices has put forward high requirements for the miniaturization and light weight of electronic equipment. The integration of a single active device can no longer meet the production application. It has become a trend that passive devices must be miniaturized. However, the traditional large volume The metal resonant cavity makes the integration of microstrip circuits difficult. Microwave multi-chip module (MMCM) modules are widely used because of their technical characteristics of light weight, small size, low cost and high reliability. An effective way to realize this technology is to develop multi-layer chip components. Low temperature co-fired ceramic (Low Temperature Co-fired ceramic, LTCC) technology has become a main way to realize the integration of current electronic components because of its advantages such as high integration density and good high-frequency characteristics. LTCC technology uses a multi-layer wiring structure, which is a three-dimensional assembly of passive device integration and passive active device hybrid integration technology, which can realize the integration of passive components (resistors, capacitors, inductors, filters) and transmission lines , and can be surface mounted IC components, which play an important role in realizing the miniaturization of devices, modularization of multiple functions and improving the reliability of signals. The interconnecting conductors used in LTCC technology are generally silver metals with excellent electrical conductivity, and their melting point is relatively low at about 961°C, which requires that the ceramic materials used in LTCC technology must be sintered densely below 950°C. In addition, most of the low-temperature co-fired ceramic materials currently commercially used belong to the glass-ceramic (glass-ceramic) system, which has a relatively small dielectric constant and a relatively large dielectric loss, and is mainly used in dielectric substrate materials, such as the A6 (εr=5.7, tgδ=0.0012), Dupont’s 951 (εr=7.85, tgδ=0.0063), and commercial low-temperature co-fired dielectric ceramic materials with medium and high dielectric constants and excellent microwave dielectric properties are still relatively scarce.
BaO-TiO2系微波介质陶瓷是最早开发并应用的微波介质材料之一,早在1975年以BaTi4O9主晶相材料制作的介质谐振器就被应用到了实际微波元器件中,后来随着微波介质陶瓷材料的研究在全球范围内被予以重视和广泛开展,越来越多的微波介电性能更加优异的新材料体系被发现和应用,使得这个相对古老的陶瓷体系逐渐被忽略。然而近年来考虑到成本和工艺控制等诸多因素,特别是2000年以来发现了综合性能优异的BaO-ZnO-TiO2新体系,鉴于含有BaO、TiO2、ZnO三种氧化物的微波介质陶瓷体系简单、原材料价格十分便宜,并在整个微波频段都可以应用,BaO-TiO2以及BaO-ZnO-TiO2基微波介质陶瓷重新进入人们的研究和应用视野,这其中包括该体系的低温烧结研究。BaO-TiO 2 series microwave dielectric ceramics are one of the earliest developed and applied microwave dielectric materials. As early as 1975, dielectric resonators made of BaTi 4 O 9 main crystal phase materials were applied to actual microwave components. With the research on microwave dielectric ceramic materials being valued and widely carried out around the world, more and more new material systems with better microwave dielectric properties have been discovered and applied, making this relatively ancient ceramic system gradually neglected. However, considering many factors such as cost and process control in recent years, especially since 2000, a new BaO-ZnO-TiO 2 system with excellent comprehensive performance has been discovered. In view of the simple microwave dielectric ceramic system containing BaO, TiO2, and ZnO , The price of raw materials is very cheap, and can be applied in the whole microwave frequency band. BaO-TiO 2 and BaO-ZnO-TiO 2 based microwave dielectric ceramics have re-entered people's research and application vision, including the low-temperature sintering research of this system.
对BaO-TiO2以及BaO-ZnO-TiO2基微波介质陶瓷的低温烧结研究始于2000年左右,一般而言,BaO-TiO2体系陶瓷的烧结温度在1300℃左右,BaO-ZnO-TiO2体系陶瓷的烧结温度也在1200℃以上,其低温烧结主要采用添加液相烧结助剂的途径实现。如《日本应用物理学报》(Japanese Journal of Applied Physics)2002年的文章《3ZnO-2B2O3掺杂Ba2Ti9O20陶瓷的低温烧结及微波介电性能》(Low temperature sintering and microwave dielectric properties ofBa2Ti9O20ceramics with3ZnO-2B2O3addition)中报道了ZnO-B2O3玻璃可以降低Ba2Ti9O20陶瓷的烧结温度至940℃,但它们之间会发生反应生成新的杂相,严重破坏微波介电性能,1wt%ZnO-B2O3玻璃掺杂的Ba2Ti9O20基微波介质陶瓷在940℃/2h下得到微波介电性能:εr=27.3,Q×f=8300GHz,τf=+2.5ppm/℃。《欧洲陶瓷学报》(Journal of Electroceramics)2006年的文章《B2O3和CuO对BaTi4O9陶瓷烧结温度和微波介电性能的影响》(Effect of B2O3and CuO onthe sintering temperature and microwave dielectric properties of the BaTi4O9ceramics)中报道了2.0mol%B2O3和5.0mol%CuO掺杂的BaTi4O9陶瓷在900℃烧结2h,可得到微波介电性能:εr=36.3,Q×f=30500GHz,τf=+28.1ppm/℃。后来人们深入研究发现B2O3-CuO复合掺杂之所以能取得较好的降烧效果和保持良好微波介电性能,是因为会生成一种熔点低(850℃)且微波介电性能优异(εr=7.4,Q×f=50000GHz,τf=-32ppm/℃)的新化合物相BaCu(B2O5)。《日本应用物理学报》(Japanese Journal of Applied Physics)2006年的文章《BaCu(B2O5)掺杂剂对BaTi4O9陶瓷的烧结温度和微波介电性能的影响》(Effect of BaCu(B2O5)additive on the sinteringtemperature and microwave dielectric properties of BaTi4O9ceramics)中报道了12.0mol%BaCu(B2O5)掺杂的BaTi4O9陶瓷在875℃就能烧结致密,得到的微波介电性能为:εr=32,Q×f=10800GHz,τf=+32ppm/℃,XRD物相分析显示有相当数量的Ba4Ti13O30相生成。可以发现,对于低熔点氧化物掺杂,大多数研究者都集中于选择B2O3、CuO、BaCu(B2O5)三种氧化物,其中复合掺杂B2O3-CuO或单独掺杂BaCu(B2O5)都显示出对BaO-TiO2以及BaO-ZnO-TiO2基微波介质陶瓷具有独特的液相烧结作用,能有效降低烧结温度,可是上述低烧微波介质陶瓷具有优异综合微波介电性能的还是不多,主要表现在Q×f值不够高,大都在20000GHz以下,或者谐振频率温度系数τf值偏高无法满足实际应用需求。The low-temperature sintering research on BaO-TiO 2 and BaO-ZnO-TiO 2 based microwave dielectric ceramics began around 2000. Generally speaking, the sintering temperature of BaO-TiO 2 system ceramics is about 1300 °C, and BaO-ZnO-TiO 2 The sintering temperature of the system ceramics is also above 1200°C, and its low-temperature sintering is mainly achieved by adding liquid-phase sintering aids. For example, the article "Low temperature sintering and microwave dielectric properties of 3ZnO-2B 2 O 3 doped Ba 2 Ti 9 O 20 ceramics" (Japanese Journal of Applied Physics) in 2002 properties ofBa 2 Ti 9 O 20 ceramics with3ZnO-2B 2 O 3 addition) reported that ZnO-B 2 O 3 glass can reduce the sintering temperature of Ba 2 Ti 9 O 20 ceramics to 940℃, but there will be a reaction between them to form The new impurity phase seriously damages the microwave dielectric properties. 1wt% ZnO-B 2 O 3 glass doped Ba 2 Ti 9 O 20 based microwave dielectric ceramics obtained microwave dielectric properties at 940℃/2h: εr=27.3, Q×f=8300GHz, τf=+2.5ppm/℃. " Effect of B2O3and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9ceramics) reported that 2.0mol% B 2 O 3 and 5.0mol% CuO doped BaTi 4 O 9 ceramics were sintered at 900°C for 2 hours, and the microwave dielectric properties can be obtained: εr=36.3, Q×f=30500GHz, τf =+28.1ppm/°C. Later, people conducted in-depth research and found that the reason why B 2 O 3 -CuO compound doping can achieve better heat reduction effect and maintain good microwave dielectric properties is because it will generate a low melting point (850 ℃) and excellent microwave dielectric properties. (εr=7.4, Q×f=50000GHz, τf=-32ppm/℃) new compound phase BaCu(B 2 O 5 ). "The Effect of BaCu(B 2 O 5 ) dopant on the sintering temperature and microwave dielectric properties of BaTi 4 O 9 ceramics" (Japanese Journal of Applied Physics) in 2006 (Effect of BaCu( B2O5)additive on the sinteringtemperature and microwave dielectric properties of BaTi 4 O 9 ceramics) reported that BaTi4O9 ceramics doped with 12.0mol% BaCu(B 2 O 5 ) can be sintered and dense at 875°C, and the obtained microwave dielectric properties are : εr=32, Q×f=10800GHz, τf=+32ppm/℃, XRD phase analysis shows that a considerable amount of Ba 4 Ti 13 O 30 phase is formed. It can be found that for the doping of low-melting point oxides, most researchers focus on the selection of B 2 O 3 , CuO, and BaCu (B 2 O 5 ) oxides, among which B 2 O 3 -CuO or single Doping BaCu(B 2 O 5 ) shows that it has a unique liquid phase sintering effect on BaO-TiO 2 and BaO-ZnO-TiO 2 based microwave dielectric ceramics, which can effectively reduce the sintering temperature, but the above-mentioned low-fired microwave dielectric ceramics have excellent There are still not many comprehensive microwave dielectric properties, mainly because the Q×f value is not high enough, mostly below 20000 GHz, or the resonant frequency temperature coefficient τf value is too high to meet the actual application requirements.
目前使用的低温烧结微波介质陶瓷材料都在尽力追求其高介电常数、低损耗和近零谐振频率温度系数特征,从材料介电常数系列化以及减小电子元器件尺寸方面来说,当前需要开发一种原材料成本低、工艺重复性好同时满足低损耗特性,并能够与银电极材料实现低温共烧的具有中高介电常数的陶瓷材料,以满足微波通信行业的应用需求。The currently used low-temperature sintered microwave dielectric ceramic materials are trying their best to pursue the characteristics of high dielectric constant, low loss and near-zero resonance frequency temperature coefficient. From the perspective of serialization of material dielectric constant and reduction of electronic component size, current needs Develop a ceramic material with medium and high dielectric constant that has low raw material cost, good process repeatability and low loss characteristics, and can be co-fired with silver electrode materials at low temperature to meet the application needs of the microwave communication industry.
发明内容Contents of the invention
本发明的目的是为了克服以往中介低温烧结微波介质材料损耗特性较差和频率温度系数不易调零的缺陷,通过在BaO-ZnO-TiO2主料中引入第一、第二、第三次添加剂作为改性剂,显著降低烧结温度的同时,减少由于助烧剂带来的损耗恶化因素,制备出具有低损耗、近零系列化的频率温度系数、成本低廉并具有良好工艺稳定性的适用于低温烧结的微波陶瓷材料。The purpose of the present invention is to overcome the defects of poor loss characteristics and difficult zero adjustment of the frequency temperature coefficient of the previous intermediary low-temperature sintered microwave dielectric materials, by introducing the first, second and third additives into the main material of BaO-ZnO-TiO As a modifier, it not only reduces the sintering temperature significantly, but also reduces the loss deterioration factors caused by the sintering aid, and prepares a low-loss, near-zero series frequency temperature coefficient, low cost and good process stability. Low temperature sintered microwave ceramic material.
为实现本发明的目的,本发明采用的技术方案是:For realizing the purpose of the present invention, the technical scheme that the present invention adopts is:
一种低温烧结微波陶瓷材料,包括BaO-ZnO-TiO2主料、第一添加剂、第二添加剂和第三添加剂,其中:A low-temperature sintered microwave ceramic material, comprising BaO-ZnO-TiO 2 main material, the first additive, the second additive and the third additive, wherein:
所述BaO-ZnO-TiO2主料中BaO:ZnO:TiO2摩尔比为1:(0.1~0.7):4,主晶相为BaTi4O9和BaZn2Ti4O11;The molar ratio of BaO:ZnO: TiO2 in the main material of BaO-ZnO- TiO2 is 1:(0.1~ 0.7 ) : 4 , and the main crystal phases are BaTi4O9 and BaZn2Ti4O11 ;
所述第一添加剂为BaCu(B2O5)化合物,其质量百分比含量为BaO-ZnO-TiO2主料的1wt%~15wt%;The first additive is a BaCu(B 2 O 5 ) compound, and its mass percentage content is 1wt%-15wt% of the main ingredient of BaO-ZnO- TiO2 ;
所述第二添加剂为复合氧化物aA+bB+cC,其中A代表碱金属氧化物(优选BaO),B代表过渡金属氧化物(优选ZnO、TiO2或ZnO和TiO2的混合物),C代表非金属氧化物(优选B2O3、SiO2或B2O3和SiO2的混合物);a、b、c是系数,a+b+c=1,且0.05≤a≤0.15,0.35≤b≤0.45,0.45≤c≤0.55;第二添加剂的质量百分比含量为BaO-ZnO-TiO2主料的0.1wt%~1.0wt%;The second additive is a composite oxide aA+bB+cC, wherein A represents an alkali metal oxide (preferably BaO), B represents a transition metal oxide (preferably ZnO, TiO 2 or a mixture of ZnO and TiO 2 ), and C represents a metalloid Oxide (preferably B 2 O 3 , SiO 2 or a mixture of B 2 O 3 and SiO 2 ); a, b, c are coefficients, a+b+c=1, and 0.05≤a≤0.15, 0.35≤b≤ 0.45, 0.45≤c≤0.55; the mass percentage content of the second additive is 0.1wt%~1.0wt% of the main ingredient of BaO-ZnO- TiO2 ;
所述第三添加剂为MnO2,质量百分比含量为BaO-ZnO-TiO2主料的0.1wt%~2.0wt%。The third additive is MnO 2 , and its mass percentage content is 0.1wt%˜2.0wt% of the main ingredient of BaO—ZnO—TiO 2 .
一种低温烧结微波陶瓷材料的制备方法,如图1所示,包括以下步骤:A preparation method of a low-temperature sintered microwave ceramic material, as shown in Figure 1, comprises the following steps:
步骤1:BaO-ZnO-TiO2主料合成。包括以下步骤:Step 1: BaO-ZnO- TiO2 main material synthesis. Include the following steps:
步骤1-1:以BaCO3、ZnO和TiO2为原料,按照BaO:ZnO:TiO2=1:(0.1~0.7):4的摩尔比进行备料,将备料以去离子水为球磨介质进行球磨,球磨后于100℃下烘干并过40目筛;Step 1-1: Using BaCO 3 , ZnO and TiO 2 as raw materials, prepare materials according to the molar ratio of BaO:ZnO:TiO 2 =1:(0.1~0.7):4, and ball mill the prepared materials with deionized water as the ball milling medium , dried at 100°C after ball milling and passed through a 40-mesh sieve;
步骤1-2:将经步骤1-1处理后的混合料在1000℃~1100℃温度条件下预烧3~5小时,得到主晶相为BaTi4O9和BaZn2Ti4O11的BaO-ZnO-TiO2主料。Step 1-2: pre-calcine the mixture treated in step 1-1 at a temperature of 1000°C to 1100°C for 3 to 5 hours to obtain BaO whose main crystal phases are BaTi 4 O 9 and BaZn 2 Ti 4 O 11 -ZnO-TiO 2 main material.
步骤2:第一添加剂合成。包括以下步骤:Step 2: First additive synthesis. Include the following steps:
步骤2-:1:以BaCO3、CuO和B2O3为原料,按Ba:Cu:B=1:1:2的摩尔比进行备料,将备料以乙醇为球磨介质进行球磨,并于75℃下烘干并过40目筛;Step 2-: 1: Using BaCO 3 , CuO and B 2 O 3 as raw materials, prepare the materials according to the molar ratio of Ba:Cu:B=1:1:2, and use ethanol as the ball milling medium for ball milling, and at 75 Dry at ℃ and pass through a 40-mesh sieve;
步骤2-2:将经步骤2-1处理后的混合料在600℃~800℃温度条件下预烧1~2小时,得到第一添加剂BaCu(B2O5)粉末。Step 2-2: pre-calcining the mixture treated in step 2-1 at a temperature of 600°C-800°C for 1-2 hours to obtain the first additive BaCu(B 2 O 5 ) powder.
步骤3:第二添加剂合成。包括以下步骤:Step 3: Second additive synthesis. Include the following steps:
步骤3-1:以BaCO3、ZnO、TiO2、SiO2和B2O3为原料,按照BaO:(ZnO+TiO2):(SiO2+B2O3)=(0.05~0.15):(0.35~0.45):(0.45~0.55)的质量比进行备料,将备料以去离子水为球磨介质进行球磨,并于100℃下烘干并过40目筛;Step 3-1: Using BaCO 3 , ZnO, TiO 2 , SiO 2 and B 2 O 3 as raw materials, according to BaO:(ZnO+TiO 2 ):(SiO 2 +B 2 O 3 )=(0.05~0.15): The mass ratio of (0.35~0.45):(0.45~0.55) is used for material preparation, and the material is prepared by ball milling with deionized water as the ball milling medium, and dried at 100°C and passed through a 40-mesh sieve;
步骤3-2:将经步骤3-1处理后的球磨料,在600℃~800℃温度条件下预烧1~2小时,得到第二添加剂复合氧化物粉末。Step 3-2: pre-calcining the ball mill material treated in step 3-1 at a temperature of 600° C. to 800° C. for 1 to 2 hours to obtain the second additive composite oxide powder.
步骤4:在BaO-ZnO-TiO2主料中添加第一添加剂、第二添加剂和第三添加剂,得到混合体系D。以步骤1所合成的BaO-ZnO-TiO2主料为基准,添加步骤2合成的第一添加剂、步骤3合成的第二添加剂以及第三添加剂MnO2;其中:第一添加剂的添加量相当于BaO-ZnO-TiO2主料的1wt%~15wt%,第二添加剂的添加量相当于BaO-ZnO-TiO2主料的0.1wt%~1.0wt%,第三添加剂的添加量相当于BaO-ZnO-TiO2主料的0.1wt%~2.0wt%。Step 4: Add the first additive, the second additive and the third additive to the main material of BaO-ZnO-TiO 2 to obtain the mixed system D. Taking the synthesized BaO-ZnO-TiO of step 1 as a benchmark, add the first additive synthesized in step 2, the second additive synthesized in step 3 and the third additive MnO 2 ; wherein: the addition amount of the first additive is equivalent to 1wt%-15wt% of the main material of BaO-ZnO- TiO2 , the addition amount of the second additive is equivalent to 0.1wt%-1.0wt% of the main material of BaO-ZnO- TiO2 , and the addition amount of the third additive is equivalent to BaO- 0.1wt% to 2.0wt% of the main material of ZnO- TiO2 .
步骤5:将步骤4所得混合体系D,以去离子水为球磨介质进行混合球磨。Step 5: The mixed system D obtained in Step 4 is mixed and ball milled with deionized water as the ball milling medium.
步骤6:将步骤5所得球磨料依次进行干燥、过筛、造粒、成型和排胶处理,得到生坯料。Step 6: Drying, sieving, granulating, molding and debinding the ball mill material obtained in Step 5 in sequence to obtain a green body.
步骤7:将经步骤6处理后的生坯料在空气中于850~940℃温度条件下烧结60~120分钟,自然冷却后即得低温烧结微波陶瓷材料。Step 7: sintering the green body processed in step 6 in air at a temperature of 850-940° C. for 60-120 minutes, and cooling naturally to obtain a low-temperature sintered microwave ceramic material.
本发明提供的低温烧结微波陶瓷材料,经检测具有较低的损耗即较高的Q值,近零且系列化的频率温度系数,适中的介电常数和良好的工艺稳定性。The low-temperature sintered microwave ceramic material provided by the invention has, through testing, relatively low loss, that is, a high Q value, near-zero and serialized frequency temperature coefficient, moderate dielectric constant and good process stability.
本发明所涉及到的低温烧结微波介质陶瓷材料制备方法与传统的生产技术相比,生产工艺过程基本相同,主要特点是获得了主料晶相共生共存,结构致密且工艺稳定性良好的具有低烧结温度和较高品质因子的微波介质陶瓷。Compared with the traditional production technology, the preparation method of the low-temperature sintered microwave dielectric ceramic material involved in the present invention has basically the same production process. Microwave dielectric ceramics with higher sintering temperature and higher quality factor.
用XRD衍射法对烧成后的低温烧结微波陶瓷试样进行了物相分析如图2所示,可以证实所得到陶瓷主晶相为BaTi4O9和BaZn2Ti4O11,主相没有受到助烧剂掺杂的影响。用扫描电镜SEM对陶瓷表面进行观察如图3所示,可以看出陶瓷表面晶粒较为均匀致密,降温后烧成的陶瓷没有出现助烧剂引入带来的大面积玻璃相及晶粒异常生长。The phase analysis of the fired low-temperature sintered microwave ceramic sample was carried out by XRD diffraction method, as shown in Figure 2, it can be confirmed that the main crystal phases of the obtained ceramics are BaTi 4 O 9 and BaZn 2 Ti 4 O 11 , and the main phase has no Affected by sintering aid doping. Observation of the ceramic surface with a scanning electron microscope (SEM) is shown in Figure 3. It can be seen that the grains on the ceramic surface are relatively uniform and compact, and the fired ceramics after cooling down do not have large-area glass phases and abnormal growth of grains caused by the introduction of firing aids. .
与现有技术相比,本发明具有以下特点:Compared with the prior art, the present invention has the following characteristics:
1、本发明的配方中不含Pb、Cd、Bi等挥发性或重金属,是一种环保微波介质陶瓷;1. The formula of the present invention does not contain Pb, Cd, Bi and other volatile or heavy metals, and is an environmentally friendly microwave dielectric ceramic;
2、第一添加剂的BaCu(B2O5)和第二添加剂复合氧化物可以在相同温度下预烧合成,相比采用多种掺杂剂改性的低温烧结微波介质合成途径而言具有一定的工艺优势;2. The BaCu(B 2 O 5 ) of the first additive and the composite oxide of the second additive can be pre-fired at the same temperature, which has certain advantages compared with the low-temperature sintering microwave dielectric synthesis route modified by various dopants. process advantages;
3、实现了在900℃左右低温烧成陶瓷的高性能:较高Q×f值(16000~30000),中等介电常数(21~36)和系列化近零的频率温度系数(-6~14);3. Realize the high performance of ceramics fired at a low temperature of about 900°C: high Q×f value (16000~30000), medium dielectric constant (21~36) and serialized near-zero frequency temperature coefficient (-6~ 14);
4、原材料在国内充足,价格低廉,工艺稳定性好,使高性能低温烧成微波陶瓷的低成本化成为可能。4. The raw materials are abundant in China, the price is low, and the process stability is good, which makes it possible to reduce the cost of high-performance low-temperature fired microwave ceramics.
附图说明Description of drawings
图1为本发明流程示意图。Fig. 1 is a schematic flow chart of the present invention.
图2为本发明制备的低温烧结微波陶瓷材料的XRD衍射分析图。Fig. 2 is an XRD diffraction analysis diagram of the low-temperature sintered microwave ceramic material prepared in the present invention.
图3为本发明制备的低温烧结微波陶瓷材料的SEM扫描电镜图。Fig. 3 is a SEM scanning electron microscope image of the low-temperature sintered microwave ceramic material prepared in the present invention.
具体实施方式Detailed ways
以下结合具体实施方式对本发明进行进一步的描述。The present invention will be further described below in combination with specific embodiments.
一种低温烧结微波陶瓷材料的制备方法,如图1所示,包括以下步骤:A preparation method of a low-temperature sintered microwave ceramic material, as shown in Figure 1, comprises the following steps:
步骤1:BaO-ZnO-TiO2主料合成。包括以下步骤:Step 1: BaO-ZnO- TiO2 main material synthesis. Include the following steps:
步骤1-1:以BaCO3、ZnO和TiO2为原料,按照BaO:ZnO:TiO2=1:(0.1~0.7):4的摩尔比进行备料,将备料以去离子水为球磨介质进行球磨,球磨后于100℃下烘干并过40目筛;Step 1-1: Using BaCO 3 , ZnO and TiO 2 as raw materials, prepare materials according to the molar ratio of BaO:ZnO:TiO 2 =1:(0.1~0.7):4, and ball mill the prepared materials with deionized water as the ball milling medium , dried at 100°C after ball milling and passed through a 40-mesh sieve;
步骤1-2:将经步骤1-1处理后的混合料在1000℃~1100℃温度条件下预烧3~5小时,得到主晶相为BaTi4O9和BaZn2Ti4O11的BaO-ZnO-TiO2主料。Step 1-2: pre-calcine the mixture treated in step 1-1 at a temperature of 1000°C to 1100°C for 3 to 5 hours to obtain BaO whose main crystal phases are BaTi 4 O 9 and BaZn 2 Ti 4 O 11 -ZnO-TiO 2 main material.
步骤2:第一添加剂合成。包括以下步骤:Step 2: First additive synthesis. Include the following steps:
步骤2-:1:以BaCO3、CuO和B2O3为原料,按Ba:Cu:B=1:1:2的摩尔比进行备料,将备料以乙醇为球磨介质进行球磨,并于75℃下烘干并过40目筛;Step 2-: 1: Using BaCO 3 , CuO and B 2 O 3 as raw materials, prepare the materials according to the molar ratio of Ba:Cu:B=1:1:2, and use ethanol as the ball milling medium for ball milling, and at 75 Dry at ℃ and pass through a 40-mesh sieve;
步骤2-2:将经步骤2-1处理后的混合料在600℃~800℃温度条件下预烧1~2小时,得到第一添加剂BaCu(B2O5)粉末。Step 2-2: pre-calcining the mixture treated in step 2-1 at a temperature of 600°C-800°C for 1-2 hours to obtain the first additive BaCu(B 2 O 5 ) powder.
步骤3:第二添加剂合成。包括以下步骤:Step 3: Second additive synthesis. Include the following steps:
步骤3-1:以BaCO3、ZnO、TiO2、SiO2和B2O3为原料,按照BaO:(ZnO+TiO2):(SiO2+B2O3)=(0.05~0.15):(0.35~0.45):(0.45~0.55)的质量比进行备料,将备料以去离子水为球磨介质进行球磨,并于100℃下烘干并过40目筛;Step 3-1: Using BaCO 3 , ZnO, TiO 2 , SiO 2 and B 2 O 3 as raw materials, according to BaO:(ZnO+TiO 2 ):(SiO 2 +B 2 O 3 )=(0.05~0.15): The mass ratio of (0.35~0.45):(0.45~0.55) is used for material preparation, and the material is prepared by ball milling with deionized water as the ball milling medium, and dried at 100°C and passed through a 40-mesh sieve;
步骤3-2:将经步骤3-1处理后的球磨料,在600℃~800℃温度条件下预烧1~2小时,得到第二添加剂复合氧化物粉末。Step 3-2: pre-calcining the ball mill material treated in step 3-1 at a temperature of 600° C. to 800° C. for 1 to 2 hours to obtain the second additive composite oxide powder.
步骤4:在BaO-ZnO-TiO2主料中添加第一添加剂、第二添加剂和第三添加剂,得到混合体系D。以步骤1所合成的BaO-ZnO-TiO2主料为基准,添加步骤2合成的第一添加剂、步骤3合成的第二添加剂以及第三添加剂MnO2;其中:第一添加剂的添加量相当于BaO-ZnO-TiO2主料的1wt%~15wt%,第二添加剂的添加量相当于BaO-ZnO-TiO2主料的0.1wt%~1.0wt%,第三添加剂的添加量相当于BaO-ZnO-TiO2主料的0.1wt%~2.0wt%。Step 4: Add the first additive, the second additive and the third additive to the main material of BaO-ZnO-TiO 2 to obtain the mixed system D. Taking the synthesized BaO-ZnO-TiO of step 1 as a benchmark, add the first additive synthesized in step 2, the second additive synthesized in step 3 and the third additive MnO 2 ; wherein: the addition amount of the first additive is equivalent to 1wt%-15wt% of the main material of BaO-ZnO- TiO2 , the addition amount of the second additive is equivalent to 0.1wt%-1.0wt% of the main material of BaO-ZnO- TiO2 , and the addition amount of the third additive is equivalent to BaO- 0.1wt% to 2.0wt% of the main material of ZnO- TiO2 .
步骤5:将步骤4所得混合体系D,以去离子水为球磨介质进行混合球磨。Step 5: The mixed system D obtained in Step 4 is mixed and ball milled with deionized water as the ball milling medium.
步骤6:将步骤5所得球磨料依次进行干燥、过筛、造粒、成型和排胶处理,得到生坯料。Step 6: Drying, sieving, granulating, molding and debinding the ball mill material obtained in Step 5 in sequence to obtain a green body.
步骤7:将经步骤6处理后的生坯料在空气中于850~940℃温度条件下烧结60~120分钟,自然冷却后即得低温烧结微波陶瓷材料。Step 7: sintering the green body processed in step 6 in air at a temperature of 850-940° C. for 60-120 minutes, and cooling naturally to obtain a low-temperature sintered microwave ceramic material.
实施例1:BaO-ZnO-TiO2主料配比变化比较。Embodiment 1: BaO-ZnO-TiO 2 Comparison of changes in the ratio of main ingredients.
按照BaO-ZnO-TiO2主料固定为100g,第一添加剂BaCu(B2O5)固定为13g,第二添加剂复合氧化物固定为0.1g,第三添加剂MnO2固定为0.3g配比称料。在此过程中,主要为在BaO-ZnO-TiO2主料的合成中改变BaO-ZnO-TiO2主料配比。湿磨,烘干后的物料加入聚乙烯醇水溶液进行造粒,在25Mpa压力下压制成型,得到直径为15mm,厚度为8mm的圆柱生坯,然后置于空气中烧结,根据主料配比不同烧结条件略有变化,升温速率为3℃/min,随炉冷却即可制得低温烧结微波介质陶瓷,陶瓷主要配方变化情况、烧结工艺及介电性能参数见表1。According to the main material of BaO-ZnO- TiO2 is fixed at 100g, the first additive BaCu( B2O5 ) is fixed at 13g , the second additive composite oxide is fixed at 0.1g, and the third additive MnO2 is fixed at 0.3g. material. In this process, it is mainly to change the proportion of BaO-ZnO-TiO 2 main material in the synthesis of BaO-ZnO-TiO 2 main material. Wet milling, adding polyvinyl alcohol aqueous solution to the dried material for granulation, pressing under 25Mpa pressure to obtain a cylindrical green body with a diameter of 15mm and a thickness of 8mm, and then sintering in the air, depending on the ratio of main materials The sintering conditions are slightly changed, the heating rate is 3°C/min, and the low-temperature sintered microwave dielectric ceramics can be prepared with the furnace cooling. The main formula changes, sintering process and dielectric performance parameters of the ceramics are shown in Table 1.
实施例2:第一添加剂BaCu(B2O5)掺杂量变化比较。Example 2: Comparison of the doping amount of the first additive BaCu (B 2 O 5 ).
按照BaO:ZnO:TiO2=1:0.2:4合成BaO-ZnO-TiO2主料,将瓷料配方按BaO-ZnO-TiO2主料固定为100g,第一添加剂BaCu(B2O5)分别为3g、5g、7g、9g、11g、13g,第二添加剂复合氧化物固定为0.3g,第三添加剂MnO2固定为0.3g配比称料。湿磨,烘干后的物料加入聚乙烯醇水溶液进行造粒,在25Mpa压力下压制成型,得到直径为15mm,厚度为8mm的圆柱生坯,然后置于空气中烧结,根据主料配比不同烧结条件略有变化,升温速率为3℃/min,随炉冷却即可制得低温烧结微波介质陶瓷,陶瓷主要配方变化情况、烧结工艺及介电性能参数见表2。According to BaO:ZnO:TiO 2 =1:0.2:4, the main material of BaO-ZnO-TiO 2 was synthesized, and the ceramic formula was fixed at 100g according to the main material of BaO-ZnO-TiO 2 , the first additive BaCu(B 2 O 5 ) 3g, 5g, 7g, 9g, 11g, 13g respectively, the second additive composite oxide is fixed at 0.3g, and the third additive MnO2 is fixed at 0.3g. Wet milling, adding polyvinyl alcohol aqueous solution to the dried material for granulation, pressing under 25Mpa pressure to obtain a cylindrical green body with a diameter of 15mm and a thickness of 8mm, and then sintering in the air, depending on the ratio of main materials The sintering conditions are slightly changed, the heating rate is 3°C/min, and the low-temperature sintered microwave dielectric ceramics can be prepared with the furnace cooling. The main formula changes, sintering process and dielectric performance parameters of the ceramics are shown in Table 2.
实施例3:第二添加剂掺杂量变化比较。Embodiment 3: Comparison of the doping amount of the second additive.
按照BaO:ZnO:TiO2=1:0.3:4合成主料,将瓷料配方按BaO-ZnO-TiO2主料固定为100g,第一添加剂BaCu(B2O5)固定为11g,第二添加剂复合氧化物分别为0.1g、0.3g、0.5g、0.7g、0.9g,第三添加剂MnO2固定为0.7g配比称料。湿磨,烘干后的物料加入聚乙烯醇水溶液进行造粒,在25Mpa压力下压制成型,得到直径为15mm,厚度为8mm的圆柱生坯,然后置于空气中烧结,升温速率为3℃/min,随炉冷却即可制得低温烧结微波介质陶瓷,陶瓷主要配方变化情况、烧结工艺及介电性能参数见表3。Synthesize the main material according to BaO:ZnO:TiO 2 =1:0.3:4, fix the ceramic formula to 100g according to the main material of BaO-ZnO-TiO 2 , fix the first additive BaCu(B 2 O 5 ) to 11g, and the second Additive composite oxides are 0.1g, 0.3g, 0.5g, 0.7g, 0.9g respectively, and the third additive MnO 2 is fixed at 0.7g and weighed. After wet grinding and drying, add polyvinyl alcohol aqueous solution for granulation, and press molding under 25Mpa pressure to obtain a cylindrical green body with a diameter of 15mm and a thickness of 8mm, which is then sintered in air at a heating rate of 3°C/ min, and the low-temperature sintered microwave dielectric ceramics can be prepared with the furnace cooling.
实施例4:第三添加剂MnO2掺杂量变化比较。Example 4: Comparison of the doping amount of the third additive MnO 2 .
按照BaO:ZnO:TiO2=1:0.4:4合成主料,将瓷料配方按BaO-ZnO-TiO2主料固定为100g,第一添加剂BaCu(B2O5)固定为11g,第二添加剂复合氧化物固定为0.5g,第三添加剂MnO2分别为0.1g、0.5g、0.9g、1.3g、1.7g配比称料。湿磨,烘干后的物料加入聚乙烯醇水溶液进行造粒,在25Mpa压力下压制成型,得到直径为15mm,厚度为8mm的圆柱生坯,然后置于空气中烧结,升温速率为3℃/min,随炉冷却即可制得低温烧结微波介质陶瓷,陶瓷主要配方变化情况、烧结工艺及介电性能参数见表4。Synthesize the main material according to BaO:ZnO:TiO 2 =1:0.4:4, fix the ceramic formula to 100g according to the main material of BaO-ZnO-TiO 2 , fix the first additive BaCu(B 2 O 5 ) to 11g, and the second The additive composite oxide is fixed at 0.5g, and the third additive MnO2 is 0.1g, 0.5g, 0.9g, 1.3g, and 1.7g, respectively. After wet grinding and drying, add polyvinyl alcohol aqueous solution for granulation, and press molding under 25Mpa pressure to obtain a cylindrical green body with a diameter of 15mm and a thickness of 8mm, which is then sintered in air at a heating rate of 3°C/ min, and the low-temperature sintered microwave dielectric ceramics can be prepared with cooling in the furnace. Table 4 shows the main formula changes, sintering process and dielectric performance parameters of the ceramics.
表1Table 1
表2Table 2
表3table 3
表4Table 4
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310346515.2A CN103420670B (en) | 2013-08-09 | 2013-08-09 | Low-temperature sintered microwave ceramic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310346515.2A CN103420670B (en) | 2013-08-09 | 2013-08-09 | Low-temperature sintered microwave ceramic material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103420670A CN103420670A (en) | 2013-12-04 |
CN103420670B true CN103420670B (en) | 2015-02-18 |
Family
ID=49646107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310346515.2A Expired - Fee Related CN103420670B (en) | 2013-08-09 | 2013-08-09 | Low-temperature sintered microwave ceramic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103420670B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105399405B (en) * | 2015-12-21 | 2018-02-23 | 华中科技大学 | A kind of low dielectric microwave ferroelectric ceramics and preparation method thereof |
CN106631002A (en) * | 2017-01-11 | 2017-05-10 | 电子科技大学 | Dielectric material for Mg-Zn-Ti-based radio-frequency MLCC (multi-layer ceramic capacitor) and preparation method of dielectric material |
CN107986774B (en) * | 2017-11-29 | 2021-04-13 | 电子科技大学 | Low temperature sintering high dielectric constant microwave dielectric ceramic material and preparation method thereof |
CN110317057B (en) * | 2019-05-06 | 2023-03-28 | 北京元六鸿远电子科技股份有限公司 | Medium-dielectric-constant low-temperature co-fired ceramic material and preparation method thereof |
CN115947587B (en) * | 2022-09-30 | 2024-02-02 | 郴州功田电子陶瓷技术有限公司 | Microwave dielectric ceramic and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2366563A (en) * | 2000-07-21 | 2002-03-13 | Murata Manufacturing Co | Dielectric glass-ceramic composition |
CN102503405A (en) * | 2011-11-22 | 2012-06-20 | 电子科技大学 | Compound BZT microwave ceramic dielectric material and preparation method thereof |
CN102690116A (en) * | 2012-04-27 | 2012-09-26 | 深圳光启创新技术有限公司 | Microwave medium ceramic, method for processing parts, and harmonic oscillator |
-
2013
- 2013-08-09 CN CN201310346515.2A patent/CN103420670B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2366563A (en) * | 2000-07-21 | 2002-03-13 | Murata Manufacturing Co | Dielectric glass-ceramic composition |
CN102503405A (en) * | 2011-11-22 | 2012-06-20 | 电子科技大学 | Compound BZT microwave ceramic dielectric material and preparation method thereof |
CN102690116A (en) * | 2012-04-27 | 2012-09-26 | 深圳光启创新技术有限公司 | Microwave medium ceramic, method for processing parts, and harmonic oscillator |
Non-Patent Citations (4)
Title |
---|
BaO-TiO2系陶瓷微波介电性的近期研究进展;宋英等;《硅酸盐通报》;19981231;第17卷(第3期);全文 * |
BaTi4O9微波介质陶瓷制备及低温烧结研究进展;何春中等;《材料导报》;20091130;第23卷;全文 * |
Processing and characterization of BaTi4O9;Mhaisalkar S G等;《J.Am.Ceram Soc》;19891231;第72卷(第11期);全文 * |
低温烧结BaO-TiO2-ZnO系陶瓷的研究;黄刚等;《电子元件与材料》;20101231;第29卷(第12期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103420670A (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101613200B (en) | Low-temperature sintered microwave medium ceramic material and preparation method thereof | |
CN104108929B (en) | A kind of low-temperature sintering composite microwave medium ceramic material and preparation method thereof | |
CN103896579B (en) | A kind of low temperature sintering lithium-base microwave dielectric ceramic material and preparation method thereof | |
CN103420670B (en) | Low-temperature sintered microwave ceramic material and preparation method thereof | |
CN104230329A (en) | Low-temperature sintered microwave ceramic material and preparation method thereof | |
CN106007703B (en) | A kind of low-temperature sintering composite microwave medium ceramic material and preparation method thereof | |
CN109650871B (en) | ZnAl2O4Ceramic matrix material and method for producing same | |
CN107986774B (en) | Low temperature sintering high dielectric constant microwave dielectric ceramic material and preparation method thereof | |
CN101362647A (en) | Lithium-based low-temperature sintered microwave dielectric ceramic material and its preparation | |
CN107434411A (en) | Low Jie's high quality factor LTCC microwave dielectric materials and preparation method thereof | |
CN103232235A (en) | Low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof | |
CN107311646A (en) | A kind of preparation method for improving strontium titanate ceramicses dielectric material performance | |
CN107117967B (en) | Low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof | |
CN114409389A (en) | A kind of low dielectric and low loss Ba-Si-B-M based LTCC material and preparation method thereof | |
US11897815B2 (en) | Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof | |
CN108455986B (en) | A kind of composite microwave dielectric ceramic material and preparation method thereof | |
CN103408299B (en) | Zinc barium titanate system ceramic low temperature sintering material and preparation method thereof | |
CN103553612B (en) | Low-temperature sinterable microwave dielectric ceramic Ba6W2V2O17 and its preparation method | |
CN105130418A (en) | Li-Nb-Ti-based microwave dielectric ceramic material | |
CN106631002A (en) | Dielectric material for Mg-Zn-Ti-based radio-frequency MLCC (multi-layer ceramic capacitor) and preparation method of dielectric material | |
CN101811869A (en) | Low-temperature sintering microwave medium ceramic material and preparation method thereof | |
CN103922725A (en) | Low temperature sintering temperature-stable microwave dielectric ceramic material and preparation method thereof | |
CN100378031C (en) | A low-temperature sintered microwave dielectric ceramic and its preparation method | |
CN106587991B (en) | A kind of low temperature sintering composite microwave dielectric ceramic material and preparation method thereof | |
JP2000272960A (en) | Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150218 Termination date: 20170809 |
|
CF01 | Termination of patent right due to non-payment of annual fee |