CN103314288B - 具有用于电离和光检测的单个源的检测器 - Google Patents
具有用于电离和光检测的单个源的检测器 Download PDFInfo
- Publication number
- CN103314288B CN103314288B CN201180065634.XA CN201180065634A CN103314288B CN 103314288 B CN103314288 B CN 103314288B CN 201180065634 A CN201180065634 A CN 201180065634A CN 103314288 B CN103314288 B CN 103314288B
- Authority
- CN
- China
- Prior art keywords
- light
- sensing chamber
- detecting device
- devices according
- optical sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/64—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/64—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
- G01N27/66—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
示例性检测器包括辐射源。检测室构造成至少暂时地容纳流体。所述辐射中的至少一些电离所述流体中的至少一些。所述辐射中的至少一些在所述检测室中产生光。电离传感器提供与所述检测室中的流体电离的数量对应的输出。光传感器提供与由所述光传感器检测到的光的数量对应的输出。
Description
背景技术
已知各种检测器。一些检测器构造用于烟检测。其他检测器用于检测例如有毒气体。许多这种检测器使用电离来检测感兴趣物质或气体的存在或数量。
一种已知类型的烟检测器包括镅241,其作为用于电离空气的α粒子源。来自镅241的α粒子进入到烟检测器内部空间中,在这里所述α粒子电离该内部空间中的空气。当烟进入到该内部空间中时,烟与离子相互作用并且改变在该内部空间内的离子浓度和分布。这例如通过测量在烟检测器的集电极处的电压或电流而能被检测到。
另一已知类型的烟检测器使用光来检测烟颗粒。光源发出进入到烟检测器内部空间中的光。感光检测器定位成接收从该光源发出的光的一些或不接收光。当烟进入到该内部空间中时,烟吸收并散射来自该光源的光。这例如通过测量散射光强度或光强度的变化而能被检测到。
已经尝试结合电离和光电烟检测器,以在单个壳体中提供这两种技术。例如,美国专利No. 5,633,501描述了一种烟检测器,该烟检测器在同一单元内使用用于光电烟检测的光源以及用于电离烟检测的离子源。
发明内容
示例性检测器包括辐射源。检测室构造成至少暂时地容纳流体。所述辐射中的至少一些电离所述流体中的至少一些。所述辐射中的至少一些在所述检测室中产生光。电离传感器提供与所述检测室中的流体电离的数量对应的输出。光传感器提供与由所述光传感器检测到的光的数量对应的输出。
一个示例检测器构造用于烟检测。检测室内的流体是环境空气。检测室内的烟导致来自电离传感器、光传感器或者电离传感器和光传感器二者的表明烟存在的输出。这种示例仅需要单个源以利用电离和光电能力来检测烟。
通过下述详细说明,所公开示例的各个特征和优势对于本领域技术人员将显而易见。伴随该详细说明的附图可被简要地描述如下。
附图说明
图1示意性地示出了根据本发明实施方式设计的示例检测器装置。
图2示出了另一示例检测器。
图3示意性地示出了另一示例检测器。
图4示意性地示出了另一示例检测器。
图5示意性地示出了另一示例检测器。
图6A-6C示意性地示出了窗口的相应构造,所述窗口用于根据本发明实施方式设计的检测器中。
具体实施方式
图1示意性地示出了示例检测器20,所述检测器可用于检测感兴趣的物质。为了讨论目的,检测器20将被描述为烟检测器。根据本发明实施方式设计的检测器不必限于烟检测器。
示例检测器20包括辐射源22、加压室24以及检测室26。在该示例中,检测室26构造成允许环境空气穿过该检测室26。只要烟(或感兴趣的其他物质或气体)存在于检测器20附近,该烟也可进入检测室26。电离传感器30在32处提供与检测室26中的电离数量对应的输出。在32处的输出构造成表明烟何时处于检测室26中,使得可提供合适警报。光传感器34在36处提供与由光传感器34检测到的光数量对应的输出。在36处的输出构造成表明烟何时处于检测室26中,使得可提供合适警报。在一些情况下,输出32和36中仅一个将表明烟的存在,而在其他情况下,这两个输出都表明存在烟。
单个辐射源22有利于检测室26内的电离类型检测和光检测。来自源22的一些辐射经过加压室24并且进入到检测室26中,目的在于电离检测室26中的流体(例如,空气)。来自源22的一些辐射经过加压室24并且进入光室38中,用于产生用于检测室26内的光检测的光。
取决于检测室26内的流体或物质,该光的一些可由光传感器34检测到。该示例包括将来自光室38的光通过窗口或透镜40朝向光吸收元件42引导或瞄准,所述光吸收元件被支承在结构44上,所述结构44限定检测室26的周边的一部分。在一个示例中,如果在检测室26中仅存在空气,那么光将由光吸收元件42吸收并且不被光传感器34检测到。在另一方面,如果在检测室26中存在烟,那么烟颗粒将偏转(defract)或散射该光的至少一些,使得所述光可由光传感器34检测到。
在该示例中,光室38包括窗口或透镜40以及侧壁46。光室38的另一侧由窗口50限定。侧壁46以密封的方式被接收靠在该窗口上,使得光室38在该示例中是封闭室。
光室38被填充有例如惰性气体。为此目的示例气体包括氮气、氖气、氩气、氪气、和氙气。在一个示例中,光室保持在大约1托和760托之间的压力下。经过窗口50的电子(即,来自源22的辐射)与光室38内的惰性气体相互作用,从而产生光。这种光经过窗口或透镜40沿光吸收元件42的方向进入到检测室26中。从光室38发出的光具有在大约180 nm至大约3000 nm之间的波长和范围。
所示窗口50包括引出栅52,所述引出栅包括导电材料。支承栅54位于引出栅52和膜56之间,所述膜是电子可渗过的,使得所述膜允许足够数量的电子穿过以在检测室26中完成期望电离和光产生。在该示例中,导电膜58设置在膜56上。
在一些示例中,引出栅52结合到支承栅54上。在其他示例中,单层包括引出栅52和支承栅54。在所示示例中,膜56例如借助化学蒸汽沉积被沉积到支承栅54上。导电膜58例如借助化学蒸汽沉积或溅射工艺被沉积到膜56上。在一些示例中,膜56和导电膜58包括单层而不是附图中所示的不同层。在该示例中,光室38的侧壁46被接收靠在导电膜58上。
因此,辐射源22作为产生光的辐射源操作,所述光用于光检测检测室26内的烟(或其他感兴趣的物质)。辐射源22还作为用于检测室26内的流体电离的辐射源操作。
在该示例中,电离传感器30包括定位在检测室26内的集电极。所述集电极30被连接到放大器60和电阻62,用于调节来自集电极的信号以在32处提供合适的输出。示例检测器20使用电离检测技术,用于根据这种电离检测的已知原理来检测检测室26内的烟。
所示的示例传感器20是独特的,这是因为所述传感器包括用于电离和光检测的单个辐射源22。具有单个源的一个特征在于其提供更经济的布置,这是因为不需要多个源,这降低了成本、减少了传感器的部件和尺寸需求。
在图1的示例中,单个辐射源22包括导电基板70和用于产生电子的多个纳米级细长结构72。在一个示例中,结构72作为场发射冷阴极纳米发射器操作。来自源22的电子穿过加压室24。在一些示例中,足够量的电子穿过窗口50,以完成在检测室26中的期望检测。
在一个示例中,加压室24保持在真空压力下。一个示例包括在10-3托量级的压力。隔块74在细长结构72和窗口50之间形成距离。隔块74由不导电材料制成,并且其一端76紧固到窗口50而相反端78紧固到基板70。
图1的示例包括电压转换电路80,所述电压转换电路包括变压器82,所述变压器将来自电压源84的输入电压转换为在大约0.5 kV至5 kV的范围内的输出电压。在一个示例中,输出电压是大约1.6 kV。
电压受控振荡器86将来自电压源84(例如,9伏电池)的输入电压转换为被输入给变压器82的9伏的AC电流。变压器82的第一输出线路通过二极管88被连接到引出栅52,所述二极管整流来自变压器82的输出。充电电容器90被连接在变压器82的输出线路之间,并且平滑化该输出电压。在所示的示例中,引出栅52被保持在0伏。与引出栅52的0伏对比,电压转换电路80将在大约-0.5 kV至-5 kV范围内的电压施加到基板70。在一个示例中,-1.5 kV被施加给基板22。
导电膜58暴露于在导电膜58上的相应位置处的检测室26和光室38内的空间。在从大约-0.5 kV至大约0.5 kV范围内的电偏压92被施加到所述导电膜58。该偏压92可被控制以改变检测器20的操作特征,例如根据需要增加或减少灵敏度。在一个示例中,偏压92包括与在80处示出的相类似的电压转换电路,并且从相同电压源84获得偏压电势,该偏压电势被用于驱动该电压转换电路80。
图2示出了另一示例传感器20。该示例包括基于来自冷阴极纳米发射器的场发射的三极管类型的单个辐射源布置。在该示例中,窗口50包括导电膜58、透明膜56和支承栅54,与图1的示例中的那些相似。在该示例中,由导电材料制成的加速栅100被结合到隔块74上。所述支承栅54被结合到加速栅100上。引出栅102定位成更接近纳米尺寸的细长结构72,以在这些结构附近产生高场。引出栅102有利于利用已知的冷阴极场发射过程来引出电子。在一些示例中,引出栅102被保持在大约0.2至1.5 kV的电势,比基板70的电势高。一个示例包括引出栅102与基板70之间大约为0.5 kV的电势差。
引出栅102用于将在纳米尺寸的细长结构72附近产生的电子朝向窗口50加速的目的。穿过引出栅102的电子由引出栅102和加速栅100之间的电势差进一步加速。
图3示出了另一示例检测器装置,其包括另一类型的单个辐射源22,以基于电离类型的检测和光检测来实现传感器的双重功能。在该示例中,源22包括电子发射元件112的阵列110。电子发射元件112中的小缝隙114的宽度小于10微米。在向电子发射元件112施加电场时,电子被发射到加压(例如,抽空)室24中。这些电子中的至少一些穿过窗口结构50,以在检测室26中完成期望检测。
图4示出了包括作为源22的热电电子加速器的另一示例。该示例包括热电晶体120,所述热电晶体具有暴露于室24并且面向窗口50的结晶Z表面122。Z表面122的极化变化导致电子远离该表面并且朝向窗口50加速。这是当热电晶体的温度在例如稀薄气体环境中变化时出现的已知现象。当晶体表面在真空或减压环境下被充负电时,附近的电子加速远离Z表面。
示例热电电子加速器辐射源22包括温度控制元件124、温度传感器126、控制器128和电压源130。通过控制加速器的热电晶体120的温度来实现期望数量的电子加速。与加速器相关的温度控制元件124建立有利于朝向窗口50的电子加速的温度。温度传感器126向微控制器128提供温度信息。借助控制电压源130的控制器128来实现温度控制元件124的期望操作,使得实现期望数量的电子加速。
在一个示例中,温度控制元件124包括加热器。在一个这种示例中,室24填充有气体,例如空气、氦气、氮气、氩气、氢气、氧气、或其混合物。在一个这种示例中,室24保持在小于大约10-3托的压力下。
图4的示例实施方式与图1-3的实施方式之间的一个差异在于,不需要用于产生高电势加速来自辐射源22的电子的电压转换电路。
图5示出了另一示例传感器构造,所述传感器基于通过引发附接到纳米发射器的热电晶体表面的大极化变化而在冷阴极纳米发射器附近产生高电场来操作。在该示例中,源22包括被附接到热电晶体120的细长纳米尺寸结构72。结晶Z表面122仍暴露于面向窗口50的室24。
在该示例中,当Z表面122的极化变化时,这在细长纳米尺寸结构72的末端附近产生高电场。这导致电子发射并且远离这些纳米尺寸结构72朝向窗口50加速。与图4的示例相似,通过控制热电晶体120的温度来实现期望数量的电子加速。为此目的,温度传感器126、微控制器128和电压源130以与关于图4在上文描述相同的方式被使用。
图6A示出了窗口50的替代构造。在该示例中,在电子可渗过的膜56上不使用导电膜。膜56在所示的示例中结合到支承栅54上。
图6B的示例包括窗口50,所述窗口包括支承栅54和膜56。导电膜58放置在膜56的暴露给检测室26内的空间的部分上,但不放置在光室38内的部分上。在该示例中,第二导电膜140放置在光室38内的膜56上。导电膜58和140彼此电隔离。
该示例包括向光室38内的导电膜140施加第二偏压142。具有两个偏压92和142允许将分离且不同的电势施加到每个导电膜上。利用用于不同膜的两个不同偏压提供对检测器的两个检测机制的增强控制。偏压92可被调节以在检测室内实现增强的基于电离的检测功能。类似地,偏压142可被调节以增强检测器的基于光的检测功能的操作。
一个替代方式包括省除导电膜140。另一示例包括省除导电膜58。与图6B的示例相比,图6A的示例示出了两个这样的膜都省除的布置。
在前述示例的附加实施方式中,辐射可包括产生x射线,且其中足够的x射线被产生和使用以在检测室26内产生电离,或者在光室38内产生光,或者既产生电离又产生光,以实现检测器的期望检测特征。X射线的产生例如可由于当经过室空间24或经过窗口50或经过所述室空间和窗口二者时电子的减速而发生。
图6C的示例包括窗口50’,所述窗口具有导电金属层144、支承膜146和导电膜148。在该示例中,窗口50’是电子不可渗过的。相反,窗口50’是响应于电子撞击靶而产生x射线的所述靶。在一个示例中,窗口50’变为软x射线源,其用于检测室26内的电离以及用于在光室38内产生光。在一个示例中,以已知的方式发生软x射的产生。
在一个示例中,导电金属层144包括厚度在从大约80纳米至大约240纳米的范围内的铝箔。导电膜148提供对检测室内的电离过程以及光室38内的光产生的控制。有可能以与用于图6B的示例的相似方式来分开导电膜148,以允许分别对用于电离检测的检测室26内的电离过程以及用于光检测的光室38内的光产生的更用户化的控制。
虽然以不同的特征示出了各个示例,但是有可能将来自一个公开示例的一个或多个特征与所公开示例的另一个结合以实现这些特征的另一组合,即使这种组合不必在附图和上文中具体地说明。
前述说明本质上是示例性而非限制性的。对所公开示例的变化和修改可能对于本领域技术人员显而易见,这些变化和修改不必偏离本发明的范围。仅可通过研究下述权利要求书来确定本发明被赋予的法律保护范围。
Claims (21)
1.一种检测器,所述检测器包括:
辐射源;
检测室,所述检测室构造成至少暂时地容纳流体,所述辐射源发出的辐射中的至少一些使所述流体中的至少一些电离,所述辐射中的至少一些在所述检测室中产生光;
电离传感器,所述电离传感器提供与所述检测室中的流体电离数量对应的输出;以及
光传感器,所述光传感器提供与由所述光传感器检测到的光数量对应的输出。
2.根据权利要求1所述的检测器,所述检测器包括:
光室,所述光室容纳响应于进入所述光室的辐射中的至少一些而产生光的分子,所述光室定位成使得所产生的光进入所述检测室。
3.根据权利要求2所述的检测器,其中,所述光室包括面向所述检测室的至少一个透光表面。
4.根据权利要求3所述的检测器,其中,所述透光表面包括透镜。
5.根据权利要求2所述的检测器,其中,所述分子包括惰性气体分子。
6.根据权利要求5所述的检测器,其中,所述惰性气体包括氮气、氖气、氩气、氪气、和氙气中的至少一种。
7.根据权利要求2所述的检测器,其中,所述光室位于所述检测室内。
8.根据权利要求2所述的检测器,所述检测器包括:
邻近于所述检测室的加压室,所述辐射源至少部分地位于所述加压室内,所述加压室具有窗口,所述辐射中的至少一些从所述加压室穿过所述窗口传送到所述检测室;以及
其中,所述光室邻近于所述加压室,使得经过所述窗口的所述辐射的至少一些进入所述光室。
9.根据权利要求8所述的检测器,其中,所述加压室的窗口限定所述光室的一侧。
10.根据权利要求1所述的检测器,所述检测器包括控制器,所述控制器与所述电离传感器以及所述光传感器通信,当来自所述电离传感器或所述光传感器中的至少一个的输出表明选定状况时,所述控制器提供指示。
11.根据权利要求1所述的检测器,其中,所述流体包括气体,并且所述电离传感器或所述光传感器提供表明感兴趣的气体是否位于所述检测室中的输出。
12.根据权利要求1所述的检测器,其中,所述流体包括空气,以及所述电离传感器或所述光传感器提供表明在所述检测室中是否存在烟的输出。
13.根据权利要求1所述的检测器,其中,所述辐射源包括基于二极管的场发射电子源或基于三极管的场发射电子源中的至少一种。
14.根据权利要求1所述的检测器,其中,所述辐射源包括基于间隙的场发射电子源。
15.根据权利要求1所述的检测器,其中,所述辐射源包括基于热电晶体的加速器电子源。
16.根据权利要求1所述的检测器,其中,所述辐射源包括组合的基于热电晶体和纳米发射器的加速器电子源。
17.根据权利要求1所述的检测器,其中,所述电离传感器检测所述检测室中的流体的电离电流。
18.根据权利要求1所述的检测器,其中,所述光传感器包括光检测器。
19.根据权利要求1所述的检测器,其中,所述光传感器定位在进入所述检测室的光直射路径的外面,使得所述光传感器检测由所述检测室中的感兴趣颗粒偏转的光。
20.根据权利要求1所述的检测器,其中,所述检测室中的光的波长在180 nm至3000 nm之间的范围内。
21.根据权利要求1所述的检测器,其中,所述辐射包括x射线。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/000110 WO2012099564A1 (en) | 2011-01-22 | 2011-01-22 | Detector having a single source for ionization and photo detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103314288A CN103314288A (zh) | 2013-09-18 |
CN103314288B true CN103314288B (zh) | 2015-09-02 |
Family
ID=46515970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180065634.XA Expired - Fee Related CN103314288B (zh) | 2011-01-22 | 2011-01-22 | 具有用于电离和光检测的单个源的检测器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9322803B2 (zh) |
EP (1) | EP2666013A1 (zh) |
CN (1) | CN103314288B (zh) |
WO (1) | WO2012099564A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX362273B (es) * | 2013-12-31 | 2019-01-10 | Halliburton Energy Services Inc | Generador de neutrones de fuente de iones de emision de campo. |
DE102014104240A1 (de) * | 2014-03-26 | 2015-10-01 | Sick Ag | Optischer Sensor |
CN110349379A (zh) * | 2019-08-07 | 2019-10-18 | 上海中医药大学附属岳阳中西医结合医院 | 一种特殊环境测量与安全监测的报警装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5229288A (en) * | 1975-08-30 | 1977-03-04 | Matsushita Electric Works Ltd | Smoke detector |
US4469953A (en) * | 1982-02-02 | 1984-09-04 | Nittan Company, Limited | Combination ionization and photoelectric smoke detector |
US5633501A (en) * | 1995-06-07 | 1997-05-27 | Pittway Corporation | Combination photoelectric and ionization smoke detector |
US6057774A (en) * | 1999-01-21 | 2000-05-02 | Brk Brands, Inc. | Smoke alarm with anti-dust screen |
US6195014B1 (en) * | 1999-04-30 | 2001-02-27 | Nittan Company Limited | Fire detector |
US6351219B1 (en) * | 2000-06-30 | 2002-02-26 | Maple Chase Company | Photoelectric smoke detector |
US6756905B2 (en) * | 1999-12-31 | 2004-06-29 | Digital Security Controls Ltd. | Photoelectric smoke detector and chamber therefor |
CN1180384C (zh) * | 2001-04-24 | 2004-12-15 | 松下电工株式会社 | 火灾检测器单元 |
CN201322713Y (zh) * | 2008-12-30 | 2009-10-07 | 吉林大学 | 一种汽车发动机舱烟雾探测系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3332921B2 (ja) * | 1991-07-19 | 2002-10-07 | イギリス国 | ガスを検出するための装置と方法 |
GB9616841D0 (en) * | 1996-08-10 | 1996-09-25 | Aea Technology Plc | The detection of volatile substances |
US6362743B1 (en) * | 1999-09-09 | 2002-03-26 | Ranco Incorporated Of Delaware | Smoke alarm with dual sensing technologies and dual power sources |
US7825648B2 (en) * | 2003-05-23 | 2010-11-02 | John Nutting | Substance identification and location method and system |
US7576659B2 (en) * | 2006-06-07 | 2009-08-18 | L.I.F.E. Support Technologies, Llc | Smoke detection and laser escape indication system utilizing base and satellite |
GB0613882D0 (en) * | 2006-07-12 | 2006-08-23 | Kidde Ip Holdings Ltd | Smoke detector |
JP2009122983A (ja) * | 2007-11-15 | 2009-06-04 | Sharp Corp | 煙センサおよび電子機器 |
US7773226B2 (en) * | 2008-06-05 | 2010-08-10 | 3M Innovative Properties Company | Web inspection calibration system and related methods |
ES2569122T3 (es) * | 2009-08-07 | 2016-05-06 | The Regents Of The University Of California | Aparato para producir rayos X para su uso en imagenología |
JP5229288B2 (ja) | 2010-09-20 | 2013-07-03 | 株式会社デンソー | 半導体装置およびその制御方法 |
-
2011
- 2011-01-22 WO PCT/US2011/000110 patent/WO2012099564A1/en active Application Filing
- 2011-01-22 US US13/980,117 patent/US9322803B2/en not_active Expired - Fee Related
- 2011-01-22 CN CN201180065634.XA patent/CN103314288B/zh not_active Expired - Fee Related
- 2011-01-22 EP EP11856294.1A patent/EP2666013A1/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5229288A (en) * | 1975-08-30 | 1977-03-04 | Matsushita Electric Works Ltd | Smoke detector |
US4469953A (en) * | 1982-02-02 | 1984-09-04 | Nittan Company, Limited | Combination ionization and photoelectric smoke detector |
US5633501A (en) * | 1995-06-07 | 1997-05-27 | Pittway Corporation | Combination photoelectric and ionization smoke detector |
CN1152756A (zh) * | 1995-06-07 | 1997-06-25 | 彼特威公司 | 组合光电和电离传感器检测器 |
US6057774A (en) * | 1999-01-21 | 2000-05-02 | Brk Brands, Inc. | Smoke alarm with anti-dust screen |
US6195014B1 (en) * | 1999-04-30 | 2001-02-27 | Nittan Company Limited | Fire detector |
US6756905B2 (en) * | 1999-12-31 | 2004-06-29 | Digital Security Controls Ltd. | Photoelectric smoke detector and chamber therefor |
US6351219B1 (en) * | 2000-06-30 | 2002-02-26 | Maple Chase Company | Photoelectric smoke detector |
CN1180384C (zh) * | 2001-04-24 | 2004-12-15 | 松下电工株式会社 | 火灾检测器单元 |
CN201322713Y (zh) * | 2008-12-30 | 2009-10-07 | 吉林大学 | 一种汽车发动机舱烟雾探测系统 |
Also Published As
Publication number | Publication date |
---|---|
US20130293870A1 (en) | 2013-11-07 |
US9322803B2 (en) | 2016-04-26 |
CN103314288A (zh) | 2013-09-18 |
WO2012099564A1 (en) | 2012-07-26 |
EP2666013A1 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9576776B2 (en) | Apparatus for sensing ionic current | |
EP2297763B1 (en) | Charged particle detection system and method | |
JP2007527601A (ja) | 質量分析計の焦点面検出器アセンブリ | |
US10408951B2 (en) | Radiation detector | |
WO2009042079A2 (en) | Non-radioactive ion sources with ion flow control | |
CN103314288B (zh) | 具有用于电离和光检测的单个源的检测器 | |
JP2671657B2 (ja) | 高分子センサ | |
WO2016022232A2 (en) | Low-cost, large surface area, flat panel thermal neutron detector utilizing enriched lithium metal foil | |
WO2015150765A1 (en) | Ultraviolet light detection | |
JP4910628B2 (ja) | X線検出器 | |
Badertscher et al. | Construction and operation of a double phase LAr large electron multiplier time projection chamber | |
Tesi et al. | The cryogenic RWELL: a stable charge multiplier for dual-phase liquid argon detectors | |
US2769911A (en) | Mass spectrometer for analysing substances or indicating a small amount of a determined substance | |
US9053892B2 (en) | Ionization device | |
Margato et al. | Effective decay time of CF4 secondary scintillation | |
EP2784499B1 (en) | Transmission window for a vacuum ultraviolet gas discharge lamp | |
WO2019208328A1 (ja) | 電子捕獲型検出器 | |
JP2000500275A (ja) | 低真空質量分析計 | |
JP3830978B2 (ja) | 荷電粒子の分析 | |
EP3050072B1 (en) | X-ray analysis in air | |
Charpak et al. | Development of new hole-type avalanche detectors and the first results of their applications | |
Buzulutskov et al. | Unraveling the puzzle of slow components in gaseous argon of two-phase detectors for dark matter searches using Thick Gas Electron Multiplier | |
Wang et al. | A Novel Diamond-like Carbon based photocathode for PICOSEC Micromegas detectors | |
CN108152359A (zh) | 一种含栅电极的可调制光离子化传感器及其操作方法 | |
Ugolini et al. | Note: Discharging fused silica test masses with ionized nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150902 Termination date: 20170122 |
|
CF01 | Termination of patent right due to non-payment of annual fee |