1280226 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種形成奈米級特徵之方法,且特別 是有關於一種形成奈米級金屬微粒之方法。 【先前技術】 半導體積體電路的製程主要可分為四大部分:薄膜沉 積(Thin Fiim Depositi〇n )、微影(ph〇t〇lith〇graphy)、蝕刻 (Etching)、摻雜(Doping)。當製造技術由微米級進步到奈米 、、及上述的四大技術各遭遇到不同的問題及挑戰。 其中微影技術主要透過曝光及顯影步驟並配合蝕刻製 程,完成將光罩±圖案轉移^阻下面的材料層上。欲將 、、材料圖案化在-基材上,f知的微影技術隨著曝光波長 減,’面臨到光學成像技術的甑頸,丨易提供奈米等級的 特例如奈米等級的開口或孔洞,此為進人奈米級半導 體製造技術所必須解決的問題之一。 料f另Γ於專利中請案號931197G2中,揭露—種奈米級資 基:存裝置,其中所描述作㈣存媒體之具有金屬微粒之 :’以習知之製程技術不易形成此奈米級之微粒。因 等#可形成奈米等級圖案之方法以及-種形成奈米 I級微知+ ^ ^。 〉,解決未來製程技術進入奈米範圍後的瓶 【發明内容】 因此本發明的目的就是在提供一種形成奈米級特徵之 1280226 方法,用以形成奈米級開口或孔洞。 本發明的另-目的是在提供一種形成奈米級金屬微粒 於基材上之方法,以製造奈米級資料儲存媒體。1280226 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of forming nanoscale features, and more particularly to a method of forming nanoscale metal particles. [Prior Art] The process of semiconductor integrated circuit can be mainly divided into four parts: thin film deposition (Thin Fiim Depositi〇n), lithography (ph〇t〇lith〇graphy), etching (Etching), doping (Doping) . When the manufacturing technology progressed from micron to nano, and the above four technologies each encountered different problems and challenges. Among them, the lithography technology mainly performs the exposure and development steps and the etching process to complete the mask layer under the mask. In order to pattern and materialize on the substrate, the lithography technology of F knows that as the exposure wavelength is reduced, 'the surface of the optical imaging technology is faced, and it is easy to provide a nano-grade opening such as a nanometer level or Holes, this is one of the problems that must be solved in the nano-scale semiconductor manufacturing technology. In the patent No. 931197G2, the invention discloses a nano-grade base: a storage device, which is described as (4) a medium containing metal particles: 'It is difficult to form this nano-level by conventional process technology. particle. The method of forming a nano-scale pattern and the formation of nano-level I know + ^ ^. 〉Resolving Bottles of Future Process Technology After Entering the Nano Range [Invention] It is therefore an object of the present invention to provide a 1280226 method of forming nanoscale features for forming nanoscale openings or holes. Another object of the present invention is to provide a method of forming nanoscale metal particles on a substrate to produce a nanoscale data storage medium.
、根據本發明之上述目的,提出—種形成奈米級特徵之 方法。此方法包括:提供一基材’形成一材料層於基材之 亡,施加-偏壓於一奈米碳管用以產生一電子束,發射並 才里擊材料層,藉此將部分材料層熔融而形成奈米等級之開 口。此方法更包含形成金屬微粒於所形成之奈米級開口 中,例如利用電鍍製程,再以蝕刻製程將材料層移除,產 生具有奈米級金屬微粒之基材。 田上返可知 應用尽發明之方法 .… 1裂作出具有奈米 專、、及之圖案特徵,例如奈米等級之開口或孔洞。本發明亦 可用以形成具有奈米等級金屬微粒之基材,用 級資料儲存媒體。 下木 L貫施方式】 本毛月揭路一種形成奈米級特徵之方法’用以形 2米級之開口或奈米級微粒等特徵。其係利用奈米碳管 小:為電子束之發射源,由於奈米碳管的直徑-般為 ;Onm且其長度遠比直徑長,因此可應用 原 理,在,、編下,產生很大的電子通量。放-原 參妝弟1«’其繪示依照本發明一較佳 I先提供—基材,例如為-導縣材或-半導體具 ” 了為導電薄膜。在步驟1()4巾,於此基材上再^ 1280226 射並撞擊至材料層204,使部分材料層204熔融,因而產生 開口 210,如帛2B圖所繪示,此開口 210為奈米等級之開 Ο 〇 v驟108 ’形成金屬微粒於開口中,例如利用電鍍或蒸 錢方^。如第2C圖緣示,形成金屬微粒212於開口 21〇(緣 :於第2B圖)中。由於開口 —為奈米等級之開口,因此 /儿積於開π 21G之結構亦為奈米等級。步驟UG,將材料層 =除例如利用餘刻製程,以形成奈米等級之金屬微粒於 土材之上。如第2D圖繪示,材料層214被移除,奈米等級 =金屬微粒212形成於基材202之上。上述之基材2〇2具 電⑽可牙透之性質’可為一導體基材或一半導體基材, 亦可為一導電薄膜。 上述之奈米級開口、金屬微粒、排列方式及圖式中元 2尺寸比例與形狀,例如奈米碳管大小或基材形狀等,僅 2方便朗本發明内容,及清楚騎本發明之實施例,其 鲁 、’非用來限定本發明之精神與範圍。 由上述本發明之較佳實施例可知’應用本發明具有下 彳k點。利用奈米碳管高解析度之特 =?列如開口、孔洞或微粒,達到技= 、達成的形成奈米級特徵之步驟。 =上述本發明之較佳實施例可知,應用本發明之另一 二形成具有奈米級金屬微粒之基材,此奈米級金屬微 憶容二:度應用於資料儲存媒體,將大幅提高基材上記 雖然本發明已以一較佳實施例揭露如上,然其並非用 !28〇226 以限定本發明,任何熟習此技藝 神釦铲冃如^ 在不脫離本發明之精 潍々々 /、 飾,因此本發明之保 。乾圍當視後附之申請專利範圍所界定者為準。 ’、 【圖式簡單說明】 優點與實施例 為讓本發明之上述和其他目的、特徵、 能更明顯易懂,所附圖式之詳細說明如下: 第i圖係缘示依照本發明一較佳實施例之形成奈米級 特欲之方法的流程圖。 第2A至2D圖係繪示依照本發明之一較佳實施例的形 、奈米級金屬微粒於基材上的過程中,基材的橫剖面圖。 202 :基材 206 :奈米碳管 210 ··開口According to the above object of the present invention, a method of forming a nanoscale feature is proposed. The method includes: providing a substrate to form a layer of material on the substrate, applying-biasing to a carbon nanotube for generating an electron beam, emitting and damaging the layer of material, thereby melting a portion of the material layer The opening of the nanometer level is formed. The method further includes forming a metal particle in the formed nano-scale opening, for example, by using an electroplating process, and then removing the material layer by an etching process to produce a substrate having nano-sized metal particles. The field can be found in the application of the method of .... 1 crack made with nano-specific, and the pattern features, such as nano-level openings or holes. The present invention can also be used to form substrates having nanoscale metal particles, using a level data storage medium. Undergrowth L-through method] This method of forming a nano-scale feature is used to shape a 2-meter-level opening or a nano-scale particle. It uses a small carbon nanotube: it is the emission source of the electron beam, because the diameter of the carbon nanotube is generally the same; Onm and its length is much longer than the diameter, so the principle can be applied, in, and Electronic flux. Putting - the original ginseng 1"' is shown as a preferred substrate provided in accordance with the present invention - a substrate, for example, a conductive material or a semiconductor device, as a conductive film. In step 1 () 4, The substrate is then fired and impacted onto the material layer 204, causing a portion of the material layer 204 to melt, thereby creating an opening 210. As shown in FIG. 2B, the opening 210 is a nanoscale opening 〇v. Forming metal particles in the opening, for example, by electroplating or steaming. As shown in Fig. 2C, the metal particles 212 are formed in the opening 21 (edge: in Figure 2B). Since the opening is a nanometer opening Therefore, the structure of the π 21G is also in the nanometer level. In step UG, the material layer = except for example, using a residual process to form nano-scale metal particles on the soil. As shown in Figure 2D The material layer 214 is removed, and the nano-scale=metal particles 212 are formed on the substrate 202. The substrate 2〇2 has electrical (10) opaque properties, which may be a conductor substrate or a semiconductor substrate. The material may also be a conductive film. The above-mentioned nano-scale openings, metal particles, arrangement and pattern 2 size ratios and shapes, such as the size of the carbon nanotubes or the shape of the substrate, etc., are merely for the purpose of the present invention, and the embodiments of the invention are not intended to limit the spirit and scope of the invention. It can be seen from the above preferred embodiments of the present invention that the application of the present invention has the following k-point. Utilizing the high resolution of the carbon nanotubes, such as openings, holes or particles, the nanometer level is achieved. The steps of the features. The preferred embodiment of the present invention described above, the second of the present invention is applied to form a substrate having nano-sized metal particles, and the nano-scale metal micro-resonance is applied to a data storage medium. Significantly improving the substrate. Although the invention has been disclosed above in a preferred embodiment, it is not intended to limit the invention, and any skilled artisan can be used without departing from the essence of the invention. The present invention is in accordance with the scope of the appended claims. ', BRIEF DESCRIPTION OF THE DRAWINGS Advantages and embodiments for the above and other objects and features of the present invention , can More clearly, the detailed description of the drawings is as follows: Figure i is a flow chart showing a method for forming a nano-scale according to a preferred embodiment of the present invention. Figures 2A to 2D are drawn in accordance with A cross-sectional view of a substrate in the process of forming a nano-sized metal microparticle according to a preferred embodiment of the present invention on a substrate. 202: Substrate 206: carbon nanotube 210 · opening
【主要元件符號說明】 102〜11〇 :步驟 204 :材料層 208 :電子束 212 ·金屬微粒[Description of main component symbols] 102~11〇: Step 204: Material layer 208: Electron beam 212 · Metal particles