CN103368427A - Single-phase inverter and system thereof and three-phase inverter and system thereof - Google Patents
Single-phase inverter and system thereof and three-phase inverter and system thereof Download PDFInfo
- Publication number
- CN103368427A CN103368427A CN201210100586XA CN201210100586A CN103368427A CN 103368427 A CN103368427 A CN 103368427A CN 201210100586X A CN201210100586X A CN 201210100586XA CN 201210100586 A CN201210100586 A CN 201210100586A CN 103368427 A CN103368427 A CN 103368427A
- Authority
- CN
- China
- Prior art keywords
- phase
- phase inverter
- coupled
- inverter circuit
- inductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims description 40
- 239000000969 carrier Substances 0.000 claims description 5
- 230000008878 coupling Effects 0.000 abstract description 13
- 238000010168 coupling process Methods 0.000 abstract description 13
- 238000005859 coupling reaction Methods 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
Abstract
本发明涉及单相逆变器及其系统和三相逆变器及其系统。单相逆变器,包括:第一单相逆变电路和第二单相逆变电路,被配置为并联于直流源两端并且结构相同;驱动电路,被配置为以第一驱动信号驱动第一单相逆变电路并以第二驱动信号驱动第二单相逆变电路,第一驱动信号由第一调制波和第一载波调制而成,第二驱动信号由第二调制波和第二载波调制而成,第一调制波和第二调制波的相位相同;以及第一耦合电感器和第二耦合电感器,第一耦合电感器的输入端接收第一单相逆变电路输出的电流,第二耦合电感器的输入端接收第二单相逆变电路输出的电流,并且第一耦合电感器和第二耦合电感器反向耦合并且其输出端连接在一起。
The invention relates to a single-phase inverter and its system and a three-phase inverter and its system. A single-phase inverter, comprising: a first single-phase inverter circuit and a second single-phase inverter circuit configured to be connected in parallel to both ends of the DC source and having the same structure; a drive circuit configured to drive the first single-phase inverter circuit with a first drive signal A single-phase inverter circuit drives the second single-phase inverter circuit with a second drive signal, the first drive signal is modulated by the first modulation wave and the first carrier wave, and the second drive signal is modulated by the second modulation wave and the second Carrier modulation, the first modulation wave and the second modulation wave have the same phase; and the first coupling inductor and the second coupling inductor, the input end of the first coupling inductor receives the current output by the first single-phase inverter circuit , the input terminal of the second coupled inductor receives the current output from the second single-phase inverter circuit, and the first coupled inductor and the second coupled inductor are reversely coupled and their output terminals are connected together.
Description
技术领域 technical field
本发明涉及逆变器,具体涉及单相逆变器及其系统和三相逆变器及其系统。The invention relates to an inverter, in particular to a single-phase inverter and its system, a three-phase inverter and its system.
背景技术 Background technique
逆变器起着将直流电转换为交流电的作用。逆变器是发电系统中的重要组成部分。效率是逆变器最重要的性能指标之一。如果效率提升,则能带来相当可观的经济效益。The inverter plays the role of converting direct current into alternating current. Inverters are an important part of power generation systems. Efficiency is one of the most important performance indicators of an inverter. If the efficiency is improved, it can bring considerable economic benefits.
逆变器内的功率器件和输出滤波电感的损耗限制了逆变器效率的提高。同时市场竞争的日剧激烈和钢铁铜等原材料价格的上涨,给逆变器厂家带来了很大的成本压力。目前由于受功率器件性能的限制,传统的逆变器拓扑的功率器件和滤波电感的损耗已经很难降低。此外,滤波电感体积大,成本高。因此研制高性能低成本的逆变器成为各个逆变器厂家的目标。The loss of power devices and output filter inductors in the inverter limits the improvement of inverter efficiency. At the same time, fierce market competition and rising prices of raw materials such as steel and copper have brought great cost pressure to inverter manufacturers. At present, due to the limitation of the performance of power devices, it is difficult to reduce the loss of power devices and filter inductors in traditional inverter topologies. In addition, the filter inductor is bulky and expensive. Therefore, the development of high-performance and low-cost inverters has become the goal of various inverter manufacturers.
传统的2电平拓扑逆变器由于功率开关器件开通后,管压降大,并且通态损耗和开关损耗都非常大,导致功率开关器件的总损耗大,从而降低了整个系统的效率。In the traditional 2-level topology inverter, after the power switching device is turned on, the tube voltage drop is large, and the on-state loss and switching loss are very large, resulting in a large total loss of the power switching device, thereby reducing the efficiency of the entire system.
中点钳位型(Neutral point clamped,NPC)拓扑由于功率开关器件多和增加了钳位二极管而导致总损耗大、效率低。Neutral point clamped (NPC) topology results in large total loss and low efficiency due to the large number of power switching devices and the addition of clamping diodes.
因此,期望提供一种能够降低功率开关器件的损耗并降低电感器损耗和成本的逆变器。Therefore, it is desirable to provide an inverter capable of reducing losses of power switching devices and reducing losses and costs of inductors.
发明内容 Contents of the invention
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。A brief overview of the invention is given below in order to provide a basic understanding of some aspects of the invention. It should be understood that this summary is not an exhaustive overview of the invention. It is not intended to identify key or critical parts of the invention nor to delineate the scope of the invention. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
本发明的一个主要目的在于,提供单相逆变器及其系统和三相逆变器及其系统。A main object of the present invention is to provide a single-phase inverter and its system and a three-phase inverter and its system.
根据本发明的一个方面,提供了一种单相逆变器,包括:第一单相逆变电路和第二单相逆变电路,被配置为并联于直流源两端并且结构相同;驱动电路,被配置为以第一驱动信号驱动所述第一单相逆变电路并以第二驱动信号驱动第二单相逆变电路,所述第一驱动信号由第一调制波和第一载波调制而成,所述第二驱动信号由第二调制波和第二载波调制而成,所述第一调制波和所述第二调制波的相位相同;以及第一耦合电感器和第二耦合电感器,所述第一耦合电感器的输入端接收所述第一单相逆变电路输出的电流,所述第二耦合电感器的输入端接收所述第二单相逆变电路输出的电流,并且所述第一耦合电感器和所述第二耦合电感器反向耦合并且其输出端连接在一起。According to one aspect of the present invention, a single-phase inverter is provided, including: a first single-phase inverter circuit and a second single-phase inverter circuit configured to be connected in parallel to both ends of a DC source and have the same structure; a drive circuit , configured to drive the first single-phase inverter circuit with a first drive signal and drive the second single-phase inverter circuit with a second drive signal, the first drive signal being modulated by a first modulation wave and a first carrier wave Formed, the second drive signal is modulated by the second modulation wave and the second carrier wave, the phase of the first modulation wave and the second modulation wave is the same; and the first coupling inductor and the second coupling inductor The input end of the first coupled inductor receives the current output by the first single-phase inverter circuit, the input end of the second coupled inductor receives the current output by the second single-phase inverter circuit, And the first coupled inductor and the second coupled inductor are reversely coupled and their output terminals are connected together.
根据本发明的另一个方面,提供了一种单相逆变器系统,包括K个如上所述的单相逆变器,K为大于等于1的整数,其中K个所述第一耦合电感器和K个所述第二耦合电感器的输出端连接在一起。According to another aspect of the present invention, a single-phase inverter system is provided, including K single-phase inverters as described above, K is an integer greater than or equal to 1, wherein K of the first coupled inductor and the output terminals of the K second coupled inductors are connected together.
根据本发明的又一个方面,提供了一种三相逆变器,包括:第一三相逆变电路和第二三相逆变电路,被配置为并联于直流源两端并且结构相同,其中,所述第一三相逆变电路包括第一A相逆变电路、第一B相逆变电路和第一C相逆变电路,所述第二三相逆变电路包括第二A相逆变电路、第二B相逆变电路和第二C相逆变电路;驱动电路,被配置为分别以第一A相驱动信号、第一B相驱动信号和第一C相驱动信号驱动所述第一A相逆变电路、所述第一B相逆变电路和所述第一C相逆变电路,并分别以第二A相驱动信号、第二B相驱动信号和第二C相驱动信号驱动所述第二A相逆变电路、所述第二B相逆变电路和所述第二C相逆变电路,调制所述第一A相驱动信号所用的第一A相调制波与调制所述第二A相驱动信号所用的第二A相调制波的相位相同,调制所述第一B相驱动信号所用的第一B相调制波与调制所述第二B相驱动信号所用的第二B相调制波的相位相同,调制所述第一C相驱动信号所用的第一C相调制波与调制所述第二C相驱动信号所用的第二C相调制波的相位相同;包括第一A相耦合电感器和第二A相耦合电感器的A相滤波电路;包括第一B相耦合电感器和第二B相耦合电感器的B相滤波电路;包括第一C相耦合电感器和第二C相耦合电感器的C相滤波电路;其中,所述耦合电感器的输入端分别接收所述第一A相逆变电路、所述第二A相逆变电路、所述第一B相逆变电路、所述第二B相逆变电路、所述第一C相逆变电路和所述第二C相逆变电路的相应输出电流,所述第一A相耦合电感器和所述第二A相耦合电感器反向耦合并且其输出端连接在一起,所述第一B相耦合电感器和所述第二B相耦合电感器反向耦合并且其输出端连接在一起,所述第一C相耦合电感器和所述第二C相耦合电感器反相耦合并且其输出端连接在一起。According to yet another aspect of the present invention, a three-phase inverter is provided, including: a first three-phase inverter circuit and a second three-phase inverter circuit configured to be connected in parallel to both ends of a DC source and have the same structure, wherein , the first three-phase inverter circuit includes a first A-phase inverter circuit, a first B-phase inverter circuit and a first C-phase inverter circuit, and the second three-phase inverter circuit includes a second A-phase inverter circuit inverter circuit, a second B-phase inverter circuit, and a second C-phase inverter circuit; a drive circuit configured to drive the first A-phase drive signal, the first B-phase drive signal, and the first C-phase drive signal respectively. The first A-phase inverter circuit, the first B-phase inverter circuit and the first C-phase inverter circuit are driven by the second A-phase drive signal, the second B-phase drive signal and the second C-phase drive signal respectively The signal drives the second A-phase inverter circuit, the second B-phase inverter circuit, and the second C-phase inverter circuit, and modulates the first A-phase modulation wave used by the first A-phase drive signal with the The phase of the second A-phase modulating wave used for modulating the second A-phase driving signal is the same, and the first B-phase modulating wave used for modulating the first B-phase driving signal is the same as that used for modulating the second B-phase driving signal. The phase of the second B-phase modulation wave is the same, and the phase of the first C-phase modulation wave used to modulate the first C-phase drive signal is the same as that of the second C-phase modulation wave used to modulate the second C-phase drive signal; including The A-phase filter circuit of the first A-phase coupled inductor and the second A-phase coupled inductor; the B-phase filter circuit including the first B-phase coupled inductor and the second B-phase coupled inductor; including the first C-phase coupled inductor Inverter and the C-phase filter circuit of the second C-phase coupled inductor; wherein, the input terminals of the coupled inductor respectively receive the first A-phase inverter circuit, the second A-phase inverter circuit, and the first A-phase inverter circuit. Corresponding output currents of a B-phase inverter circuit, the second B-phase inverter circuit, the first C-phase inverter circuit, and the second C-phase inverter circuit, the first A-phase coupled inductor reversely coupled with the second A-phase coupled inductor and its output terminals are connected together, and the first B-phase coupled inductor and the second B-phase coupled inductor are reversely coupled and their output terminals are connected together , the first C-phase coupled inductor and the second C-phase coupled inductor are anti-phase coupled and their output terminals are connected together.
根据本发明的再一个方面,提供了一种三相逆变器系统,包括:K个如上所述的三相逆变器,K为大于等于1的整数,其中,K个所述第一A相耦合电感器和K个所述第二A相耦合电感器的输出端连接在一起,K个所述第一B相耦合电感器和K个所述第二B相耦合电感器的输出端连接在一起,以及K个所述第一C相耦合电感器和K个所述第二C相耦合电感器的输出端连接在一起。According to still another aspect of the present invention, a three-phase inverter system is provided, including: K three-phase inverters as described above, K is an integer greater than or equal to 1, wherein, the K first A The phase coupled inductors are connected to the output ends of the K second A-phase coupled inductors, and the K first B-phase coupled inductors are connected to the output ends of the K second B-phase coupled inductors. together, and the output terminals of the K first C-phase coupled inductors and the K second C-phase coupled inductors are connected together.
附图说明 Description of drawings
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明的以上和其它目的、特点和优点。附图中的部件只是为了示出本发明的原理。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。The above and other objects, features and advantages of the present invention will be more easily understood with reference to the following description of the embodiments of the present invention in conjunction with the accompanying drawings. The components in the drawings are only to illustrate the principles of the invention. In the drawings, the same or similar technical features or components will be denoted by the same or similar reference numerals.
图1A是示出根据本发明的实施例的基于三电平T型拓扑的单相逆变器的示图;FIG. 1A is a diagram illustrating a single-phase inverter based on a three-level T-type topology according to an embodiment of the present invention;
图1B是示出用于图1A的第一三电平T型拓扑T101的载波、调制波、驱动信号以及电压的波形图;FIG. 1B is a waveform diagram showing a carrier wave, a modulating wave, a driving signal and a voltage for the first three-level T-type topology T101 of FIG. 1A;
图2是示出根据本发明的实施例的基于三电平NPC拓扑的单相逆变器的示图;2 is a diagram illustrating a single-phase inverter based on a three-level NPC topology according to an embodiment of the present invention;
图3是示出根据本发明的实施例的由多个拓扑结构构成的单相逆变器系统;FIG. 3 is a diagram illustrating a single-phase inverter system composed of multiple topologies according to an embodiment of the present invention;
图4A至4C是示出根据本发明的实施例的滤波电路的各种示例的示图;4A to 4C are diagrams illustrating various examples of filter circuits according to embodiments of the present invention;
图5是示出根据本发明的实施例的三相逆变器的示图;5 is a diagram illustrating a three-phase inverter according to an embodiment of the present invention;
图6是示出根据本发明的实施例的三相逆变器系统的框图;以及6 is a block diagram illustrating a three-phase inverter system according to an embodiment of the present invention; and
图7是示出根据本发明的实施例的三相逆变器系统的框图。FIG. 7 is a block diagram illustrating a three-phase inverter system according to an embodiment of the present invention.
具体实施方式 Detailed ways
下面参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。Embodiments of the present invention will be described below with reference to the drawings. Elements and features described in one drawing or one embodiment of the present invention may be combined with elements and features shown in one or more other drawings or embodiments. It should be noted that representation and description of components and processes that are not related to the present invention and known to those of ordinary skill in the art are omitted from the drawings and descriptions for the purpose of clarity.
首先参照图1A和1B来描述根据本发明的实施例的基于三电平T型拓扑的单相逆变器100。First, a single-
如图1A所示,单相逆变器100包括并联在直流源Udc两端的两个三电平T型拓扑,即第一三电平T型拓扑T101和第二三电平T型拓扑T101’。具体地,第一三电平T型拓扑T101包括二极管D101、D102、D103和D104,功率开关器件(以下简称开关)S101、S102、S103和S104,以及电容器C101和C102。第二三电平T型拓扑T101’包括二极管D101’、D102’、D103’和D104’,开关S101’、S102’、S103’和S104’,以及电容器C101’和C102’。As shown in FIG. 1A, the single-
单相逆变器100还包括与第一三电平T型拓扑T101的输出端P2连接的第一耦合电感器L101、以及与第二三电平T型拓扑T101’的输出端P2’连接的第二耦合电感器L101’。The single-
图1B中的(a)示出了驱动第一三电平T型拓扑T101的驱动信号a1、a2、a3和a4的波形图。其中,驱动信号a1用于驱动开关S101,驱动信号a2用于驱动开关S102,驱动信号a3用于驱动开关S103,驱动信号a4用于驱动开关S104。(a) in FIG. 1B shows a waveform diagram of driving signals a1 , a2 , a3 and a4 driving the first three-level T-type topology T101 . Wherein, the driving signal a1 is used to drive the switch S101 , the driving signal a2 is used to drive the switch S102 , the driving signal a3 is used to drive the switch S103 , and the driving signal a4 is used to drive the switch S104 .
图1B中的(b)示出了调制波(正弦波)和三角波1和三角波2。调制波和三角波1调制生成用于驱动开关S101的驱动信号a1和用于驱动开关S103的驱动信号a3。调制波和三角波2调整生成用于驱动开关S102的驱动信号a2和用于驱动开关S104的驱动信号a4。(b) in FIG. 1B shows a modulated wave (sine wave) and
图1B中的(c)示出了第一三电平T型拓扑T101在驱动信号a1、a2、a3和a4的驱动下从P2点输出的电压波形。(c) in FIG. 1B shows the voltage waveform output from point P2 driven by the first three-level T-type topology T101 driven by the driving signals a1 , a2 , a3 and a4 .
尽管在图1B中的各参数被示出具有特定数值,但应当理解到,这些数值仅是具体的示例,而并非出于特定限定。Although each parameter in FIG. 1B is shown with specific values, it should be understood that these values are only specific examples and not intended to be specific limitations.
就第一三电平T型拓扑T101而言,在正电平电压和零电平电压之间切换时,开关S101在驱动信号a1的驱动下动作,开关S104在驱动信号a4的驱动下常通。具体而言,开关S101接通时,电流从直流源Udc起流经正母线BUSP、开关S101、点P2以及第一耦合电感器L101,一直流向负载R,此时为点P2处为正电平电压。当开关S101断开时,电流从中点P1起流经二极管D103、开关S104、点P2以及第一耦合电感器L101,一直流向负载R,此时点P2为零电平电压。As far as the first three-level T-type topology T101 is concerned, when switching between positive level voltage and zero level voltage, the switch S101 operates under the driving signal a1, and the switch S104 is normally turned on under the driving signal a4 . Specifically, when the switch S101 is turned on, the current flows from the DC source Udc through the positive bus BUSP, the switch S101, the point P2, and the first coupled inductor L101, and flows to the load R. At this time, the point P2 is at a positive level Voltage. When the switch S101 is turned off, the current flows from the midpoint P1 through the diode D103, the switch S104, the point P2 and the first coupled inductor L101, and flows to the load R. At this time, the point P2 is a zero-level voltage.
类似地,在负电平电压和零电平电压之间切换时,开关S102在驱动信号a2的驱动下动作,开关S103在驱动信号a3的驱动下常通。具体而言,开关S102接通时,电流从负载R起流经第一耦合电感器L101、点P2和开关S102,一直流向负母线BUSN,此时为点P2处为负电平电压。当开关S102断开时,电流从负载R起流经第一耦合电感器L101、点、P2、二极管D104和开关S103,一直流向中点P1,此时点P2为零电平电压。Similarly, when switching between the negative level voltage and the zero level voltage, the switch S102 acts under the driving signal a2, and the switch S103 is normally turned on under the driving signal a3. Specifically, when the switch S102 is turned on, the current flows from the load R through the first coupled inductor L101, the point P2, and the switch S102, and flows to the negative bus BUSN. At this time, the voltage at the point P2 is negative. When the switch S102 is turned off, the current flows from the load R through the first coupling inductor L101, the point, P2, the diode D104 and the switch S103, and flows to the midpoint P1, and the point P2 is at zero level voltage.
用于第二三电平T型拓扑T101’的驱动信号与用于第一三电平T型拓扑T101的驱动信号类似。用于调制用于第二三电平T型拓扑T101’的驱动信号的调制波与用于调制用于第一三电平T型拓扑T101的驱动信号的调制波的相位都相同。这样,在耦合电感器L201和L201’反向耦合的情况下,耦合电感器L201和L201’可以完全地抵消从P2点输出的电流和从P2’点输出的电流的基频所产生的磁场。The drive signals for the second three-level T-topology T101' are similar to those for the first three-level T-topology T101. The modulation wave used to modulate the driving signal for the second three-level T-type topology T101' and the modulation wave used for modulating the driving signal for the first three-level T-type topology T101 have the same phase. In this way, in the case of reverse coupling of the coupled inductors L201 and L201', the coupled inductors L201 and L201' can completely cancel the magnetic field generated by the current output from point P2 and the fundamental frequency of the current output from point P2'.
用于调制用于第二三电平T型拓扑T101’的驱动信号的载波与用于调制用于第一三电平T型拓扑T101的驱动信号的载波的相位可以相差180度。这样,耦合电感器L201和L201’可以部分地抵消从P2点输出的电流和从P2’点输出的电流的谐波所产生的磁场。The phase of the carrier used to modulate the driving signal for the second three-level T-topology T101' and the carrier used for modulating the driving signal for the first three-level T-topology T101 may differ by 180 degrees. In this way, the coupled inductors L201 and L201' can partly cancel the magnetic field generated by the current output from point P2 and the harmonics of the current output from point P2'.
第二三电平T型拓扑T101’与第一三电平T型拓扑T101具有类似的结构,因此工作原理类似,在此不再赘述。The second three-level T-type topology T101' has a similar structure to the first three-level T-type topology T101, so the working principles are similar, and will not be repeated here.
第一三电平T型拓扑T101和第二三电平T型拓扑T101’的辅助桥臂上的开关,即开关S103、S104、S103’和S104’在切换时只承担一半的母线电压,因此在损耗上远低于2电平拓扑和NPC拓扑,能够提高逆变器的工作效率。因而三电平T型拓扑是优选的。但是,从稍后的描述中可以看出,本发明的思想也可以应用于2电平拓扑,或者应用于其他三电平拓扑,例如三电平NPC拓扑。The switches on the auxiliary bridge arms of the first three-level T-type topology T101 and the second three-level T-type topology T101', that is, the switches S103, S104, S103' and S104' only bear half of the bus voltage when switching, so The loss is much lower than that of the 2-level topology and the NPC topology, which can improve the working efficiency of the inverter. Thus a three-level T-topology is preferred. However, it can be seen from the later description that the idea of the present invention can also be applied to 2-level topologies, or to other three-level topologies, such as three-level NPC topologies.
此外,如图1A所示,单相逆变器100还可以包括电感器L和电容器C。在这种情况下,第一耦合电感器L101和第二耦合电感器L101’构成的电感器组与电感器L和电容器C一起形成了LCL滤波电路,用于对第一三电平T型拓扑T101和第二三电平T型拓扑T101’输出的电流进行滤波。In addition, as shown in FIG. 1A , the single-
可选地,单相逆变器100可以不包括电感L和电容器C,或者可以只包括电容器C。在只包括一个电容器C的情况下,第一耦合电感器L101和第二耦合电感器L101’构成的电感器组与电容器C组成LC滤波电路。Optionally, the single-
以下参照图2来描述根据本发明的实施例的基于三电平NPC拓扑的单相逆变器200的示图。A diagram of a single-
如图2所示,单相逆变器200包括并联在直流源Udc两端的两个三电平NPC型拓扑,即第一三电平NPC型拓扑N201和第二三电平NPC型拓扑N201’。具体地,第一三电平NPC型拓扑N201包括二极管D201、D202、D203、D204、D205和D206,功率开关器件(以下简称开关)S201、S202、S203和S204,以及电容器C201和C202。第二三电平NPC型拓扑N201’包括二极管D201’、D202’、D203’、D204’、D205’和D206’,开关S201’、S202’、S203’和S204’,以及电容器C201’和C202’。As shown in FIG. 2, the single-
单相逆变器200还包括与第一三电平NPC型拓扑N201的输出端P2连接的第一耦合电感器L201、以及与第二三电平NPC型拓扑N201’的输出端P2’连接的第二耦合电感器L201’。The single-
就第一三电平NPC型拓扑N201而言,在正电平电压和零电平电压之间切换时,开关S201动作,开关S202常通。具体而言,由于开关S202常通,当开关S201接通时,电流从直流源Udc起流经正母线BUSP、开关S201、开关S202、点P2和第一耦合电感器L201,一直流向负载R,此时,点P2处为正电平电压。而由于开关S202常通,当开关S201断开时,电流从中点P1起流经二极管D205、开关S202、点P2以及第一耦合电感器L201,一直流向负载R,此时点P2为零电平电压。As far as the first three-level NPC topology N201 is concerned, when switching between positive level voltage and zero level voltage, the switch S201 acts and the switch S202 is normally on. Specifically, since the switch S202 is normally on, when the switch S201 is on, the current flows from the DC source Udc through the positive bus BUSP, the switch S201, the switch S202, the point P2 and the first coupled inductor L201, and then flows to the load R. At this time, the point P2 is a positive level voltage. Since the switch S202 is normally on, when the switch S201 is turned off, the current flows from the midpoint P1 through the diode D205, the switch S202, the point P2 and the first coupled inductor L201, and flows to the load R. At this time, the point P2 is at zero level Voltage.
在负电平电压和零电平电压之间切换时,开关S204动作,开关S203常通。具体而言,由于开关S203常通,当开关S204接通时,电流从负载R起流经第一耦合电感器L201、点P2、开关S203和开关S204,一直流向负母线BUSN,此时,点P2处为负电平电压。而由于开关S203常通,当开关S204断开时,电流从负载R起流经第一耦合电感器L201、点P2、开关S203和二极管D206,一直流向中点P1,此时点P2为零电平电压。When switching between negative level voltage and zero level voltage, the switch S204 acts and the switch S203 is normally on. Specifically, since the switch S203 is normally on, when the switch S204 is on, the current flows from the load R through the first coupling inductor L201, the point P2, the switch S203 and the switch S204, and flows to the negative bus BUSN. At this time, the point P2 is a negative level voltage. Since the switch S203 is normally on, when the switch S204 is turned off, the current flows from the load R through the first coupling inductor L201, point P2, switch S203 and diode D206, and flows to the midpoint P1. At this time, the point P2 is zero current. flat voltage.
第二三电平NPC型拓扑N201’与第一三电平NPC型拓扑N201具有类似的结构,因此工作原理类似,在此不再赘述。The second three-level NPC-type topology N201' has a similar structure to the first three-level NPC-type topology N201, so the working principles are similar, and will not be repeated here.
第一三电平NPC型拓扑N201的开关S201、S202、S203、S204、S205和S206以及第二三电平NPC型拓扑N201’的开关S201’、S202’、S203’、S204’、S205’和S206’在来自驱动电路(在图2中未示出)的相应驱动信号的驱动下切换。Switches S201, S202, S203, S204, S205 and S206 of the first three-level NPC-type topology N201 and switches S201', S202', S203', S204', S205' and switches of the second three-level NPC-type topology N201' S206' is switched under the drive of a corresponding drive signal from a drive circuit (not shown in FIG. 2 ).
根据本实施例,用于第一三电平NPC型拓扑N201的开关S201、S202、S203和S204的驱动信号的调制波的相位与用于第二三电平NPC型拓扑N201’的开关S201’、S202’、S203’和S204’的调制波的相位相同。用于第一三电平NPC型拓扑N201的开关S201’、S202’、S203’和S204’的驱动信号的载波的相位与用于第二三电平NPC型拓扑N201’的开关S201’、S202’、S203’和S204’的载波的相位相差一定角度。优选地,相差180度,即,360度除以三电平NPC型拓扑的数量(即,2)得到的角度。According to this embodiment, the phase of the modulation wave of the drive signal for the switches S201, S202, S203 and S204 of the first three-level NPC topology N201 is the same as that of the switch S201' for the second three-level NPC topology N201'. , S202', S203' and S204' have the same phase of the modulated waves. The phase of the carrier of the drive signal for the switches S201', S202', S203' and S204' of the first three-level NPC-type topology N201 is different from that of the switches S201', S202 for the second three-level NPC-type topology N201' ', S203' and S204', the phases of the carrier waves differ by a certain angle. Preferably, the difference is 180 degrees, that is, the angle obtained by dividing 360 degrees by the number (ie, 2) of the three-level NPC type topology.
优选地,第一耦合电感器L201和第二耦合电感器L201’可以被布置为反向耦合。通过反向耦合这两个耦合电感器L201和L201’,可以完全地抵消从P2点输出的电流和从P2’点输出的电流中的基频所产生的磁场并部分地抵消这两个输出电流的谐波所产生的磁场。Preferably, the first coupled inductor L201 and the second coupled inductor L201' may be arranged to be coupled in reverse. By reverse coupling these two coupled inductors L201 and L201', it is possible to completely cancel the magnetic field generated by the fundamental frequency in the current output from point P2 and the current output from point P2' and partially cancel the two output currents The magnetic field generated by the harmonics.
类似于图1A和图1B中示出的单相逆变器100,单相逆变器200还可以包括电感器L和电容器C。在这种情况下,第一耦合电感器L201和第二耦合电感器L201’构成的电感器组与电感器L和电容器C一起形成了LCL滤波电路,用于对第一三电平NPC型拓扑N201和第二三电平NPC型拓扑N201’输出的电流进行滤波。Similar to the single-
类似于图1A中示出的单相逆变器100,单相逆变器200可以不包括电感L和电容器C,或者可以只包括电容器C。Similar to the single-
以上参照图1A描述了由两个三电平T型拓扑构成的单相逆变器,并参照图2描述了由两个三电平NPC拓扑构成的单相逆变器。但是,可以理解到,可以使用多于两个的三电平T型拓扑结构,或多于两个的三电平NPC拓扑结构构成的单相逆变器系统。或者,可以使用多于两个的两电平拓扑结构或多于两个的两电平拓扑结构构成的单相逆变器系统。The single-phase inverter composed of two three-level T-type topologies is described above with reference to FIG. 1A , and the single-phase inverter composed of two three-level NPC topologies is described with reference to FIG. 2 . However, it can be understood that more than two three-level T-type topologies, or more than two three-level NPC topologies may be used to form a single-phase inverter system. Alternatively, more than two two-level topologies or a single-phase inverter system composed of more than two two-level topologies may be used.
以下参照图3来描述根据本发明实施例的由多个拓扑结构构成的单相逆变器系统300。如图3所示,单相逆变器系统300包括2K个单相逆变模块,其中K是大于等于1的整数。单相逆变模块1至单相逆变模块2K中的每一个可以是三电平T型拓扑构。或者,单相逆变模块1至单相逆变模块2K中的每一个可以是三电平NPC拓扑。或者单相逆变模块1至单相逆变模块2K中的每一个可以是两电平拓扑结构。A single-
单相逆变器系统300还包括滤波电路。滤波电路可以具有如图4A所示的结构,即包括2K个耦合滤波电感器。或者,滤波电路可以具有如图4B所示的结构,即包括2K个耦合滤波电感器以及电容器C以构成LC滤波电路。或者滤波电路可以具有如图4C所示的结构,即包括2K个耦合滤波电感器以及电容器C和电感器L以构成LCL滤波电路。The single-
在图3所示的单相逆变器300中,单相逆变模块1至单相逆变模块2K可以并联至直流源(在图3中未示出)。用于驱动各单相逆变模块的驱动信号的调制波的相位相同,而驱动信号的载波的相位依次相差预定角度。预定角度优选为360°/2K。2K个耦合电感器(如图4A至图4C所示)的输出端连接在一起。2K个耦合电感器以相同的缠绕方向布置以完全抵消2K个单相逆变模块的输出电流的基频所产生的磁场并部分地抵消输出电流中的谐波所产生的磁场。In the single-
以下参照图5来描述根据本发明的实施例的三相逆变器500。A three-
如图5所示,三相逆变器500包括并联在直流源Udc两端的两个三相逆变模块,即第一三相逆变模块501和第二三相逆变模块501’。具体地,第一三相逆变模块501包括分别由三电平T型拓扑构成的A相逆变电路、B相逆变电路和C相逆变电路。类似地,第二三相逆变模块501’也包括分别由三电平T型拓扑构成的A’相逆变电路、B’相逆变电路和C’相逆变电路。As shown in Fig. 5, the three-
为了不使附图的标注变得复杂,在图5中没有示出各个功率开关器件和二极管的标号。此外,在图5中采用的功率开关器件和二极管可以与在图1A所采用的功率开关器件和二极管类似,在此不在赘述。In order not to complicate the labeling of the drawings, the labels of the various power switching devices and diodes are not shown in FIG. 5 . In addition, the power switching devices and diodes used in FIG. 5 may be similar to those used in FIG. 1A , and will not be repeated here.
三相逆变器500还包括耦合电感器LA、LA’、LB、LB’、LC和LC’。A相逆变电路的输出点PA连接到耦合电感器LA,B相逆变电路的输出点PB连接到耦合电感器LB,C相逆变电路的输出点PC连接到耦合电感器LC。类似地,A’相逆变电路的输出点PA’连接到耦合电感器LA’,B’相逆变电路的输出点PB’连接到耦合电感器LB’,C’相逆变电路的输出点PC’连接到耦合电感器LC’。Three-
耦合电感器LA和LA’的输出端连接在一起,耦合电感器LB和LB’的输出端连接在一起,耦合电感器LC和LC’的输出端连接在一起。The output terminals of coupled inductors LA and LA' are connected together, the output terminals of coupled inductors LB and LB' are connected together, and the output terminals of coupled inductors LC and LC' are connected together.
如图5所示,耦合电感器LA和LA’的输出端、耦合电感器LB和LB’的输出端以及耦合电感器LC和LC’的输出端分别连接到相应的电感器和电容器C,以相应地构成LCL电路。As shown in Figure 5, the output terminals of the coupled inductors LA and LA', the output terminals of the coupled inductors LB and LB', and the output terminals of the coupled inductors LC and LC' are respectively connected to the corresponding inductors and capacitors C to The LCL circuit is formed accordingly.
如之前讨论过的,可选地,三相逆变器系统500可以不包括电感L和电容器C,或者可以只包括电容器C。在只包括一个电容器C的情况下,组成LC滤波电路。As discussed before, optionally, the three-
A相逆变电路、B相逆变电路、C相逆变电路、A’相逆变电路、B’相逆变电路以及C’相逆变电路分别在各自的驱动信号的驱动下工作。用于A相逆变电路的驱动信号的调制波、用于B相逆变电路的驱动信号的调制波、以及用于C相逆变电路的驱动信号的调制波的相位依次相差120°。The A-phase inverter circuit, the B-phase inverter circuit, the C-phase inverter circuit, the A'-phase inverter circuit, the B'-phase inverter circuit and the C'-phase inverter circuit work under the drive of their respective driving signals. The phases of the modulated wave of the drive signal for the A-phase inverter circuit, the modulated wave of the drive signal for the B-phase inverter circuit, and the modulated wave of the drive signal for the C-phase inverter circuit are sequentially different by 120°.
A’相逆变电路的驱动信号的调制波的相位与A相逆变电路的驱动信号的调制波的相位相同。B’相逆变电路的驱动信号的调制波的相位与B相逆变电路的驱动信号的调制波的相位相同。C’相逆变电路的驱动信号的调制波的相位与C相逆变电路的驱动信号的调制波的相位相同。与A相逆变电路和A’相逆变电路关联的调制波的相位、与B相逆变电路和B’相逆变电路关联的调制波的相位、以及与C相逆变电路和C’相逆变电路关联的调制波的相位依次相差120度。The phase of the modulated wave of the drive signal of the A'-phase inverter circuit is the same as that of the modulated wave of the drive signal of the A-phase inverter circuit. The phase of the modulated wave of the drive signal of the B'-phase inverter circuit is the same as that of the modulated wave of the drive signal of the B-phase inverter circuit. The phase of the modulated wave of the drive signal of the C'-phase inverter circuit is the same as that of the modulated wave of the drive signal of the C-phase inverter circuit. The phase of the modulated wave associated with the A-phase inverter circuit and the A'-phase inverter circuit, the phase of the modulated wave associated with the B-phase inverter circuit and the B'-phase inverter circuit, and the phase of the modulated wave associated with the C-phase inverter circuit and the C'-phase inverter circuit The phases of the modulated waves associated with the phase inverter circuits differ by 120 degrees sequentially.
用于A相逆变电路的驱动信号的载波和用于A’相逆变电路的驱动信号的载波的相位相差预定角度。用于B相逆变电路的驱动信号的载波和用于B’相逆变电路的驱动信号的载波的相位相差预定角度。用于C相逆变电路的驱动信号的载波和用于C’相逆变电路的驱动信号的载波的相位相差预定角度。优选地,该预定角度为180度。The carrier of the drive signal for the A-phase inverter circuit and the carrier of the drive signal for the A'-phase inverter circuit are out of phase by a predetermined angle. The carrier of the drive signal for the B-phase inverter circuit and the carrier of the drive signal for the B'-phase inverter circuit are different in phase by a predetermined angle. The carrier of the drive signal for the C-phase inverter circuit and the carrier of the drive signal for the C'-phase inverter circuit are different in phase by a predetermined angle. Preferably, the predetermined angle is 180 degrees.
优选地,耦合电感器LA与耦合电感器LA’负耦合,耦合电感器LB与耦合电感器LB’负耦合,耦合电感器LC与耦合电感器LC’负耦合。Preferably, the coupled inductor LA is negatively coupled to the coupled inductor LA', the coupled inductor LB is negatively coupled to the coupled inductor LB', and the coupled inductor LC is negatively coupled to the coupled inductor LC'.
尽管以上参照图5描述了三电平T型拓扑构成的三相逆变器500。但是根据之前的描述,可以理解到,也可以通过其他三电平拓扑,例如NPC拓扑,构成三相逆变器。或者,也可以通过二电平拓扑来构成三相逆变器。Although the above describes the three-
以下参照图6来描述根据本发明实施例的由多个拓扑结构构成的三相逆变器系统600。如图6所示,三相逆变器系统600包括2K个三相逆变模块,其中K是大于等于1的整数。三相逆变模块1至三相逆变模块2K中的每一个都可以是类似于如图5所示的三相逆变模块501或三相逆变模块501’。或者,三相逆变模块1至三相逆变模块2K中的每一个可以是三电平NPC拓扑构成的三相逆变模块。或者三相逆变模块1至三相逆变模块2K中的每一个可以是两电平拓扑结构构成的三相逆变模块。A three-phase inverter system 600 composed of multiple topological structures according to an embodiment of the present invention will be described below with reference to FIG. 6 . As shown in FIG. 6 , the three-phase inverter system 600 includes 2K three-phase inverter modules, where K is an integer greater than or equal to 1. Each of the three-
三相逆变器系统600还包括滤波电路A、滤波电路B和滤波电路C。滤波电路A、滤波电路B和滤波电路C中的每一个可以具有如图4A所示的结构,即包括2K个耦合滤波电感器。或者,滤波电路A、滤波电路B和滤波电路C中的每一个可以具有如图4B所示的结构,即包括2K个耦合滤波电感器以及电容器C以构成LC滤波电路。或者滤波电路A、滤波电路B和滤波电路C中的每一个可以具有如图4C所示的结构,即包括2K个耦合滤波电感器以及电容器C和电感器L以构成LCL滤波电路。The three-phase inverter system 600 also includes a filter circuit A, a filter circuit B and a filter circuit C. Each of the filter circuit A, the filter circuit B and the filter circuit C may have a structure as shown in FIG. 4A , that is, include 2K coupled filter inductors. Alternatively, each of the filter circuit A, the filter circuit B and the filter circuit C may have a structure as shown in FIG. 4B , that is, include 2K coupled filter inductors and capacitors C to form an LC filter circuit. Or each of filter circuit A, filter circuit B and filter circuit C may have a structure as shown in FIG. 4C , that is, include 2K coupled filter inductors and capacitors C and inductors L to form an LCL filter circuit.
在图6所示的三相逆变器600中,三相逆变模块1至三相逆变模块2K可以并联至直流电源(在图6中未示出)。In the three-phase inverter 600 shown in FIG. 6 , the three-
用于驱动三相逆变模块1至2K中的A相的驱动信号的调制波的相位相同,用于驱动三相逆变模块1至2K中的B相的驱动信号的调制波的相位相同,用于驱动三相逆变模块1至2K中的C相的驱动信号的调制波的相位相同,并且这些相位之间相差120度。The phases of the modulated waves used to drive the drive signals of phase A in the three-
用于驱动三相逆变模块1至2K的各A相的各驱动信号的各载波的相位依次相差预定角度。类似地,用于驱动三相逆变模块1至2K的各B相的各驱动信号的各载波的相位依次相差预定角度,用于驱动三相逆变模块1至2K的各B相的各驱动信号的各载波的相位依次相差预定角度。上述的预定角度优选为360°/2K。The phases of the carriers of the driving signals used to drive the A-phases of the three-
以下参照图7来描述根据本发明的实施例的三相逆变器系统700。图7和图6的不同之处在于,图7中的滤波电路与图6中的滤波电路不同。图7中的每个滤波电路包括两个耦合电感器,而图6中的每个滤波电路包括2K个耦合电感器。图7和图6的另一个不同之处在于,滤波电路与负载的连接方式。图7中的各个滤波电路A的输出端连接在一起,各个滤波电路B的输出端连接在一起,各个滤波电路C的输出端连接在一起。A three-
图7中的三相逆变模块1至2K和图6中的三相逆变模块1至2K的功能与所采用的驱动信号类似,在此不再赘述。The functions of the three-
本文中描述的功率开关器件(有时也简称开关)可以是绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)、门极可断晶闸管(Gate Turn-off Thyristor,GTO)或任意其他适当的开关器件等。The power switching device described in this article (sometimes referred to as a switch) can be an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET), Gate Turn-off Thyristor (Gate Turn-off Thyristor, GTO) or any other suitable switching device, etc.
上述的T型电路拓扑中间辅助桥臂的2个功率开关器件可以采用共集电极连接,或者共发射极连接。上下模块母线电容器中点可以连接在一点,也可以不连接。此外,在上述参照附图描述的T型拓扑(无论是单相或三相),辅助桥臂上功率开关器件并联二极管可以共阳极或共阴极连接。上下模块母线电容中点可以连接在一点,也可以不连接。可选地,单相或三相电压输出滤波后输出可以接一个单相或三相变压器。The two power switching devices in the middle auxiliary bridge arm of the above-mentioned T-shaped circuit topology can be connected by a common collector or a common emitter. The middle points of the upper and lower module busbar capacitors can be connected at one point or not. In addition, in the T-type topology (whether it is single-phase or three-phase) described above with reference to the accompanying drawings, the parallel diodes of the power switching devices on the auxiliary bridge arm can be connected with common anode or common cathode. The midpoints of the upper and lower module bus capacitors can be connected at one point or not. Optionally, the filtered single-phase or three-phase voltage output can be connected to a single-phase or three-phase transformer.
此外,根据本发明的实施例的逆变器或逆变器系统可以应用于例如光伏并网逆变器。In addition, the inverter or inverter system according to the embodiments of the present invention can be applied to, for example, a photovoltaic grid-connected inverter.
本发明采用耦合电感PWM载波移相技术,不但降低了功率器件的损耗,而且大幅度降低输出电感器损耗和成本,提高了逆变器的效率,降低了逆变器的整机成本,具有极大的应用价值和广阔的市场前景。The invention adopts the coupled inductor PWM carrier phase-shifting technology, which not only reduces the loss of power devices, but also greatly reduces the loss and cost of the output inductor, improves the efficiency of the inverter, and reduces the overall cost of the inverter. Great application value and broad market prospects.
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, element, step or component, but does not exclude the presence or addition of one or more other features, elements, steps or components.
本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。The present invention and its advantages, but it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present invention is not limited to the specific embodiments of the procedures, devices, means, methods and steps described in the specification. Those of ordinary skill in the art will readily appreciate from the disclosure of the present invention that existing and future developments that perform substantially the same function or obtain substantially the same results as the corresponding embodiments herein can be used in accordance with the present invention. process, equipment, means, method or steps. Accordingly, the appended claims are intended to include within their scope such processes, means, means, methods or steps.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210100586XA CN103368427A (en) | 2012-04-05 | 2012-04-05 | Single-phase inverter and system thereof and three-phase inverter and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210100586XA CN103368427A (en) | 2012-04-05 | 2012-04-05 | Single-phase inverter and system thereof and three-phase inverter and system thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103368427A true CN103368427A (en) | 2013-10-23 |
Family
ID=49369132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210100586XA Pending CN103368427A (en) | 2012-04-05 | 2012-04-05 | Single-phase inverter and system thereof and three-phase inverter and system thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103368427A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346690A (en) * | 2013-07-05 | 2013-10-09 | 华为技术有限公司 | Multi-level inverter and power supply system |
CN103580520A (en) * | 2013-11-05 | 2014-02-12 | 浙江大学 | Inverter modulating device and method |
CN104333251A (en) * | 2014-10-13 | 2015-02-04 | 华南理工大学 | Flying capacitor voltage-clamped multilevel inverter adopting novel three-terminal switching network |
CN104578735A (en) * | 2014-10-13 | 2015-04-29 | 华南理工大学 | Diode voltage clamping type multi-level inverter using novel trigistor network |
CN104811073A (en) * | 2014-01-24 | 2015-07-29 | 通用电气能源电能变换科技有限公司 | Converter module, device, system and related method |
CN105024573A (en) * | 2015-07-03 | 2015-11-04 | 上海交通大学 | CoolMosfet T-type three-level topological circuit and inverter |
TWI509975B (en) * | 2013-12-18 | 2015-11-21 | Ind Tech Res Inst | Modulation method for a single phase three-level converter |
CN105226975A (en) * | 2014-06-06 | 2016-01-06 | 台达电子企业管理(上海)有限公司 | TNPC DC-to-AC converter and bridgc arm short detection method thereof |
CN105337525A (en) * | 2015-11-01 | 2016-02-17 | 华南理工大学 | Half-bridge inverter eliminating dead zone time energy backflow, and control method thereof |
CN105450064A (en) * | 2015-12-22 | 2016-03-30 | 深圳茂硕电气有限公司 | Multi-level inverter |
CN105827128A (en) * | 2016-05-11 | 2016-08-03 | 武汉衡伟信息技术有限公司 | Frequency converter |
WO2017076364A1 (en) * | 2015-11-05 | 2017-05-11 | Huawei Technologies Co., Ltd. | Multi-channel inverter systems |
CN109742969A (en) * | 2019-01-11 | 2019-05-10 | 北京机械设备研究所 | One kind being based on magnetic-coupled three-phase inverter |
CN109802587A (en) * | 2019-02-28 | 2019-05-24 | 山东大学 | Three level NPC converter system of modularization and control method based on coupling inductance |
CN109889054A (en) * | 2019-01-24 | 2019-06-14 | 深圳市禾望电气股份有限公司 | Converter topology |
CN110768556A (en) * | 2019-11-28 | 2020-02-07 | 广东工业大学 | A buck-boost-based multi-level inverter circuit and inverter system |
WO2021022778A1 (en) * | 2019-08-05 | 2021-02-11 | 珠海格力电器股份有限公司 | Device for suppressing common-mode interference, variable-frequency electrical device, and method for suppressing common-mode interference |
WO2021092720A1 (en) * | 2019-11-11 | 2021-05-20 | Abb Schweiz Ag | Multi-level power convertor and method for multi-level power convertor |
EP4315583A4 (en) * | 2021-03-30 | 2024-12-25 | ABB E-mobility B.V. | MULTI-LEVEL POWER CONVERTER, MULTI-PHASE POWER CONVERSION CIRCUIT AND METHOD FOR MULTI-LEVEL POWER CONVERTER |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2901688Y (en) * | 2006-05-25 | 2007-05-16 | 山东新风光电子科技发展有限公司 | Contravariant circuit of current source |
EP2077609A2 (en) * | 2007-12-27 | 2009-07-08 | TDK Corporation | Switching power supply unit |
CN101567567A (en) * | 2009-06-05 | 2009-10-28 | 合肥工业大学 | Carrier shifting inversion large power photovoltaic grid-connection system and control method thereof |
JP2012055083A (en) * | 2010-09-01 | 2012-03-15 | Meidensha Corp | Power conversion apparatus |
-
2012
- 2012-04-05 CN CN201210100586XA patent/CN103368427A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2901688Y (en) * | 2006-05-25 | 2007-05-16 | 山东新风光电子科技发展有限公司 | Contravariant circuit of current source |
EP2077609A2 (en) * | 2007-12-27 | 2009-07-08 | TDK Corporation | Switching power supply unit |
CN101567567A (en) * | 2009-06-05 | 2009-10-28 | 合肥工业大学 | Carrier shifting inversion large power photovoltaic grid-connection system and control method thereof |
JP2012055083A (en) * | 2010-09-01 | 2012-03-15 | Meidensha Corp | Power conversion apparatus |
Non-Patent Citations (1)
Title |
---|
刘辉等: "基于载波移相大功率并联逆变器输出谐波分析", 《电力电子技术》, vol. 46, no. 2, 29 February 2012 (2012-02-29) * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346690B (en) * | 2013-07-05 | 2016-03-30 | 华为技术有限公司 | A kind of multi-electrical level inverter and electric power system |
WO2015000291A1 (en) * | 2013-07-05 | 2015-01-08 | 华为技术有限公司 | Multi-level inverter and power supply system |
CN103346690A (en) * | 2013-07-05 | 2013-10-09 | 华为技术有限公司 | Multi-level inverter and power supply system |
US9385632B2 (en) | 2013-07-05 | 2016-07-05 | Huawei Technologies Co., Ltd. | Multi-level inverter and power supply system |
CN103580520A (en) * | 2013-11-05 | 2014-02-12 | 浙江大学 | Inverter modulating device and method |
CN103580520B (en) * | 2013-11-05 | 2015-12-09 | 浙江大学 | A kind of modulating device of inverter and method |
TWI509975B (en) * | 2013-12-18 | 2015-11-21 | Ind Tech Res Inst | Modulation method for a single phase three-level converter |
US10644609B2 (en) | 2014-01-24 | 2020-05-05 | Ge Energy Power Conversion Technology, Ltd. | Nestable single cell structure for use in a power conversion system |
CN104811073B (en) * | 2014-01-24 | 2019-05-31 | 通用电气能源电能变换科技有限公司 | Converter module, device, system and correlation technique |
CN104811073A (en) * | 2014-01-24 | 2015-07-29 | 通用电气能源电能变换科技有限公司 | Converter module, device, system and related method |
US9800176B2 (en) | 2014-06-06 | 2017-10-24 | Delta Electronics (Shanghai) Co., Ltd | TNPC inverter device and method for detecting short-circuit thereof |
CN105226975A (en) * | 2014-06-06 | 2016-01-06 | 台达电子企业管理(上海)有限公司 | TNPC DC-to-AC converter and bridgc arm short detection method thereof |
CN105226975B (en) * | 2014-06-06 | 2017-12-15 | 台达电子企业管理(上海)有限公司 | TNPC DC-to-AC converters and its bridgc arm short detection method |
CN104333251A (en) * | 2014-10-13 | 2015-02-04 | 华南理工大学 | Flying capacitor voltage-clamped multilevel inverter adopting novel three-terminal switching network |
CN104578735A (en) * | 2014-10-13 | 2015-04-29 | 华南理工大学 | Diode voltage clamping type multi-level inverter using novel trigistor network |
CN105024573A (en) * | 2015-07-03 | 2015-11-04 | 上海交通大学 | CoolMosfet T-type three-level topological circuit and inverter |
CN105337525A (en) * | 2015-11-01 | 2016-02-17 | 华南理工大学 | Half-bridge inverter eliminating dead zone time energy backflow, and control method thereof |
WO2017076364A1 (en) * | 2015-11-05 | 2017-05-11 | Huawei Technologies Co., Ltd. | Multi-channel inverter systems |
US9923485B2 (en) | 2015-11-05 | 2018-03-20 | Futurewei Technologies, Inc. | Multi-channel inverter systems |
CN108352789A (en) * | 2015-11-05 | 2018-07-31 | 华为技术有限公司 | Multichannel inverter system |
US10404187B2 (en) | 2015-11-05 | 2019-09-03 | Futurewei Technologies, Inc. | Multi-channel inverter systems including coupled inductors |
US11088632B2 (en) | 2015-11-05 | 2021-08-10 | Futurewei Technologies, Inc. | Multi-channel inverter systems including coupled inductors |
CN105450064A (en) * | 2015-12-22 | 2016-03-30 | 深圳茂硕电气有限公司 | Multi-level inverter |
CN105827128A (en) * | 2016-05-11 | 2016-08-03 | 武汉衡伟信息技术有限公司 | Frequency converter |
CN109742969A (en) * | 2019-01-11 | 2019-05-10 | 北京机械设备研究所 | One kind being based on magnetic-coupled three-phase inverter |
CN109742969B (en) * | 2019-01-11 | 2020-05-19 | 北京机械设备研究所 | Three-phase inverter based on magnetic coupling |
CN109889054A (en) * | 2019-01-24 | 2019-06-14 | 深圳市禾望电气股份有限公司 | Converter topology |
CN109889054B (en) * | 2019-01-24 | 2021-11-05 | 深圳市禾望电气股份有限公司 | Converter topology |
CN109802587A (en) * | 2019-02-28 | 2019-05-24 | 山东大学 | Three level NPC converter system of modularization and control method based on coupling inductance |
WO2021022778A1 (en) * | 2019-08-05 | 2021-02-11 | 珠海格力电器股份有限公司 | Device for suppressing common-mode interference, variable-frequency electrical device, and method for suppressing common-mode interference |
WO2021092720A1 (en) * | 2019-11-11 | 2021-05-20 | Abb Schweiz Ag | Multi-level power convertor and method for multi-level power convertor |
US12143031B2 (en) | 2019-11-11 | 2024-11-12 | ABB E-mobility B.V. | Multi-level power convertor and method for multi-level power convertor |
CN110768556A (en) * | 2019-11-28 | 2020-02-07 | 广东工业大学 | A buck-boost-based multi-level inverter circuit and inverter system |
CN110768556B (en) * | 2019-11-28 | 2021-08-13 | 广东工业大学 | A buck-boost-based multi-level inverter circuit and inverter system |
EP4315583A4 (en) * | 2021-03-30 | 2024-12-25 | ABB E-mobility B.V. | MULTI-LEVEL POWER CONVERTER, MULTI-PHASE POWER CONVERSION CIRCUIT AND METHOD FOR MULTI-LEVEL POWER CONVERTER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103368427A (en) | Single-phase inverter and system thereof and three-phase inverter and system thereof | |
JP5457449B2 (en) | Power converter | |
CN102185514B (en) | Single-phase three-level inverter | |
CN101917133B (en) | Five-electrical level inverter | |
CN101902143B (en) | Capacitor-clamped three-level dual-buck half-bridge inverter | |
CN102594187B (en) | Four-level topological unit and application circuit thereof | |
CN104333248A (en) | Multilevel single-phase inverter and multilevel three-phase inverter adopting novel three-terminal switching network | |
US9515568B2 (en) | Power converter with a first string having diodes and a second string having switching units | |
CN105874703A (en) | Soft switching inverter | |
CN104242720A (en) | Modular multilevel converter (MMC) of alternating current side cascading H-bridge | |
CN110086360A (en) | A kind of five level high efficiency rectifiers | |
JP2015122913A (en) | Zero current switching electric power conversion device | |
CN102594185B (en) | Four-level topology unit and application circuit thereof | |
CN101800478A (en) | Cascade connection type power conversion device and power supply system | |
CN104682762B (en) | Low-leakage-current grid-connected inverter | |
CN105553314A (en) | Hybrid modular multilevel converter topological structure based on three-level submodules and two-level submodules | |
CN102437761B (en) | Single-phase full bridge three-level inverter and three-phase three-level inverter | |
CN102801348A (en) | Three-phase five-level inverter | |
JP6175946B2 (en) | Resonant inverter device | |
CN103762881A (en) | Double-output single-phase three-switch-block MMC inverter and control method thereof | |
CN102427307B (en) | Three-phase four-wire three-level inverter | |
CN103762861B (en) | N input single-phase 2N+2 switching group MMC rectifier and control method thereof | |
CN103762863B (en) | N inputs three-phase 3N+3 switches set MMC rectifier and control method thereof | |
CN106787886A (en) | Seven level inverse conversion topological structures and seven electrical level inverters | |
Kumar et al. | A New PWM Technique for Modular Multi-Level Converters: Simulation & Hardware Validation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131023 |