CN103325662B - 半导体性单壁碳纳米管的制备方法 - Google Patents

半导体性单壁碳纳米管的制备方法 Download PDF

Info

Publication number
CN103325662B
CN103325662B CN201210075759.7A CN201210075759A CN103325662B CN 103325662 B CN103325662 B CN 103325662B CN 201210075759 A CN201210075759 A CN 201210075759A CN 103325662 B CN103325662 B CN 103325662B
Authority
CN
China
Prior art keywords
walled carbon
semi
carbon nano
tube
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210075759.7A
Other languages
English (en)
Other versions
CN103325662A (zh
Inventor
李�杰
姜开利
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201210075759.7A priority Critical patent/CN103325662B/zh
Priority to TW101110966A priority patent/TWI503272B/zh
Priority to US13/798,789 priority patent/US8916454B2/en
Publication of CN103325662A publication Critical patent/CN103325662A/zh
Application granted granted Critical
Publication of CN103325662B publication Critical patent/CN103325662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/845Purification or separation of fullerenes or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种半导体性单壁碳纳米管的制备方法,包括以下步骤:提供一基体,该基体具有一第一表面;提供一单壁碳纳米管薄膜结构,将该单壁碳纳米管薄膜结构设置于所述基体的第一表面,所述单壁碳纳米管薄膜结构包括多个金属性单壁碳纳米管和半导体性单壁碳纳米管;将一高分子材料层设置于所述单壁碳纳米管薄膜结构上,形成一复合结构,所述高分子材料层包覆单壁碳纳米管中的每一个金属性单壁碳纳米管和每一个半导体性单壁碳纳米管;将所述复合结构放置于一电磁波环境中,除去包覆金属性单壁碳纳米管的高分子材料层,使金属性单壁碳纳米管暴露;除去所述金属性单壁碳纳米管;除去包覆半导体性单壁碳纳米管的高分子材料层,得到半导体性单壁碳纳米管。

Description

半导体性单壁碳纳米管的制备方法
技术领域
本发明涉及一种单壁碳纳米管的制备方法,尤其涉及一种半导体性单壁碳纳米管的制备方法。
背景技术
由于碳纳米管具有准一维结构和独特的电学性能,所以它自1991年被发现后就引起了科学界的广泛关注,现已开展了将碳纳米管应用于电子器件、场发射技术、生物载药、储氢技术等诸多领域的研究工作。碳纳米管可分为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管,其中单壁碳纳米管作为优良的一维纳米材料,因其具有较高的载流子迁移率而被用作制造场效应晶体管、薄膜晶体管等电子器件,有望取代硅材料而成为下一代微电子器件的关键材料。根据单壁碳纳米管直径和手性不同,单壁碳纳米管表现为金属性和半导体性,而金属性单壁碳纳米管会严重影响碳纳米管晶体管的性能,因此,制备纯半导体性单壁碳纳米管是解决大规模制造碳纳米管晶体管的关键技术之一。
目前有三种方法解决上述问题。第一种方法是优先生长半导体性单壁碳纳米管;第二种方法是将单壁碳纳米管中的半导体性单壁碳纳米管与金属性单壁碳纳米管分离;第三种方法是有选择地破坏单壁碳纳米管中的金属性单壁碳纳米管。其中,第三种方法可以通过电流破坏金属性单壁碳纳米管。请参见非专利文献“Collins P. et al., Science, 2001, 292, 706”:在施加栅极电压时,半导体单壁碳纳米管能够‘关闭(off)’,在有氧气的情况下,通过施加较高的源极-漏极电压烧毁金属性单壁碳纳米管。但是,流过金属性单壁碳纳米管的电流若较小,则不能将所有的金属性单壁碳纳米管烧毁,进而得到的半导体性单壁碳纳米管的纯度不高;若流过金属性单壁碳纳米管的电流很高,则该电流会烧毁相邻的半导体性单壁碳纳米管。
发明内容
有鉴于此,确有必要提供一种可以得到高纯度且结构不被破坏的半导体性单壁碳纳米管的制备方法。
一种半导体性单壁碳纳米管的制备方法,包括以下步骤:提供一基体,该基体具有一第一表面;提供一单壁碳纳米管薄膜结构,将该单壁碳纳米管薄膜结构设置于所述基体的第一表面,所述单壁碳纳米管薄膜结构包括多个单壁碳纳米管,该多个单壁碳纳米管之间具有间隙,且该多个单壁碳纳米管由金属性单壁碳纳米管和半导体性单壁碳纳米管组成;将一高分子材料层设置于所述单壁碳纳米管薄膜结构上,形成一复合结构,所述高分子材料层包覆单壁碳纳米管中的每一个金属性单壁碳纳米管和每一个半导体性单壁碳纳米管;将所述复合结构放置于一电磁波环境中,除去包覆金属性单壁碳纳米管的高分子材料层,从而使金属性单壁碳纳米管暴露;除去所述金属性单壁碳纳米管;除去包覆半导体性单壁碳纳米管的高分子材料层,得到半导体性单壁碳纳米管。
与现有技术相比,本发明提供的半导体性单壁碳纳米管的制备方法中,在利用刻蚀等方法除去金属性单壁碳纳米管时,由于半导体性单壁碳纳米管有高分子材料的包覆,因此,半导体性单壁碳纳米管的结构不会遭到破坏。而且,本发明可完全除去单壁碳纳米管中的金属性单壁碳纳米管,因此,半导体性单壁碳纳米管的纯度高。另外,方法简单,可实现大规模生产。
附图说明
图1为本发明具体实施例一和具体实施例二提供的半导体性单壁碳纳米管的制备方法的工艺流程图。
图2为本发明具体实施例一提供的单壁碳纳米管薄膜结构的制备方法的工艺流程图。
图3为本发明具体实施例一提供的单壁碳纳米管薄膜结构的扫描电镜照片。
图4为本发明具体实施例一提供的另一种单壁碳纳米管薄膜结构的俯视结构示意图。
图5为本发明具体实施例二提供的半导体性单壁碳纳米管的制备方法中将电极设置于单壁碳纳米管薄膜结构的一端的俯视结构示意图。
主要元件符号说明
基体 10
第一表面 102
单壁碳纳米管薄膜结构 12
金属性单壁碳纳米管 122
半导体性单壁碳纳米管 124
高分子材料层 14
电极 16
生长装置 30
加热炉 302
反应室 304
进气口 306
出气口 308
固定平台 310
旋转平台 312
生长基底 316
催化剂层 318
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例,对本发明提供的半导体性单壁碳纳米管的制备方法作进一步的详细说明。
具体实施例一
请参见图1,本发明具体实施例一提供一种半导体性单壁碳纳米管124的制备方法,包括以下步骤:
步骤一、提供一基体10,该基体10具有一第一表面102。
所述基体10是平整的,且具有较高的熔点,该熔点在空气中不低于600℃。基体10的材料可以为P型或N型硅、形成有氧化层的硅、石英、高分子材料等,但不能为金属。本实施例优选石英基体10。该基体10的厚度及第一表面102的面积不限,可以根据实际需要进行调整。
步骤二、提供一单壁碳纳米管薄膜结构12,将该单壁碳纳米管薄膜结构12设置于所述基体10的第一表面102,所述单壁碳纳米管薄膜结构12包括多个金属性单壁碳纳米管122和半导体性单壁碳纳米管124。
所述单壁碳纳米管薄膜结构12包括多个单壁碳纳米管,该多个单壁碳纳米管由金属性单壁碳纳米管122和半导体性单壁碳纳米管124组成。所述多个单壁碳纳米管一个一个地平铺在所述基体10的第一表面102,因此该多个单壁碳纳米管平行于所述单壁碳纳米管薄膜结构12的表面以及所述基体10的第一表面102。所述多个单壁碳纳米管彼此之间相互独立均匀分布在所述所述基体10的第一表面102,相邻的单壁碳纳米管不能相互搭接在一起,以防止金属性单壁碳纳米管将本身的发热量传递给半导体性单壁碳纳米管,即防止半导体性单壁碳纳米管由于接受到金属性单壁碳纳米管传递的发热量而遭到破坏。所述单壁碳纳米管与相邻的单壁碳纳米管均有间隙,该间隙的长度不小于10纳米。所述多个单壁碳纳米管可以间隔地平行排列,也可以间隔地非平行排列。进一步地,所述单壁碳纳米管可以具有相等的长度且相互平行排列,也可以具有不相等的长度且杂乱无章地排列。本实施例中,单壁碳纳米管薄膜结构12包括多个平行排列的具有相等长度的单壁碳纳米管,每一单壁碳纳米管与相邻的单壁碳纳米管之间的距离为500纳米。所述单壁碳纳米管薄膜结构12的厚度为0.5纳米至2.5纳米。所述单壁碳纳米管的长度不限,所述单壁碳纳米管可以具有相等的长度,也可以具有不相等的长度。
所述单壁碳纳米管薄膜结构12可以是从所述基体10的第一表面102上水平生长,也可以是先将单壁碳纳米管溶解于溶剂中再铺设在基体10的第一表面102上形成。
从所述基体10的第一表面102水平生长单壁碳纳米管薄膜结构12的方法包括很多种,比如“放风筝法”、“石英晶格导向法”等。以下仅以“放风筝法”为例详细说明从所述基体10的第一表面102水平生长单壁碳纳米管薄膜结构12,但并不局限于此。
请参见图2,利用“放风筝法”从所述基体10的第一表面102水平生长单壁碳纳米管薄膜结构12的方法,包括以下步骤:
(1)提供一生长装置30。
所述生长装置30包括一加热炉302,一反应室304以及间隔设置于该反应室304内的一可旋转平台312及一与旋转平台312对应设置的固定平台310。该反应室304包括一进气口306与一出气口308,所述固定平台310设置于靠近进气口306一边,所述旋转平台312设置于靠近出气口308一边。所述旋转平台312与固定平台310之间的间距小于1厘米,且旋转平台312略低于固定平台310。所述旋转平台312可以在水平方向旋转任意角度。
(2)提供一生长基底316以及一基体10,该生长基底316表面形成有一单分散性催化剂层318。
当选用铁、钴、镍或其任意组合的合金材料制备单分散性催化剂层318时,可采用薄膜技术将催化剂材料沉积到生长基底316表面。
当选用金属盐制备单分散性催化剂层318时,将金属盐的单分散性溶液或者金属的单分散性溶液涂覆于生长基底316上形成单分散性催化剂层318。本实施例中,作为催化剂材料的金属盐的单分散性溶液优选为硝酸铁(Fe(NO3)3)、氯化铜(CuCl2)或三氯化铁(FeCl3)的单分散性水溶液或单分散性乙醇溶液,作为催化剂材料的金属的单分散性溶液优选为铁/钼(Fe-Mo)、铁/钴(Fe-Co)或铁/钌(Fe-Ru)的正辛烷单分散型溶液、乙醇或正己烷单分散性溶液。采用单分散性溶液制备催化剂层318,有利于防止催化剂材料团聚,形成单分散性催化剂层318,即,催化剂层318中包括多个单分散性催化剂颗粒。
(3)将所述生长基底316放置于该固定平台310上,将所述基体10放置于该旋转平台312上。
将所述生长基底316放置于该固定平台310上,确保生长基底316沉积有催化剂层318的一面朝上。
所述生长基底316与基体10为一耐高温基板,其材料不限,只要确保其熔点高于所述单壁碳纳米管的生长温度。本实施例中,生长基底316优选为一长度为10厘米,宽度为0.5毫米的条形硅片。可以理解,本实施例中可以先将催化剂材料沉积于一大面积的硅片表面,再将该硅片切割成多个预定大小的生长基底316。
(4)通入碳源气,沿着气流的方向生长单壁碳纳米管。
首先,通入保护气体,将反应室304内的空气排出。所述的保护气体为氮气或惰性气体,本实施例优选的保护气体为氩气。
其次,在保护气体环境下对反应室304进行加热到单壁碳纳米管的生长温度,并保持恒温。所述单壁碳纳米管的生长温度为800℃至1000℃。可以理解,根据不同的碳源气,单壁碳纳米管的生长温度不同。本实施例中,采用乙醇作为碳源气时,单壁碳纳米管的生长温度优选为850℃至950℃。采用甲烷作为碳源气时,单壁碳纳米管的生长温度优选为950℃至1000℃。
再次,通入碳源气,生长单壁碳纳米管。所述碳源气可选用乙醇、乙炔、乙烯、甲烷等化学性质较活泼的碳氢化合物,本实施例优选的碳源气为乙醇或甲烷。通入碳源气的流量为5 sccm(标准状态毫升/分钟)至100sccm。碳源气中混合一定量的氢气作为载气,且碳源气与载气的流量比为1:1至1:3。
当通入碳源气后,在生长基底316表面催化剂颗粒的作用下开始生长碳纳米管。碳纳米管一端固定于生长基底316上,另一端不断生长。由于催化剂层318包括多个单分散性催化剂颗粒,所以生长的碳纳米管不会很密,从而使得部分碳纳米管可以长成为单壁碳纳米管。由于固定平台310上的生长基底316靠近于反应室304的进气口306设置,所以随着碳源气的不断通入,生长的单壁碳纳米管随着碳源气漂浮于基体10上空。该生长机理称作“放风筝机理”。单壁碳纳米管的生长时间与所要制备的单壁碳纳米管有关。本实施例中,优选地,生长时间为10分钟。该方法生长的单壁碳纳米管长度大于1厘米,甚至可以达到30厘米以上。
(5)停止通入碳源气,单壁碳纳米管平行且间隔的形成在基体10表面。
停止通入碳源气后,单壁碳纳米管停止生长。同时停止加热,并降温。但是,要继续通入保护气体,直到反应室304温度降为室温,以防止生长的单壁碳纳米管被氧化。当停止通入碳源气,单壁碳纳米管停止生长,平行且间隔的形成于基体10上,且相邻两个单壁碳纳米管之间的距离大于20微米。
(6)更换生长基底316,并多次重复上述步骤四和步骤五,在基体10的第一表面102上形成一单壁碳纳米管薄膜结构12。
更换生长基底316的方法可以为更换新的生长基底316或将原生长基底316取出清洗后沉积新的催化剂层318,重复使用。通过重复上述步骤四和步骤五,越来越多的单壁碳纳米管落在基体10的第一表面102上,形成一单壁碳纳米管薄膜结构12。
请参见图3,上述通过在基体10的第一表面102水平生长获得的单壁碳纳米管薄膜结构12中包括多个平行排列的单壁碳纳米管,该多个单壁碳纳米管通过范德华力彼此连接形成一自支撑的单壁碳纳米管薄膜结构12。所述多个单壁碳纳米管具有相等的长度,该长度为100微米;相邻单壁碳纳米管之间的距离为500纳米。
将单壁碳纳米管薄膜结构12溶解于溶剂中再铺设在基体10的第一表面102的方法,包括以下步骤:(1)将单壁碳纳米管溶解于乙醇的水溶液中,超声分散,让单壁碳纳米管均匀悬浮在溶液中,所述超声分散的时间为10分钟至30分钟。(2)采用液氮作为冷却介质,将步骤(1)所得的溶液冷却,持续供给冷却介质保证碳纳米管的冷却温度达到-50℃至-190℃。(3)常温常压下,将步骤(2)所得的固态产物放置于高速刀片旋转的封闭装置,进行粉碎处理,控制转速为22500转/分钟,时间为1分钟,粉碎过程重复1次至7次。(4)对步骤(3)所得的产物进行过滤、干燥,得到水溶性较好的单壁碳纳米管水溶液。(5)在所述基体10的第一表面102旋涂或采用其它方法涂覆一所述单壁碳纳米管水溶液,或将所述基体10的第一表面102浸没于单壁碳纳米管水溶液中直接沾取一定量的单壁碳纳米管,干燥后,形成一单壁碳纳米管薄膜结构12。可以理解,在基体10的第一表面102涂覆单壁碳纳米管水溶液的方式不限,只要可以在基体10的第一表面102形成均匀的单壁碳纳米管薄膜结构12即可。所述单壁碳纳米管水溶液中单壁碳纳米管的浓度不超过1毫克/100毫升,以确保在涂覆单壁碳纳米管水溶液时可以使相邻的单壁碳纳米管之间具有间隙,即,相邻的单壁碳纳米管不会搭接在一起。
请参见图4,上述通过将单壁碳纳米管薄膜结构12溶解于溶剂中再铺设在基体10的第一表面102的方法获得的单壁碳纳米管薄膜结构12中,多个单壁碳纳米管间隔地非平行排列,或者说是杂乱无章地排列,但是每个单壁碳纳米管与相邻的单壁碳纳米管之间具有间隙,不会搭接在一起。
步骤三、将一高分子材料层14设置于所述单壁碳纳米管薄膜结构12上,形成一复合结构,所述高分子材料层14包覆单壁碳纳米管中的每一个金属性单壁碳纳米管122和每一个半导体性单壁碳纳米管124。
所述高分子材料层14由熔融态高分子材料或高分子材料溶液干燥后形成。所述熔融态高分子材料是指高分子材料在一定温度下本身形成熔融态,所述高分子材料溶液是指高分子材料溶于挥发性有机溶剂而形成。所述熔融态高分子材料或高分子材料溶液可以具有一定的粘度,优选地,所述熔融态高分子材料或高分子材料溶液的粘度大于1帕‧秒。所述的高分子材料在常温下为固态,所述高分子材料的熔点不超过600℃,或者所述高分子材料在不超过600℃的温度下可以分解,优选地,所述高分子材料的熔点不超过300℃,或者所述高分子材料在不超过300℃的温度下可以分解。所述高分子材料包括酚醛树脂(PF)、环氧树脂(EP)、聚氨酯(PU)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、对苯二甲酸乙二醇酯(PET)、苯丙环丁烯(BCB)、聚环烯烃、混合曝光用胶、LIGA工艺用胶、电子束光刻用胶等。所述挥发性有机溶剂包括苯甲醚、乳酸乙酯、乙醇、甲醇、丙酮、二氯乙烷或氯仿等。
在单壁碳纳米管薄膜结构12上旋涂或采用其它方法涂覆所述熔融态高分子材料或高分子材料溶液,或者将单壁碳纳米管薄膜结构12中除与基体10第一表面102相接触的表面外的其它表面浸没于熔融态高分子材料或高分子材料溶液直接沾取一定量的高分子材料,干燥后,形成一高分子材料层14。在形成高分子材料层14的过程中,需要缓慢旋涂熔融态高分子材料或高分子材料溶液,或者将单壁碳纳米管薄膜结构12中除与基体10第一表面102相接触的表面外的其它表面浸没于熔融态高分子材料或高分子材料溶液时停留一段时间,这些均是确保高分子材料层14可以包覆每一个单壁碳纳米管,而且高分子材料层14的厚度要薄,高分子材料层14的厚度与单壁碳纳米管结构12中各个单壁碳纳米管之间间距的长度有关。优选地,高分子材料层14的厚度为0.1微米至1毫米。本实施例中,将PMMA(聚甲基丙烯酸甲酯)溶于苯甲醚中形成均匀的PMMA的苯甲醚溶液,然后将该聚PMMA的苯甲醚溶液缓慢旋涂在单壁碳纳米管薄膜结构12上。
步骤四、将所述复合结构放置于一电磁波环境中,使包覆金属性单壁碳纳米管122的高分子材料层14熔化,从而使金属性单壁碳纳米管122暴露。
高分子材料层14对电磁波能量的吸收远小于单壁碳纳米管薄膜结构12,且高分子材料层14的热容远大于单壁碳纳米管薄膜结构12。单壁碳纳米管薄膜结构12中,半导体性单壁碳纳米管124不吸收电磁波或很少吸收电磁波,而金属性单壁碳纳米管122与电磁波之间的相互作用较强。进一步可以理解,金属性单壁碳纳米管122吸收电磁波的速度远远大于半导体性单壁碳纳米管124,导致在同一时间内,金属性单壁碳纳米管122的发热量远远大于半导体性单壁碳纳米管124。因此,吸收电磁波能量之后的金属性单壁碳纳米管122快速升高温度,从而使包覆金属性单壁碳纳米管122的高分子材料层14的温度升高。在金属性单壁碳纳米管122与电磁波相互作用并快速升温的同时,金属性单壁碳纳米管122将热量传递给具有更大热容的高分子材料层14和基体10,因此,金属性单壁碳纳米管122本身的温度最多能达到600℃。同时,包覆金属性单壁碳纳米管122的高分子材料层14吸收热量后达到一定温度而熔化或分解,使金属性单壁碳纳米管122暴露出来。所述高分子材料层14的厚度要薄,所述高分子材料层14的厚度最大为各个单壁碳纳米管之间的间距。由于金属性单壁碳纳米管122的发热量是各方向均匀散播,因此,为了使金属性单壁碳纳米管122暴露出来,并且不影响相邻的单壁碳纳米管,所述高分子材料层14的厚度优选为小于单壁碳纳米管之间的间距。本实施例中,所述高分子材料层14的厚度优选为10纳米至500纳米。本实施例中,包覆金属性单壁碳纳米管122的高分子材料层14温度升高到300℃。半导体性单壁碳纳米管124不吸收电磁波或很少吸收电磁波,因此,半导体性单壁碳纳米管124不会发出热量。进而,包覆半导体性单壁碳纳米管124的高分子材料层14的温度也不会升高而熔化,所以,半导体性单壁碳纳米管124仍有高分子材料层14包覆。
所述电磁波的功率为300瓦至2000瓦,频率为0.3GHz至1×106GHz。所述电磁波可以为无线电波、微波、光波、红外线或远红外线。本实施例中,所述电磁波为微波,所述微波的功率为300瓦至1500瓦,频率为0.3 GHz至300GHz,所述复合结构在微波环境中放置的时间为1秒至600秒,优选地,为3秒至90秒。可以理解,所述高分子材料保持不变时,电磁波的功率越大,所述复合结构在电磁波环境中的放置时间越短。当包覆金属性单壁碳纳米管122的高分子材料层14开始融化时,所述复合结构在微波环境中放置30秒后,包覆金属性单壁碳纳米管122的高分子材料层14全部熔化,而使金属性单壁碳纳米管122暴露。
可以理解,上述步骤也可在真空环境下或有保护气体存在的环境下进行。所述真空环境的真空度可以为10-2帕至10-6帕。所述保护气体包括氮气和惰性气体。在真空环境或保护气体存在的情况下,可以保护单壁碳纳米管在高温时不被破坏,金属性单壁碳纳米管122的温度可以达到900ºC左右。
步骤五、除去所述金属性单壁碳纳米管122。
除去所述金属性单壁碳纳米管122的方法可以选用反应离子刻蚀,或者激光刻蚀等,但不以此为限,只要能够将金属性单壁碳纳米管122除去即可。以下仅以反应离子刻蚀为例说明如何将金属性单壁碳纳米管122除去。
首先,将高分子材料层14、单壁碳纳米管薄膜结构12以及基体10放入反应离子刻蚀机的真空腔体中,并将该真空腔体中抽成真空。
其次,在反应离子刻蚀机的真空腔体中通入反应气体,该反应气体可选择为氧气、氢气或四氟化碳等。
最后,在上述真空腔体中通过辉光放电反应产生反应气体的等离子体,并与暴露的金属性单壁碳纳米管122进行反应。具体地,上述反应气体通过辉光放电形成等离子体,该等离子体包括带电荷的离子及电子。上述带电荷的离子通过撞击暴露的金属性单壁碳纳米管122的表面,而对金属性单壁碳纳米管122进行物理刻蚀,或者通过与金属性单壁碳纳米管122中的碳原子反应生成二氧化碳等易挥发的反应产物对金属性单壁碳纳米管122进行化学刻蚀。依据反应气体的不同,该等离子体包括氧等离子体、氢等离子体或四氟化碳等离子体等常用的等离子体。优选地,该反应气体为氧气,该等离子体为氧等离子体。上述辉光放电反应的功率可以为20瓦至300瓦,优选为30瓦。反应气体流量为10sccm至100sccm,优选为50sccm。真空腔体内气体压强为1帕至100帕,优选为10帕。等离子体与金属性单壁碳纳米管122的反应时间为5秒至10分钟,优选为15秒至1分钟。
步骤六、除去包覆半导体性单壁碳纳米管124的高分子材料层14,得到半导体性单壁碳纳米管124。
所述高分子材料层14可以采用化学试剂除去,比如四氢呋喃、二氯乙烷、氯仿、丙酮、冰醋酸、二氧六环、四氢呋喃、醋酸乙酯、甲苯等。由于本实施例中高分子材料层14为PMMA,而PMMA易溶于丙酮,可将PMMA除去,然后干燥,得到半导体性单壁碳纳米管124。该半导体性单壁碳纳米管124平行设置于所述基体10的第一表面102,而且所述半导体性单壁碳纳米管124的纯度高。
具体实施例二
请一并参见图1和图5,本发明具体实施例二进一步提供一种半导体性单壁碳纳米管124的制备方法,包括以下步骤:
步骤一、提供一基体10,该基体10具有一第一表面102。
本实施例中的步骤一与具体实施例一中的步骤一除具体实施例二中基体10的熔点没有限制外,其余均相同。
步骤二、提供一单壁碳纳米管薄膜结构12,将该单壁碳纳米管薄膜结构12设置于所述基体10的第一表面102,所述单壁碳纳米管薄膜结构12包括多个金属性单壁碳纳米管122和半导体性单壁碳纳米管124。
本实施例中的步骤二与具体实施例一中的步骤二的区别是:(1)具体实施例一中的单壁碳纳米管薄膜结构12中,相邻的单壁碳纳米管之间具有间隙,相邻的单壁碳纳米管不能相互搭接在一起;具体实施例二中的单壁碳纳米管薄膜结构12中,相邻的单壁碳纳米管之间可以有间隙,也可以相互搭接在一起。(2)具体实施例一中,单壁碳纳米管薄膜结构12中的单壁碳纳米管可以具有相等的长度且相互平行排列,也可以具有不相等的长度且杂乱无章地排列;具体实施例二中,单壁碳纳米管薄膜结构12中的单壁碳纳米管具有相等的长度。(3)具体实施例一中,所述单壁碳纳米管薄膜结构12可以是从所述基体10的第一表面102上水平生长,也可以是先将单壁碳纳米管溶解于溶剂中再铺设在基体10的第一表面102上形成;具体实施例二中,所述单壁碳纳米管薄膜结构12是从所述基体10的第一表面102上水平生长获得的,如果先将单壁碳纳米管溶解于溶剂中再铺设在基体10的第一表面102上可以形成由长度较长且长度相等的单壁碳纳米管组成的单壁碳纳米管薄膜结构,那么所述单壁碳纳米管薄膜结构12也可以是先将单壁碳纳米管溶解于溶剂中再铺设在基体10的第一表面102上形成。除此之外,具体实施例二中的步骤二与具体实施例一中的步骤二相同。
步骤三、提供至少一个电极16,将该至少一个电极16设置于所述单壁碳纳米管薄膜结构12的一端且与所述单壁碳纳米管薄膜结构12电连接。
所述至少一电极16设置于单壁碳纳米管薄膜结构12的一端或相对的两端,并且,所述电极16设置于单壁碳纳米管的一端或相对的两端。所述电极16由导电材料形成,可选择为金属、导电聚合物、导电浆料、导电胶、铟锡氧化物等。所述电极16的形状和结构不限,可选择为层状、条状、块状、棒状或其它形状。所述电极16可以通过刻蚀导电薄膜,如金属薄膜或氧化铟锡薄膜制备,也可以通过丝网印刷法制备。本实施例中,所述电极16通过丝网印刷导电浆料一体形成。该导电浆料的成分包括金属粉、低熔点玻璃粉和粘结剂。其中,该金属粉优选为银粉,该粘结剂优选为松油醇或乙基纤维素。该导电浆料中,金属粉的重量比为50%~90%,低熔点玻璃粉的重量比为2%~10%,粘结剂的重量比为8%~40%。
步骤四、将一高分子材料层14设置于所述单壁碳纳米管薄膜结构12上,形成一复合结构,所述高分子材料层14包覆单壁碳纳米管中的每一个金属性单壁碳纳米管122和每一个半导体性单壁碳纳米管124。
本实施例中的步骤四与具体实施例一中的步骤三的区别是:具体实施例一中,高分子材料层的熔点不超过600℃,或者所述高分子材料在不超过600℃的温度下可以分解;具体实施例二中,高分子材料层可以吸收高能电子。除此之外,本实施例中的步骤四与具体实施例一中的步骤三相同。
步骤五、利用电子束轰击的方法除去包覆金属性单壁碳纳米管122的高分子材料层14,从而使金属性单壁碳纳米管122暴露。
在所述高分子材料层14的上方悬空设置一电子发射源,所述电极16与该电子发射源的阳极连接。该电子发射源发射出高能电子束,该高能电子束包括若干个电子,当该电子到达半导体性单壁碳纳米管124时,半导体性单壁碳纳米管124将富集该电子;当该电子到达金属性单壁碳纳米管122时,该电子在电场的作用下会沿着金属性单壁碳纳米管122被传输给电极16。半导体性单壁碳纳米管124周围充满电子时,该电子将形成一电子保护层将半导体性单壁碳纳米管124保护起来,当继续有电子轰击半导体性单壁碳纳米管124时,该电子会被电子保护层反射给金属性单壁碳纳米管122,进而,该电子在电场的作用下沿着金属性单壁碳纳米管122被传输给电极16。当若个干电子轰击单壁碳纳米管中的半导体性单壁碳纳米管124和金属性单壁碳纳米管122时,该若干个电子会源源不断地沿着金属性单壁碳纳米管122被传输给电极16,如此,该若干个电子在沿着金属性单壁碳纳米管122被传输给电极16的过程中将包覆金属性单壁碳纳米管122的高分子材料层14刻蚀,使金属性单壁碳纳米管122暴露,而半导体性单壁碳纳米管124仍然被高分子材料层14所包覆。所述电子发射源发射出的高能电子束的能量为200eV(电子伏特)至200KeV,电子束轰击的时间为5秒至10分钟。优选地,本实施例中选用的电子束能量为500eV至100KeV,电子束轰击时间为30秒至5分钟。
本实施例中,单壁碳纳米管薄膜结构12中相邻的单壁碳纳米管之间可以有间隙,也可以相互搭接在一起。因为,无论金属性单壁碳纳米管与半导体性单壁碳纳米管是相互间隔还是相互搭接在一起,半导体性单壁碳纳米管均是先富集电子,当富集的电子形成电子保护层时,再将电子传递给金属性单壁碳纳米管;而金属性单壁碳纳米管均是将电子传输给电极。
步骤六、除去所述金属性单壁碳纳米管122。
本实施例中的步骤六与具体实施例一中的步骤五相同。
步骤七、除去包覆半导体性单壁碳纳米管124的高分子材料层14,得到半导体性单壁碳纳米管124。
本实施例中的步骤七与具体实施例一中的步骤六相同。
与现有技术相比,本发明提供的半导体性单壁碳纳米管的制备方法具有以下优点:一、由于半导体性单壁碳纳米管有高分子材料的包覆,在利用刻蚀等方法除去金属性单壁碳纳米管时,半导体性单壁碳纳米管的结构不会遭到破坏;二、可完全除去金属性单壁碳纳米管,因此,半导体性单壁碳纳米管的纯度高;三、方法简单,可实现大规模生产。
另外,本领域技术人员还可以在本发明精神内做其他变化,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围内。

Claims (14)

1.一种半导体性单壁碳纳米管的制备方法,包括以下步骤:
提供一基体,该基体具有一第一表面;
提供一单壁碳纳米管薄膜结构,将该单壁碳纳米管薄膜结构设置于所述基体的第一表面,所述单壁碳纳米管薄膜结构包括多个单壁碳纳米管,该多个单壁碳纳米管之间具有间隙,且该多个单壁碳纳米管由金属性单壁碳纳米管和半导体性单壁碳纳米管组成;
将一高分子材料层设置于所述单壁碳纳米管薄膜结构上,形成一复合结构,所述高分子材料层包覆单壁碳纳米管中的每一个金属性单壁碳纳米管和每一个半导体性单壁碳纳米管;
将所述复合结构放置于一电磁波环境中,除去包覆金属性单壁碳纳米管的高分子材料层,从而使金属性单壁碳纳米管暴露;
除去所述金属性单壁碳纳米管;以及
除去包覆半导体性单壁碳纳米管的高分子材料层,得到半导体性单壁碳纳米管。
2.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,相邻的单壁碳纳米管之间有间隙,该间隙的长度不小于10纳米。
3.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述多个单壁碳纳米管具有相等的长度且相互平行排列。
4.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述多个单壁碳纳米管具有不相等的长度且杂乱无章地排列。
5.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述多个单壁碳纳米管平行于所述基体的第一表面。
6.如权利要求5所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述单壁碳纳米管薄膜结构是从所述基体的第一表面上水平生长,或者是先将单壁碳纳米管溶解于溶剂中再铺设在基体的第一表面上形成。
7.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,相邻的单壁碳纳米管不能相互搭接在一起。
8.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述基体的熔点在空气中不低于600℃。
9.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述高分子材料的熔点不超过600℃,或者所述高分子材料在不超过600℃的温度下可以分解。
10.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,将熔融态高分子材料或高分子材料溶液旋涂在所述单壁碳纳米管薄膜结构上,干燥后,形成高分子材料层。
11.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述高分子材料层的厚度为0.1微米至1毫米。
12.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述电磁波为微波,该微波的功率为300瓦至1500瓦,频率为0.3GHz至300GHz,所述复合结构在该微波环境中放置的时间为3秒至90秒。
13.如权利要求12所述的半导体性单壁碳纳米管的制备方法,其特征在于,当包覆金属性单壁碳纳米管的高分子材料层开始融化时,所述复合结构在微波环境中放置30秒后,包覆金属性单壁碳纳米管的高分子材料层全部熔化,使金属性单壁碳纳米管暴露。
14.如权利要求1所述的半导体性单壁碳纳米管的制备方法,其特征在于,所述高分子材料层可以采用化学试剂除去,该化学试剂包括四氢呋喃、二氯乙烷、氯仿、丙酮、冰醋酸、二氧六环、四氢呋喃、醋酸乙酯和甲苯中的一种。
CN201210075759.7A 2012-03-21 2012-03-21 半导体性单壁碳纳米管的制备方法 Active CN103325662B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210075759.7A CN103325662B (zh) 2012-03-21 2012-03-21 半导体性单壁碳纳米管的制备方法
TW101110966A TWI503272B (zh) 2012-03-21 2012-03-29 半導體性單壁奈米碳管之製備方法
US13/798,789 US8916454B2 (en) 2012-03-21 2013-03-13 Method for making semiconducting single wall carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210075759.7A CN103325662B (zh) 2012-03-21 2012-03-21 半导体性单壁碳纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN103325662A CN103325662A (zh) 2013-09-25
CN103325662B true CN103325662B (zh) 2016-03-30

Family

ID=49194338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210075759.7A Active CN103325662B (zh) 2012-03-21 2012-03-21 半导体性单壁碳纳米管的制备方法

Country Status (3)

Country Link
US (1) US8916454B2 (zh)
CN (1) CN103325662B (zh)
TW (1) TWI503272B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
CN103318868B (zh) * 2012-03-21 2015-07-01 清华大学 半导体性单壁碳纳米管的制备方法
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
WO2013151664A1 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins
WO2014152027A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Manufacturing methods for production of rna transcripts
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
WO2014152030A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Removal of dna fragments in mrna production process
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
EP3019619B1 (en) 2013-07-11 2021-08-25 ModernaTX, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
WO2015051169A2 (en) 2013-10-02 2015-04-09 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
EP3157573A4 (en) 2014-06-19 2018-02-21 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
JP2017522028A (ja) 2014-07-16 2017-08-10 モデルナティエックス インコーポレイテッドModernaTX,Inc. 環状ポリヌクレオチド
AU2016324463B2 (en) 2015-09-17 2022-10-27 Modernatx, Inc. Polynucleotides containing a stabilizing tail region
WO2017049286A1 (en) 2015-09-17 2017-03-23 Moderna Therapeutics, Inc. Polynucleotides containing a morpholino linker
CN108023016B (zh) * 2016-10-31 2020-07-10 清华大学 薄膜晶体管的制备方法
US10633253B1 (en) * 2018-11-14 2020-04-28 Aligned Carbon, Inc. Method for carbon nanotube purification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903715A (zh) * 2005-07-29 2007-01-31 索尼株式会社 制造碳纳米管的聚集体与薄膜、电子元件、破坏碳纳米管以及碳纳米管的选择性反应的方法
CN101148253A (zh) * 2006-09-19 2008-03-26 北京大学 一种金属性和半导体性单壁碳纳米管的同步分离与组装方法
CN101171372A (zh) * 2005-03-04 2008-04-30 西北大学 在密度梯度中分离碳纳米管的方法
CN101195482A (zh) * 2007-12-10 2008-06-11 北京大学 一种生长半导体性单壁碳纳米管的方法
CN101200291A (zh) * 2007-11-30 2008-06-18 北京大学 一种制备半导体性单壁碳纳米管的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717200A4 (en) * 2004-02-16 2010-03-31 Japan Science & Tech Agency SELECTIVE SEPARATION OF NANOTUBE CARBONEE STRUCTURE acute; AND SURFACE FASTENING
US7247670B2 (en) * 2004-08-24 2007-07-24 General Electric Company Nanotubes and methods of dispersing and separating nanotubes
TWI280226B (en) 2005-02-03 2007-05-01 Ming-Tsan Peng Method for forming nano-scale features
WO2008057070A2 (en) * 2005-09-15 2008-05-15 University Of Florida Research Foundation, Inc. Type separation of single-walled carbon nanotubes via phase transfer
US8097141B2 (en) * 2006-03-02 2012-01-17 William Marsh Rice University Flow dielectrophoretic separation of single wall carbon nanotubes
TWI325018B (en) * 2006-07-14 2010-05-21 Hon Hai Prec Ind Co Ltd Method of making single-wall carbon nanotubes
TW200902437A (en) * 2007-07-06 2009-01-16 Kuender & Co Ltd Sorting method of single-walled carbon nanotubes
CN101462391B (zh) 2007-12-21 2013-04-24 清华大学 碳纳米管复合材料的制备方法
US8052075B2 (en) 2008-04-03 2011-11-08 Micron Technology, Inc. Method for purification of semiconducting single wall nanotubes
KR101092860B1 (ko) * 2008-06-27 2011-12-14 한국과학기술원 마이크로웨이브를 이용한 금속성 탄소나노튜브의 분리방법
US8365923B2 (en) * 2008-10-31 2013-02-05 The University Of Western Australia Methods for selectively separating carbon nanotubes
US8304302B2 (en) * 2009-04-03 2012-11-06 Board Of Trustees Of The University Of Arkansas Photovoltaic device using single wall carbon nanotubes and method of fabricating the same
TW201103861A (en) * 2009-07-27 2011-02-01 Jung-Tang Huang Method for fabricating carbon nanotube-based devices
US8221592B2 (en) * 2009-11-18 2012-07-17 Korea University Research And Business Foundation Method for sorting carbon nanotubes (CNTs) and device for CNTs sorting
JP5498195B2 (ja) * 2010-02-12 2014-05-21 公立大学法人首都大学東京 金属型および半導体型単層カーボンナノチューブの分離法
WO2011099617A1 (ja) 2010-02-15 2011-08-18 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
JP5717233B2 (ja) * 2010-02-16 2015-05-13 独立行政法人産業技術総合研究所 単層カーボンナノチューブの分離方法、分離装置、分離済単層カーボンナノチューブ含有ミセル分散溶液
CN102020266A (zh) * 2010-12-30 2011-04-20 上海大学 大量制备单壁碳纳米管及其提纯的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171372A (zh) * 2005-03-04 2008-04-30 西北大学 在密度梯度中分离碳纳米管的方法
CN1903715A (zh) * 2005-07-29 2007-01-31 索尼株式会社 制造碳纳米管的聚集体与薄膜、电子元件、破坏碳纳米管以及碳纳米管的选择性反应的方法
CN101148253A (zh) * 2006-09-19 2008-03-26 北京大学 一种金属性和半导体性单壁碳纳米管的同步分离与组装方法
CN101200291A (zh) * 2007-11-30 2008-06-18 北京大学 一种制备半导体性单壁碳纳米管的方法
CN101195482A (zh) * 2007-12-10 2008-06-11 北京大学 一种生长半导体性单壁碳纳米管的方法

Also Published As

Publication number Publication date
US8916454B2 (en) 2014-12-23
TW201339083A (zh) 2013-10-01
US20130251618A1 (en) 2013-09-26
TWI503272B (zh) 2015-10-11
CN103325662A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
CN103325662B (zh) 半导体性单壁碳纳米管的制备方法
CN103318868B (zh) 半导体性单壁碳纳米管的制备方法
Anis et al. Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction
CN102741164B (zh) 石墨烯在基底上大面积的沉积及包含其之制品
CN101312907B (zh) 双层碳纳米管及定向双层碳纳米管整体结构体及这些的制造方法
Hiraoka et al. Synthesis of single-and double-walled carbon nanotube forests on conducting metal foils
Liu et al. Aligned, ultralong single‐walled carbon nanotubes: from synthesis, sorting, to electronic devices
Qu et al. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs
Yun et al. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition
Beecher et al. Ink-jet printing of carbon nanotube thin film transistors
CN101587839B (zh) 薄膜晶体管的制备方法
Chang-Jian et al. Laser patterning of carbon-nanotubes thin films and their applications
EP3181518A1 (en) Aligned single-walled carbon nanotube bulk structure, production process and use
CN101591015A (zh) 带状碳纳米管薄膜的制备方法
CN102171139A (zh) 纳米碳材料复合基板及其制造方法
CN101905877A (zh) 碳纳米管膜的制备方法
JP2006015342A (ja) カーボンナノチューブ製造用の触媒ベースの製造方法及びそれを利用したカーボンナノチューブの製造方法
Ma et al. Spiers memorial lecture advances of carbon nanomaterials
Ibrahim et al. Current progress in the chemical vapor deposition of type-selected horizontally aligned single-walled carbon nanotubes
Arthur et al. Carbon nanomaterial commercialization: Lessons for graphene from carbon nanotubes
Li et al. Artificial carbon graphdiyne: Status and challenges in nonlinear photonic and optoelectronic applications
US20100062178A1 (en) Apparatus and method for fabricating one-dimensional nanostructures on flexible substrates
Kalita et al. Cutting carbon nanotubes for solar cell application
Wei et al. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets
Zhu et al. Assembly and applications of carbon nanotube thin films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant