CN103381273B - 阿霉素前药及其制备方法和可注射的组合物 - Google Patents
阿霉素前药及其制备方法和可注射的组合物 Download PDFInfo
- Publication number
- CN103381273B CN103381273B CN201310208163.4A CN201310208163A CN103381273B CN 103381273 B CN103381273 B CN 103381273B CN 201310208163 A CN201310208163 A CN 201310208163A CN 103381273 B CN103381273 B CN 103381273B
- Authority
- CN
- China
- Prior art keywords
- amycin
- dox
- mpeg
- prodrug
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/40—Cyclodextrins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D309/08—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/14—Nitrogen atoms not forming part of a nitro radical
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明公开了阿霉素前药及其制备方法和可注射的组合物。阿霉素前药由MPEG和DOX通过腙键连接而成,具有制备方法简单,对反应条件的要求低,产率高,生产成本更易于控制。该前药的免疫性低,可以有效提高阿霉素的水溶性;此外,本发明的阿霉素前药在体内被清除时间长,可以有效地延长药物的作用时间,具有pH敏感性,在酸性pH环境下可以原位释放出阿霉素,同时形成PEG。本发明的阿霉素前药组合物,可溶解在接近中性的水性溶液中,形成性质稳定的水溶液,在pH变化为酸性时,可以在数分钟内形成超分子水凝胶,可以长效原位释放阿霉素,可以有效避免阿霉素扩散,影响正常细胞的功能,减少药物的毒副作用。
Description
技术领域
本发明涉及一种前药及使用该前药制备得到的新型药剂,具体涉及阿霉素前药及其可注射的pH敏感水凝胶。
背景技术
癌症是一高发及致命性疾病,虽然目前化疗药物能杀死癌细胞,但他们常区分不了正常细胞与癌细胞而有相应的副作用,致正常组织受到药物毒性损伤并增加病人痛苦。而增加药物疗效的方法主要包括提高药物靶向选择性和提高局部活性药物的浓度。目前静脉给药是药物达到实体瘤的主要途径。而循环系统情况及肿瘤动脉血运供应情况决定了给药效果。而局部注射药物水凝胶的方法与静脉给药相比有以下优越性:
1、它能有效地释放治疗因子于瘤体局部间隙内,而避免了复杂的血管系统;
2、水凝胶能让药物缓释,作用时间长;
3、水凝胶能据周围环境对载体物的刺激而达到想要的释放效果;
4、生物可降解性可注射水凝胶减少了纳米药物合成物的原发或继发的毒性及免疫反应风险;
5、应用可注射水凝胶能应用非损伤的方式达到治疗效果,而减少了手术的风险;
6、应用可注射水凝胶局部注射药物是病人情况欠佳而不能耐受手术时另一合适的治疗手段。
超分子水凝胶是通过聚合物成分与大量水通过物理相互交联作用后,形成的交联聚合物。过去的10年里,它们作为载荷分子或细胞潜在的有效系统而被广泛研究。由于交联的非共价属性,在剪力的作用下,超分子凝胶显示出凝胶-溶胶的可逆性转变。超分子水凝胶“摇溶”的特性使得其适用于局部、非侵袭性的药物注射。被注射的溶胶在体内局部变成凝胶,同时在局部使其载荷的药物缓释。许多可注射水凝胶用来载荷亲水治疗药物等,如小的亲水药物分子、蛋白、多肽及寡核苷酸。但只有小部分用来制作缓释的亲水抗癌药物,包括5-氟尿嘧啶,阿霉素及顺铂等为基础的药物。
在这些凝胶中,近年来,由α-CD与其他聚合物络合形成的超分子凝胶引起了研究者们广泛的兴趣。Li等应用环氧乙烯聚合物与α-CD形成超分子凝胶。Zhu等应用顺铂被包在纳米粒内作为复合结构与α-CD结合,这种复合的在癌症的治疗中具有程序性缓释性能。
药物前体是药物分子与亲水性复合物如(聚乙二醇PEG、多糖或丙烯酸聚酰胺)结合的产物。当PEG与那些溶解性差的药物共价结合后,药物前体被赋予PEG的被清除时间长、低免疫性及增加药物的水溶性等性能。PEG与药物的复合物与α-CD相互作用而形成具有缓释功能的超分子凝胶。凝胶分解时间的延长是由于低溶性药物间的疏水键的相互作用而形成的。
发明内容
本发明的目的在于提供一种阿霉素前药。
本发明的另一个目的在于提供上述阿霉素前药的制备方法。
本发明的再一个目的在于提供一种使用了上述阿霉素前药的可注射pH敏感的水凝胶。
本发明所采取的技术方案是:
阿霉素前药,其结构式如式(Ⅰ)所示:
式中,n为10~100,优选为30~50之间的整数。
上述阿霉素前药的制备方法,包括如下步骤:
将PEG-酰肼与阿霉素溶解于无水的极性溶剂中,搅拌使其反应完全,加入过量三乙胺继续反应完全,纯化得到阿霉素前药,命名为MPEG-DOX。
作为本发明的进一步改进,MPEG-酰肼的合成方法包括如下步骤:
1)取过量硫酸肼盐溶于水中,调节其pH为碱性,得到反应液A;
2)将甲氧基聚乙二醇琥珀酰亚胺乙酸酯加入反应液A中,搅拌反应完全,透析去除未反应的小分子,冻干得到纯化的MPEG-酰肼。
作为本发明的进一步改进,加入NaOH溶液调节硫酸肼盐溶液的pH至8.5~10作为本发明的进一步改进,甲氧基聚乙二醇琥珀酰亚胺乙酸酯与硫酸肼盐的摩尔比为1:0.5~10,优选为1:3~5。
作为本发明的进一步改进,MPEG-酰肼与阿霉素的摩尔比为1:0.2~5,优选为1:1~3。
可注射的pH敏感阿霉素前药组合物,由阿霉素前药、α-环糊精及可接受的药用辅料组成,其中,阿霉素前药如上所述。
阿霉素前药与α-环糊精的摩尔比为1:0.5~5,优选为1:1.5~2.0。
本发明的有益效果是:
本发明的阿霉素前药,制备方法简单,产率高,生产成本更易于控制。该前药的免疫性低,可以有效提高阿霉素的水溶性;此外,本发明的阿霉素前药在体内被清除时间长,可以有效地延长药物的作用时间,具有pH敏感性,在酸性pH环境下可以原位释放出阿霉素,同时形成PEG。
本发明的制备方法,对反应条件的要求低,室温下搅拌即可完成反应;反应过程易于控制,安全性高,产率高,产品易于纯化。
本发明的阿霉素前药组合物,可溶解在接近中性的水性溶液中,形成性质稳定的水溶液,在pH变化为酸性时,可以在数分钟内形成超分子水凝胶,可以长效原位释放阿霉素,可以有效避免阿霉素扩散,影响正常细胞的功能,减少药物的毒副作用。
附图说明
图1是本发明MPEG-DOX的核磁共振图谱;
图2是DOX、PEG和MPEG-DOX的FT-IR图;
图3是本发明阿霉素前药组合物的溶胶-凝胶转化图;
图4是MPEG-DOX与α-CD超分子聚合物凝胶的流变动力学测试图;
图5是MPEG-DOX与α-CD浓度与凝胶模量的变化关系图;
图6是不同pH下,5wt%MPEG-DOX/8wt%α-CD体外DOX释放情况图;
图7是不同DOX浓度时超分子水凝胶内药物释放的细胞活力情况图;
图8是不同PEG浓度时MPEG/α-CD水凝胶细胞毒性情况图;
图9是不同时间点人类MCF-7细胞与药物释放的样品共培养时的共聚焦显微镜图;
图10是不同pH下人类MCF-7细胞在超分子水凝胶中培养时的共聚焦显微镜图。
具体实施方式
阿霉素前药,其结构式如式(Ⅰ)所示:
式中,n为10~100,优选为30~50之间的整数。
PEG单元在于提供足够的亲水性,保证其可以很好的被溶于水,而当单元重复数过高时,因为高分子量PEG本身的溶解度降低,反而会影响前药的水溶性。因此,上述结构式中,n为10~100,优选为30~50之间的整数。
上述阿霉素前药的制备方法,包括如下步骤:
将MPEG-酰肼与阿霉素溶解于无水的极性溶剂中,搅拌使其反应完全,加入过量三乙胺继续反应完全,纯化得到阿霉素前药,命名为MPEG-DOX。
作为本发明的进一步改进,MPEG-酰肼的合成方法包括如下步骤:
1)取过量硫酸肼盐溶于水中,调节其pH为碱性,得到反应液A;
2)将甲氧基聚乙二醇琥珀酰亚胺乙酸酯加入反应液A中,搅拌反应完全,透析去除未反应的小分子,冻干得到纯化的MPEG-酰肼。
作为本发明的进一步改进,加入NaOH溶液调节硫酸肼盐溶液的pH至8.5~10硫酸肼盐的分子量较小,易于通过半透膜,为了便于后续的纯化操作,在反应过程中,硫酸肼盐的量宜过量,以使甲氧基聚乙二醇琥珀酰亚胺乙酸酯尽可能地反应完全。因此,作为本发明的进一步改进,甲氧基聚乙二醇琥珀酰亚胺乙酸酯与硫酸肼盐的摩尔比为1:0.5~10,优选为1:3~5。
类似的,为了尽可能地利用合成得到的MPEG-酰肼,在偶联反应中,要使DOX过量,因此,作为本发明的进一步改进,MPEG-酰肼与阿霉素的摩尔比为1:0.2~5,优选为1:1~3。
可注射的pH敏感阿霉素前药组合物,由阿霉素前药、α-环糊精及可接受的药用辅料组成,其中,阿霉素前药如上所述。
阿霉素前药与α-环糊精的摩尔比为1:0.5~5,优选为1:1.5~2.0。
下面结合实施例,进一步说明本发明。
MPEG-酰肼的合成
取硫酸肼盐(1mmol,130mg)溶解于蒸馏水中,加入浓度为1mmol/L的NaOH溶液调整其pH为9.0,得到反应液A;
将甲氧基聚乙二醇琥珀酰亚胺乙酸酯(0.1mmol,500mg)加入反应液A中,室温下搅拌反应24h,透析去除未反应的小分子,冻干得到纯化的MPEG-酰肼。
经计算,反应得率为90%。
MPEG-DOX的合成
将MPEG-酰肼(0.1mmol,550mg)与阿霉素DOX(0.2mmol,118mg)溶解在10ml无水的DMSO,室温下搅拌3天,之后加入过量三乙胺;
将产物在乙醚中沉淀、纯化,真空干燥得粉红色粉末,得到阿霉素前药,记为MPEG-DOX。
经计算,反应得率为95%。
整个合成反应的原理如下所示:
产物的确认:
对得到的产物MPEG-DOX进行核磁共振分析(300MHz),所使用的核磁共振仪为BrukerAvance300,溶剂为d6-DMSO,其1H-NMR图如图1所示。1.18ppm,7.60~7.90ppm处的峰显示了偶联物的DOX中的甲基及芳基所产生的特征质子峰;4.20ppm和3.55ppm处的峰分别显示了与羰基连接的亚甲基和偶联物的MPEG中重复亚甲基的特征质子峰。证明MPEG-DOX的结构式如下所示:
PEG通过腙键与DOX相连接。
根据偶联物中由来自MPEG亚甲基的质子峰(δ=4.20)和来自DOX甲基的质子峰(δ=1.18)的积分值计算偶联物的连接率。结果显示,每100个MPEG分子与约95分子DOX相偶联。
采用FT-IR技术对DOX、PEG和MPEG-DOX进行分析,其FT-IR图如图2所示。结果同样显示MPEG与DOX偶联了。MPEG-DOX的红外图谱具有典型的来自PEG的醚键在1108cm-1的伸缩振荡峰,来自DOX中羰基在1730cm-1的伸缩振荡峰。
如图3所示,MPEG-DOX可以溶解在水中,形成均一的水溶液。特别的,当引入α-CD(α-环糊精)后,MPEG-DOX水溶液可以转化为可注射的水凝胶。凝胶的形成取决MPEG-DOX和α-CD之间的比例,在温和条件下即可生成,无需高温、乳化剂或交联剂。这是因为MPEG-DOX和α-CD可以混合体系中形成包含复合体。
凝胶化及超分子水凝胶的特点
为了形成超分子水凝胶,MPEG-DOX与α-CD(α-环糊精)分别使用pH7.4的PBS缓冲液溶解得到其水溶液。取决于MPEG-DOX或α-CD使用的量,室温下MPEG-DOX和α-CD在混合体系中会通过主客交互作用发生凝胶化。在本发明中,在混合体系中使用了两种浓度的MPEG-DOX(2.5和5.0wt%)和α-CD(6.0和8.0wt%)。
为研究MPEG-DOX/α-CD水溶液混合体系的凝胶化动力学,应用先进电流计延伸仪(ARES,TA)以振荡模式进行时间扫描流变学分析,反应条件为:25℃,平行板(直径20mm,gap0.5mm)。样品混匀后立即置于平行板内,1min之后进行测量。在之前通张力扫描确定的粘弹力线性区,测量样品的粘弹力与时间的关系。为研究形成的水凝胶的机械性能,对水凝胶进行动态频率扫描测试(dynamicfrequencysweeptest)(0.1~100rad/s),在测试前,水凝胶样品需要陈化12h。
为了研究MPEG-DOX和α-CD是如何影响超分子凝胶化的,对样品进行时间扫描测量以确定凝胶的粘弹性,记录其在不同时间点的储存模量(G’)及损耗模量(G”)。测试条件为:25℃;频率,6.0rad/s;(A)2.5wt%MPEG-DOX和8wt%α-CD;(B)5wt%MPEG-DOX和6wt%α-CD;(C)5wt%MPEG-DOX和8wt%α-CD。
如图4所示,不同的MPEG-DOX/α-CD水溶液混合体系具有不同的G’和G”-时间曲线。每个体系中的G’和G’-时间曲线均存在一个交点,显示该处反应了溶胶-凝胶转化。在交点之后,G’值越来越大于G”值,表明体系变的更类似于固体。相应的,从体系由粘性表现至弹性反应的时间可被认为是MPEG-DOX与α-CD成胶的时间。从图4可知,成胶时间的长短与MPEG-DOX或α-CD的浓度有关,浓度高时其成胶时间缩短。当α-CD浓度为8wt%时,MPEG-DOX浓度从2.5升至5.0wt%时,成胶时间从20min降至12.5min。当MPEG-DOX浓度为5wt%,α-CD浓度从6.0升至8.0wt%时,成胶时间从12.5min减少至4min。此结果显示MPEG-DOX或α-CD其中任一浓度的提高都有利于超分子水凝胶的形成,可能是因为α-CD包含成胶系统的机制。胶体系中含有由α-CD与PEO片断交织而形成颈环结构包含复合物,自组装作为一种物理交联提交了溶胶-凝胶转化的初始驱动力。因此,高浓度的溶液可以提高包含体形成的机率。
使用流变仪测量形成的超分子水凝胶的弹性模量(G’)与MPEG-DOX和α-CD浓度之间的关系。如图5示,在不同浓度的MPEG-DOX/α-CD混合体系中,G’随其浓度的变化而变化。MPEG-DOX与α-CD的浓度升高时,G’值随之升高。当MPEG-DOX浓度从2.5升高至5.0wt%,频率1.0rad/s,G’值从约8.3kPa升高到~800kPa。当MPEG-DOX浓度维持为5.0wt%时,α-CD的浓度由6.0升高到8.0wt%,G’值从约98kPa增至约800kPa。同时,所有的G’值与频率关系不大。这些结果显示水凝胶很好地交联了。
MPEG-DOX/α-CD混合体系的体外DOX释放能力
每份测试样品均将总计0.1ml的混合液(5wt%MPEG-DOX/8wt%α-CD)注射至2ml的管内,放置过夜以形成水凝胶。分别在管内加入PBS溶液(1ml,pH=7.4)或醋酸缓冲液(1.0ml,0.1mol/l,pH=6.0或5.0)作为释放介质。测试过程中,管置于振荡的水(85rpm,37℃)中保温。根据预先设定好的时间点,从管内1ml的上清液中取出0.5ml,然后加入0.5ml预热的缓冲液,以维持其体积为1ml,每次取样的时间确定约为30S,在该时间内混合物不会达到平衡。在不同的时间点取出溶液,480nm下检测DOX在溶液中的特征吸收波长。每个样品重复测试3次。
如图6所示,48小时内,在pH7.4的PBS溶液中,MPEG-DOX中偶联的DOX缓慢释放了约30%,而pH5.0和6.0溶液中的水凝胶在最初的6小时内就释放了近30%的DOX,48小时后,释放率高达70%。保温5天后,酸性pH下,几乎所有的DOX都已经释放,而pH7.4下的类似固体的凝胶仅释放了60%。
MPEG-DOX/α-CD水凝胶的MTT实验
应用MTT试剂盒来检测水凝胶对MCF-7细胞系抑制率情况。人类乳腺癌细胞(MFC-7)添加了10%胎牛血清(FBS,GIBCO)、1.0×105U/l青霉素(Sigma)、100mg/l链霉素(Sigma)的DMEM培养液(DMEM,GIBCO)中,37℃,5%CO2。
MCF-7细胞以8000个/孔的密度接种在96孔板内,37℃,5%CO2培养,24小时后,取出约20μl生长培养基并注射加入大致等量的水凝胶,静置1h;
然后培养液使用新鲜的DMEM替换。将收集的释放液和对照液(无DOX)加入孔板中(每份样品6孔),培养24h后,在孔内加入10μLMTT溶液,继续培养4h;
将孔板中的培养液移除并在每孔中加入200μLDMSO,吹打数次以溶解其中的甲瓒;
使用ELISA板分析仪测定每个孔的吸光度,测量波长为570nm,参照波长为630nm。样本中的细胞抑制率的计算方法如下:
细胞抑制率=(I对照-I样本)/I对照×100%
其中,I样本和I对照分别代表不同测试样本和对照细胞的吸光度。
如图7示,水凝胶在pH7.4值时,显示比pH6.0时更低的细胞抑制率。水凝胶的DOX在pH6.0的IC50截流率约为1.5μg/ml,在pH7.4下约为6μg/ml。同样用MTT法检测了细胞在单纯的MPEG/α-CD水凝胶中的活力,结果如图8所示。不出所料,结果显示在低浓度时(PEG<100μg/ml),水凝胶对MCF-7细胞没有毒性,甚至在极高浓度时(1mg/ml的PEG),细胞在pH7.4的情况下的活力仍在70%左右。这些结果表明,MPEG-DOX/α-CD水凝胶可以有效地抑制细胞,抑制率与pH值相关。
细胞对释放药物的摄取
将MCF-7细胞与释放的自由DOX或释放的MPEG-DOX分别共培养3h、24h和48h,然后使用共聚焦激光扫描显微镜(CLSM)研究DOX的摄取和药物分布情况。为了评价细胞在不同pH下的摄取率,通过添加1MHCl溶液调节基质的pH值至约6.0。
首先,MCF-7细胞接种在设有盖玻片的培养皿(直径3.5cm)内,接种密度为2×105cells/皿,培养24h,然后将凝胶注射至培养皿的壁上;
3h后,另外加入1ml的培养液以使浸没凝胶,这样细胞就暴露在样本中了;
培养至预定时间后,使用PBS冲洗盖玻片3次,使用4%的多聚甲醛保温15min固定处理过的细胞,固定后的细胞在含有0.1%TritonX-100的PBS浸泡10min以增加细胞膜的通透性,之后使用PBS冲洗3次;
使用10nM类鬼笔环肽/1%(w/v)BSA溶液染色处理20min,之后使用PBS冲洗3次使细胞骨架可视;使用10μMTopro-3染色20min,之后使用PBS冲洗3次使细胞核可视;
最后将盖玻片置于滴加有无色油脂的显微载玻片上,用CLSM观察。
实验结果如图9所示,图中A、C、E分别为pH7.4下释放药物培养3h、24h、48h的显微照片,B、D、F分别为pH5.0下释放药物培养3h、24h、48h的显微图像。每一小幅图中,左侧为叠加了DOX荧光的细胞染色图,右侧为单纯的DOX荧光,标尺为50μm。
收集保温3h后,pH5.0和7.4下的凝胶液释放的药物的并孵育3h后,DOX荧光集中在细胞核中和其周围。由于报导的胞内和溶酶体的pH值为5.0~7.0,MPEG-DOX偶联体可以很快的被降解并有效释放出阿霉素至细胞质中。在暴露于释放的药物24h后,大部分DOX荧光分布在PCF-7细胞的细胞核内。但是,与暴露于pH7.4下释放的药物相比,暴露于pH5.0下释放药物下24h后,细胞的核膨大,而细胞质收缩。这是因为不同pH下的DOX释放量差异显著。这一结果进本发明的MPEG-DOX水凝胶可以有效提高细胞摄取DOX的效率。与暴露24h的细胞形态相比,释放的DOX培养48h后,暴露于pH7.4下释放的DOX的细胞核变得更大,细胞质减少。结合体外药物释放结果,与酸性条件下释放的药物相比,pH7.4的前药表现出更高的有效细胞抑制率。
为进一步研究超分子凝胶的药物释放行为,分别比较细胞和凝胶在pH7.4、6.8和6.0共培养下的药物释放情况。通过添加1MHCl溶液调节培养液的pH分别至约6.0和6.8。每个培养皿凝胶中所含的DOX的最高浓度设为10μg/ml。实验结果如图10所示,图中A、B、C分别在pH6.0、6.8和7.4共培养1h后共聚焦显微图像,其中,上方的图为细胞与DOX荧光的叠加图,正文为单独的DOX荧光图。
Claims (1)
1.阿霉素前药的制备方法,其制备方法如下:
1)取1mmol,130mg硫酸肼盐溶解于蒸馏水中,加入浓度为1mmol/L的NaOH溶液调整其pH为9.0,得到反应液A;
2)将0.1mmol,500mg甲氧基聚乙二醇琥珀酰亚胺乙酸酯加入反应液A中,室温下搅拌反应24h,透析去除未反应的小分子,冻干得到纯化的MPEG-酰肼;
3)将0.1mmol,550mgMPEG-酰肼与0.2mmol,118mg阿霉素溶解在10ml无水的DMSO,室温下搅拌3天,之后加入过量三乙胺;
4)将产物在乙醚中沉淀、纯化,真空干燥得粉红色粉末,得到阿霉素前药,命名为MPEG-DOX。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310208163.4A CN103381273B (zh) | 2013-05-29 | 2013-05-29 | 阿霉素前药及其制备方法和可注射的组合物 |
PCT/CN2014/077095 WO2014190849A1 (zh) | 2013-05-29 | 2014-05-09 | 阿霉素前药及其制备方法和可注射的组合物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310208163.4A CN103381273B (zh) | 2013-05-29 | 2013-05-29 | 阿霉素前药及其制备方法和可注射的组合物 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103381273A CN103381273A (zh) | 2013-11-06 |
CN103381273B true CN103381273B (zh) | 2016-06-29 |
Family
ID=49489336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310208163.4A Expired - Fee Related CN103381273B (zh) | 2013-05-29 | 2013-05-29 | 阿霉素前药及其制备方法和可注射的组合物 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103381273B (zh) |
WO (1) | WO2014190849A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103381273B (zh) * | 2013-05-29 | 2016-06-29 | 南方医科大学 | 阿霉素前药及其制备方法和可注射的组合物 |
CN103736101A (zh) * | 2013-12-31 | 2014-04-23 | 天津大学 | 一种pH值敏感的姜黄素载药胶束(单链)及前体的制备方法 |
CN103877592A (zh) * | 2013-12-31 | 2014-06-25 | 天津大学 | 一种pH值敏感的姜黄素载药胶束(双链)及其前体的制备方法 |
CN105854032A (zh) * | 2016-05-19 | 2016-08-17 | 济南大学 | 一种阿霉素前药及其释放度评价方法 |
CN106512003B (zh) * | 2016-10-27 | 2019-07-12 | 深圳先进技术研究院 | 一种可注射的肿瘤靶向性热敏前药及其制备方法与应用 |
CN107115297B (zh) * | 2017-03-29 | 2020-07-10 | 国家纳米科学中心 | 一种负载双药的杂合前药纳米组合物及其制备方法与应用 |
CN110237263B (zh) * | 2018-03-07 | 2022-06-17 | 昆山新蕴达生物科技有限公司 | HFn包载阿霉素的方法及其产物 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102343099A (zh) * | 2011-09-30 | 2012-02-08 | 中国人民解放军第四军医大学 | 叶酸介导的肿瘤靶向阿霉素前体药物的制备及其应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006131568A (ja) * | 2004-11-08 | 2006-05-25 | Ueno Seiyaku Oyo Kenkyusho:Kk | ヒドロキシナフトエ酸ヒドラジドおよびその誘導体ならびにその製造方法 |
CN103381273B (zh) * | 2013-05-29 | 2016-06-29 | 南方医科大学 | 阿霉素前药及其制备方法和可注射的组合物 |
-
2013
- 2013-05-29 CN CN201310208163.4A patent/CN103381273B/zh not_active Expired - Fee Related
-
2014
- 2014-05-09 WO PCT/CN2014/077095 patent/WO2014190849A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102343099A (zh) * | 2011-09-30 | 2012-02-08 | 中国人民解放军第四军医大学 | 叶酸介导的肿瘤靶向阿霉素前体药物的制备及其应用 |
Non-Patent Citations (3)
Title |
---|
Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo;Pengfei Gou et al.;《Journal of Materials Chemistry B》;20121017;第1卷;284-285页及图1 * |
环糊精超分子水凝胶;赵三平 等;《化学进展》;20100531;第22卷(第5期);916-919页 * |
由α-环糊精主客体包合构筑医用超分子水凝胶;张黎明;《两岸三地高分子液晶与超分子有序结构学术研讨会》;20120831;210-212页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103381273A (zh) | 2013-11-06 |
WO2014190849A1 (zh) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103381273B (zh) | 阿霉素前药及其制备方法和可注射的组合物 | |
Liang et al. | Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy | |
Lee et al. | Serially pH-modulated hydrogels based on boronate ester and polydopamine linkages for local cancer therapy | |
Rodell et al. | Supramolecular guest–host interactions for the preparation of biomedical materials | |
Sun et al. | Construction of a supramolecular polymer by bridged bis (permethyl-β-cyclodextrin) s with porphyrins and its highly efficient magnetic resonance imaging | |
Liu et al. | Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs | |
Zhang et al. | Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy | |
Li et al. | Endogenous stimuli‐sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization | |
Patel et al. | Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates | |
Qu et al. | Reduction/temperature/pH multi-stimuli responsive core cross-linked polypeptide hybrid micelles for triggered and intracellular drug release | |
Lee et al. | pH-Sensitive polymeric micelle-based pH probe for detecting and imaging acidic biological environments | |
CN105963706B (zh) | 一种支化hpma共聚物-dox偶联物及其制备方法和应用 | |
CN103127525B (zh) | 一种树状聚合物纳米给药载体靶向阿霉素及其制法 | |
An et al. | An acid-triggered degradable and fluorescent nanoscale drug delivery system with enhanced cytotoxicity to cancer cells | |
Senthilkumar et al. | Conjugated polymer nanogel binding anticancer drug through hydrogen bonds for sustainable drug delivery | |
Wu et al. | Glucose-responsive complex micelles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activity in vivo | |
Zhang et al. | An MRI contrast agent based on a zwitterionic metal-chelating polymer for hepatorenal angiography and tumor imaging | |
Liu et al. | Reactive oxygen species-triggered dissociation of a polyrotaxane-based nanochelator for enhanced clearance of systemic and hepatic iron | |
Pinto et al. | Fully Water-Soluble Polyphosphorhydrazone-Based Radical Dendrimers Functionalized with Tyr-PROXYL Radicals as Metal-Free MRI T 1 Contrast Agents | |
Xia et al. | Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy | |
Yang et al. | A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy | |
Fang et al. | Novel mitochondrial targeting charge-reversal polysaccharide hybrid shell/core nanoparticles for prolonged systemic circulation and antitumor drug delivery | |
He et al. | Temperature/pH smart nanofibers with excellent biocompatibility and their dual interactions stimulus-responsive mechanism | |
Tao et al. | Modular synthesis of amphiphilic chitosan derivatives based on copper-free click reaction for drug delivery | |
Han et al. | Imaging self-healing hydrogels and chemotherapeutics using CEST MRI at 3 T |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160629 |