CN103305753B - 一种薄带连铸低碳微合金钢带制造方法 - Google Patents

一种薄带连铸低碳微合金钢带制造方法 Download PDF

Info

Publication number
CN103305753B
CN103305753B CN201210066962.8A CN201210066962A CN103305753B CN 103305753 B CN103305753 B CN 103305753B CN 201210066962 A CN201210066962 A CN 201210066962A CN 103305753 B CN103305753 B CN 103305753B
Authority
CN
China
Prior art keywords
steel band
continuous casting
hot
thin strap
strap continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210066962.8A
Other languages
English (en)
Other versions
CN103305753A (zh
Inventor
王秀芳
于艳
方园
周建坤
王成全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201210066962.8A priority Critical patent/CN103305753B/zh
Publication of CN103305753A publication Critical patent/CN103305753A/zh
Application granted granted Critical
Publication of CN103305753B publication Critical patent/CN103305753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种薄带连铸低碳微合金钢带制造方法,其包括如下步骤:1)在双辊连铸机中铸造厚度为1-5mm的铸带,其化学成分重量百分比为:C0.01-0.25%,Si≤0.4%,Mn0.6-2.0%,P≤0.015%,S≤0.01%,N≤0.012%,此外,还包含Nb、V、Ti、Mo中至少一种,Nb0.005-0.1%,V 0.005-0.1%,Ti0.005-0.1%,Mo0.05-0.5%,其余为Fe和不可避免杂质;2)铸带冷却,冷却速率大于20℃/s;3)热轧,热轧温度1050-1250℃,压下率20-50%,形变速率>20s-1;4)冷却,冷却速率10-80℃/s;5)卷取,卷取温度550-700℃。本发明实现铸带热轧后奥氏体在线再结晶,使产品获得分布更加均匀的尺寸细小的铁素体加珠光体组织,从而同时具有较高的强度和延伸率。

Description

一种薄带连铸低碳微合金钢带制造方法
技术领域
[0001] 本发明涉及薄带连铸工艺,特别涉及一种薄带连铸低碳微合金钢带制造方法,钢 带的屈服强度彡340MPa,抗拉强度彡450MPa,延伸率彡15%,具有优良的强塑性匹配,获得 钢带的显微组织主要由细小的多边形铁素体和珠光体构成。
背景技术
[0002] 目前,生产含有Nb、V、Ti、Mo等微合金元素的低碳高强薄规格钢带产品,主要是通 过传统热轧和冷轧工艺实现。但利用传统热轧或冷轧工艺进行生产,存在一些问题:
[0003] 首先,传统工艺流程长、能耗高、机组设备多、基建成本高,导致生产成本高。
[0004] 其次,利用传统热轧工艺生产含有Nb、V、Ti、Mo等微合金元素的微合金高强薄规 格产品时,由于微合金元素在热轧过程中不能保持为固溶体,发生部分析出,导致钢材强度 提高,因此会显著增加轧制载荷,增加能耗和辊耗,对装备的损伤较大,从而就限制了可经 济地和实际地生产热轧产品的厚度范围,通常是多2_。对传统热轧产品继续进行冷轧,可 进一步降低钢带厚度,然而热轧钢带的高强度导致冷轧也存在困难。一是高的冷轧载荷对 装备的要求较高,损伤较大;二是热轧产品中由合金元素析出的第二相,使冷轧后钢带的再 结晶退火温度显著增加。
[0005] 再次,利用传统热轧工艺生产含有Nb、V、Ti、Mo等微合金元素的微合金高强产品 时,通常是利用形变细化奥氏体晶粒原理,因此精轧的开轧温度通常低于950°C,终轧温度 在850°C左右,在较低温度下进行轧制,再加上随轧制过程进行形变量的增加,会导致钢带 强度显著增加,这也会显著增加热轧难度和消耗。
[0006] 总之,虽然利用传统热轧和冷轧工艺可以实现低碳微合金高强薄规格钢带产品的 生产,成本都相对较高,在商业上并不经济。
[0007] 薄带连铸技术是冶金及材料研宄领域内的一项前沿技术,它的出现为钢铁工业带 来一场革命,它改变了传统治金工业中钢带的生产过程,将连续铸造、乳制、甚至热处理等 整合为一体,使生产的薄带坯经过一道次在线热轧就一次性形成薄钢带,大大简化了生产 工序,缩短了生产周期,其工艺线长度仅50m左右。设备投资也相应减少,产品成本显著降 低。
[0008] 双棍薄带连铸工艺是薄带连铸工艺的一种主要形式,也是世界上唯一实现产业化 的一种薄带连铸工艺。在双辊薄带连铸过程中,熔融钢水从钢包经过长水口、中间包和浸入 式水口,被引入到一对相对旋转且内部水冷的结晶辊和侧封板形成的熔池之内,在移动的 辊面上形成凝固壳,凝固壳在结晶辊之间的辊隙处聚集在一起,形成从辊隙向下拉出的铸 带。之后通过摆动导板、夹送辊将铸带输送至辊道,再经过在线热轧机,喷淋冷却,飞剪直至 卷取机,完成薄带连铸产品的生产。
[0009] 利用薄带连铸技术生产低碳微合金高强薄规格钢带,主要的优点如下:
[0010] (1)薄带连铸省去了板坯加热、多道次反复热轧等复杂过程,对薄铸带直接进行一 道次在线热轧,生产成本大幅降低。
[0011] (2)薄带连铸的铸带厚度通常在l-5mm,通过在线热轧至期望产品厚度,通常在 1-3_,薄规格产品的生产不需要经过冷轧。
[0012] (3)薄带连铸工艺生产低碳微合金钢,所添加的Nb、V、Ti、Mo等合金元素,在热 轧过程中主要以固溶态存在,因此钢带强度相对较低,从而使单机架热轧压下率可高达 30-50 %,钢带减薄效率高。
[0013] (4)薄带连铸工艺生产低碳微合金钢,高温铸带直接热轧,所添加的Nb、V、Ti、Mo 等合金元素主要以固溶态存在,可提高合金利用率。从而克服传统工艺板坯冷却过程中发 生合金元素析出,板坯再加热时合金元素回溶不充分而降低合金元素利用率的问题。
[0014] 国际专利 TO 2008137898、TO 2008137899、TO 2008137900,以及中国专利 200880023157. 9、200880023167. 2、200880023586. 6 中报导了一种利用薄带连铸连轧工艺 生产厚度在〇. 3-3mm的微合金钢薄带的方法。该方法采用C < 0. 25%,Mn 0. 20-2. 0%,Si 0. 05-0. 50%, Al < 0. 01%, Nb0.0 1-0. 20%, V 0. 01-0. 20%, Mo 0. 05-0. 50% (Nb, V, Mo 至少包含一种)成分体系,在热轧压下率为20-40%,卷取温度< 700°C工艺条件下,热轧带 的显微组织为贝氏体+针状铁素体。该专利通过添加合金元素抑制奥氏体热轧后发生再结 晶,保持薄带连铸奥氏体晶粒粗大特征以提高淬透性,从而获得了贝氏体+针状铁素体的 室温组织。在专利中没有给出热轧所采用的温度范围。
[0015] 利用这种方法生产的薄带连铸低碳微合金钢产品,强度较高,在以上成分体系范 围内,屈服强度可达到650MPa,抗拉强度可达到750MPa,但最主要的问题是产品的延伸率 不高。导致延伸率不高主要原因是:通过薄带连铸工艺获得的铸带,奥氏体晶粒尺寸粗大, 且非常不均匀,小到几十微米,大到七八百微米甚至毫米量级。而薄带连铸工艺热轧压下率 通常不超过50%,通过形变细化晶粒的效果非常小,如果不通过再结晶细化奥氏体晶粒,粗 大的不均匀奥氏体不会在热轧后得到有效改善,由尺寸粗大的不均匀奥氏体相变后产生的 贝氏体+针状铁素体组织也很不均匀,因此延伸率不高。由此导致产品在一些要求较高延 伸率的领域应用受到限制,例如冲压用钢,汽车用钢等。
[0016] 中国专利02825466. X也公开,由于薄带连铸产品具有粗大奥氏体晶粒特征、铸带 中添加了 Si、Cr、Ni、V、Nb等合金元素或微合金元素、乳制速率低等因素,在小于1050°C下 的低速率轧制,热轧后奥氏体再结晶只不过是局部的。最终产品的组织为具有粗大晶粒的 非均匀组织,对产品的性能不利。该专利为了改善薄带连铸微合金钢的强塑性匹配,提出 了另外一种利用薄带连铸连轧工艺生产厚度在1-6_的微合金钢薄带的方法。该方法所 采用的微合金钢成分体系为 C 0.02-0. 20%,Mn 0• 1-1.6%,Si0.0 2-2.0%,Al <0.05%, S < 0. 03%, P < 0. 1%, Cr 0. 01-1. 5%, Ni 0. 01-0. 5%, Mo < 0. 5%, N 0. 003-0. 012%, Ti < 0. 03%,V < 0. 10%,Nb < 0. 035%,B < 0. 005%,其余为 Fe 和不可避免的杂质。铸 带的热轧温度在1150-(Arl-100) °C范围内,对应奥氏体区,奥氏体铁素体两相区,或者铁素 体区进行热轧,热轧压下率为15-80%。该方法在薄带连铸连轧机组后,设计了在线加热系 统,加热温度范围是670-1150°C,目的是使得铸带在不同相区热轧后,保温一段时间后发生 完全再结晶,从而使钢带获得较好的强塑性匹配。
[0017] 利用这种方法来生产薄带连铸低碳微合金钢产品,的确可以使钢带获得良好的 强塑性匹配,例如成分为 C 0.048%,Mn 0.73%,Si 0.28%,Cr0.0 7%,Ni 0.07%,Cu 0• 18%,Ti 0• 01%,Mo 0• 02%,S 0• 002%,P 0• 008%,Al 0• 005%,N 0• 0065%的钢带屈 服强度为260MPa,抗拉强度365MPa,延伸率为28%。但利用这种方法进行生产,需要在产线 设计时增加在线加热系统,而且由于加热时间的长短,取决于带速和加热炉长度,加热炉必 须有足够长度,才能保证加热均匀性。这不仅增加了投资成本,也会显著增加薄带连铸连轧 产线的占地面积,降低了该产线的优势。
发明内容
[0018] 本发明的目的在于提供一种薄带连铸低碳微合金钢带制造方法,通过合理的成分 和工艺设计,在不增加生产装备情况下,实现铸带热轧后奥氏体在线再结晶,细化奥氏体晶 粒并改善奥氏体晶粒尺寸均匀性,使产品获得分布更加均匀的尺寸细小的铁素体加珠光体 组织,从而同时具有较高的强度和延伸率。
[0019] 为达到上述目的,本发明的技术方案是:
[0020] -种薄带连铸低碳微合金钢带制造方法,其包括如下步骤:
[0021] 1)在双辊连铸机中铸造厚度为l_5mm的铸带,其化学成分重量百分比为:C 0• 01-0. 25 %,Si 彡 0• 4 %,Mn 0• 6-2. 0%,P 彡 0.015%,S 彡 0.01%,N 彡 0.012%,此 外,还包含微合金元素Nb、V、Ti、Mo中至少一种,Nb 0.005-0. 1%,V 0.005-0. 1%,Ti 0. 005-0. 1 %,Mo 0. 05-0. 5 %,其余为Fe和不可避免的杂质;
[0022] 2)对铸带进行冷却,冷却速率大于20°C /s ;
[0023] 3)对铸带进行热轧,热轧温度为1050_1250°C,热轧压下率为20-50%,热轧形变 速率> 20s、热轧后钢带的厚度为0. 5-3. Omm ;钢带热轧后发生奥氏体在线再结晶;
[0024] 4)对热轧带进行冷却,冷却速率为10_80°C /s;
[0025] 5)对热轧带进行卷取,卷取温度为550_700°C;
[0026] 最终获得钢带显微组织主要由细小的多边形铁素体和珠光体构成。
[0027] 进一步,所述步骤1)中,C的含量范围为0.01-0. 1%,以重量百分比计。
[0028] 所述步骤1)中,Nb、V、Ti的含量范围均为0.005-0. 05%,或均为0.005-0. 01%, 以重量百分比计。
[0029] 所述步骤1)中,Mo的含量范围为0. 05-0. 25%,以重量百分比计。
[0030] 所述步骤3)中,热轧温度为1100-1250°C,或热轧温度为1150-1250°C。
[0031] 所述步骤3)中,热轧压下率为30-50 %。
[0032] 所述步骤3)中,热轧形变速率>30s'
[0033] 所述步骤4)中,热轧带冷却速率为30_80°C /s。
[0034] 所述步骤5)中,卷取温度为600-700 °C。
[0035] 本发明与前述发明的最根本不同在于,采用不同的工艺技术路线,控制实现奥氏 体热轧后在线再结晶,生产出具有尺寸细小的多边形铁素体加珠光体的钢带,从而具有良 好的强度和延伸率匹配。
[0036] 本发明的技术构思如下:
[0037] (1)在低碳钢中适量添加微合金元素,主要发挥两方面作用:
[0038] 其一是发挥其固溶强化作用,提高钢带强度;
[0039] 其二是通过溶质原子拖曳奥氏体晶界,在一定程度上抑制奥氏体晶粒长大,从而 细化奥氏体晶粒,促进奥氏体再结晶。奥氏体晶粒尺寸越细小,形变时产生的位错密度越 高,形变储存能将越大,从而增大再结晶驱动力而促进再结晶过程的进行;而且再结晶核心 主要在原大角晶界处或其附近形核的,因此晶粒尺寸越细(晶界面积越大),再结晶形核越 容易,从而促进再结晶过程的进行。
[0040] (2)适当提高在奥氏体区的热轧温度(形变再结晶温度),促进奥氏体再结晶。再 结晶形核率和长大速率均随形变温度的升高而呈指数型关系的增长(雍岐龙著,微合金 钢-物理和力学冶金),温度越高,越容易发生再结晶。
[0041] (3)控制热轧压下率(形变量)在合适的范围内,促进奥氏体再结晶。形变是发生 再结晶的基础,是再结晶的驱动力一一形变储存能的来源,由于必须超过一定的驱动力之 后才会发生再结晶,故只有超过一定的形变量之后才会发生再结晶。形变量越大,形变储存 能越大,而形变储存能越大,再结晶形核和长大速率均越大,即使在较低温度下也能足够迅 速地开始和完成再结晶。而且,形变量增大,还会减小奥氏体再结晶后的晶粒尺寸,这是因 为再结晶形核率随形变储存能的升高而呈指数型关系的增长(雍岐龙著,微合金钢-物理 和力学冶金),因此有利于获得更加细小的Y - a相变的产物,对提高钢带的强塑性都是 有利的。
[0042] (4)控制形变速率在合适的范围内,促进奥氏体再结晶。增大形变速率,将增大形 变储存能,从而增大再结晶驱动力,促进再结晶过程的进行。
[0043] 在本发明的化学成分设计中:
[0044] C :C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化来提高钢的强 度。C是奥氏体转变过程中析出渗碳体必不可少的元素,因此C含量的高低在很大程度上决 定钢的强度级别,即较高的C含量对应较高的强度级别。但是,由于C的间隙固溶和析出对 钢的塑性和韧性有较大危害,因此C含量不能过高,钢的强度通过适当添加合金元素来弥 补。本发明采用的C含量范围是0.01-0. 25%。
[0045] Si :Si在钢中起固溶强化作用,且钢中加Si能提高钢质纯净度和脱氧,但Si含量 过高会损害钢的焊接性能。本发明采用的Si含量< 0. 4%。
[0046] Mn :Mn是价格最便宜的合金元素之一,它在钢中具有相当大的固溶度,通过固溶 强化提高钢的强度,同时对钢的塑性和韧性基本无损害,是在降低C含量情况下提高钢的 强度最主要的强化元素。但Mn含量过高会损害钢的焊接性能和抗腐蚀性能。本发明采用 的Mn含量范围是0. 6-2. 0%。
[0047] P :在通常情况下P是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑 性,使冷弯性能变坏。在本发明中,P是作为杂质元素来控制,其含量< 〇. 015%。
[0048] S :在通常情况下S也是钢中有害元素,使钢产生热脆性,降低钢的延展性和韧性, 在轧制时造成裂纹。S还会降低焊接性能和耐腐蚀性。在本发明中,S是作为杂质元素来控 制,其含量< 〇. 01%。
[0049] N :与C元素类似,N元素可通过间隙固溶提高钢的强度,但是,N的间隙固溶对钢 的塑性和韧性有较大危害,因此N含量不能过高。本发明采用的N含量< 0.012%。
[0050] Nb :在常用的Nb、V、Ti、Mo四种微合金元素中,Nb是最强的抑制热轧后奥氏体再结 晶的合金元素。在传统控制轧制用的钢中,一般都添加Nb,一是起到强化的作用,二是抑制 热轧后奥氏体发生再结晶,实现形变细化奥氏体晶粒的目的。Nb可通过溶质原子拖曳机制, 以及所析出的碳氮化铌第二相质点钉扎机制而有效地阻止大角晶界及亚晶界的迀移,从而 显著地阻止再结晶过程,其中第二相质点阻止再结晶的作用更为显著。
[0051] 在薄带连铸工艺中,由于其独特的钢带快速凝固和快速冷却特性,可以使添加的 合金元素Nb主要以固溶态存在于钢带中,即使钢带冷却到室温,也几乎观察不到Nb的析 出。因此,尽管Nb元素可有效地抑制奥氏体再结晶,但仅靠溶质原子而不发挥第二相质点 的作用来阻止再结晶,在很多情况下是非常困难的,例如在形变温度较高、形变量较大的情 况下,即使添加Nb元素,奥氏体也会发生再结晶。
[0052] 另一方面,固溶于钢中的Nb元素,可通过溶质原子拖曳奥氏体晶界,在一定程度 上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲,Nb对于促进奥氏体热轧后再 结晶是有利的。
[0053] 本发明既要发挥Nb的固溶强化作用提高钢的强度,又要尽量降低Nb对再结晶的 抑制作用,设计其含量范围是0.005-0. 1%。
[0054] 优选的,Nb的含量范围是0.005-0. 05%,或者是0.005-0. 01%,钢带可具有更优 的强度和塑性配比。
[0055]V :在常用的Nb、V、Ti、Mo四种微合金元素中,V对奥氏体再结晶的抑制作用最弱。 在再结晶控轧钢中,通常是添加V,既可以起到强化作用,同时对再结晶的抑制作用相对来 说又比较小,实现再结晶细化奥氏体晶粒的目的。
[0056] 在薄带连铸工艺中,V也主要以固溶态存在于钢带中,即使钢带冷却到室温,也几 乎观察不到V的析出。因此,V元素对奥氏体再结晶的抑制作用非常有限。在既要发挥合 金元素的固溶强化作用提高钢的强度,又要降低合金元素对再结晶抑制作用的情况下,V是 比较理想的合金元素,最为符合本发明的构思。
[0057]另一方面,固溶于钢中的V元素,可通过溶质原子拖曳奥氏体晶界,在一定程度上 抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲,V对于促进奥氏体热轧后再结 晶是有利的。
[0058] 本发明采用V的含量范围是0• 005-0. 1 %。
[0059] 优选的,V的含量范围是0. 005-0. 05%,或者是0. 005-0. 01%,钢带可具有更优的 强度和塑性配比。
[0060] Ti :在常用的Nb、V、Ti、Mo四种微合金元素中,Ti对奥氏体再结晶的抑制作用次 于Nb,但高于Mo、V。从这一点上讲,Ti对促进奥氏体再结晶是不利的。但Ti有一个突出 的优点,它的固溶度很低,它可以在高温下形成相当稳定的尺寸约为IOnm左右的第二相质 点TiN,可阻止均热时奥氏体晶粒粗化,因此,在再结晶控轧钢中,通常添加微量Ti,细化奥 氏体晶粒。
[0061] 在薄带连铸工艺中,Ti主要以固溶态存在于热态钢带中,如果钢带冷却到室温,可 能观察到少许Ti的析出。因此,Ti元素对奥氏体再结晶的抑制作用是有限的。
[0062] 另一方面,固溶于钢中的Ti元素,可通过溶质原子拖曳奥氏体晶界,在一定程度 上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲,对于促进奥氏体热轧后再结 晶是有利的。
[0063] 本发明既要发挥Ti的固溶强化作用提高钢的强度,又要尽量降低Ti对再结晶的 抑制作用,设计其含量范围是0.005-0. 1%。
[0064] 优选的,Ti的含量范围是0.005-0. 05%,或者是0.005-0. 01%,钢带可具有更优 的强度和塑性配比。
[0065] Mo:在常用的Nb、V、Ti、Mo四种微合金元素中,Mo对奥氏体再结晶的抑制作用相 对来说也是较弱的,仅高于V。
[0066] 在薄带连铸工艺中,Mo也主要以固溶态存在于钢带中,即使钢带冷却到室温,也几 乎观察不到Mo的析出。因此,Mo元素对奥氏体再结晶的抑制作用非常有限。
[0067]另一方面,固溶于钢中的Mo元素,可通过溶质原子拖曳奥氏体晶界,在一定程度 上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲,对于促进奥氏体再结晶是有 利的。
[0068] 本发明采用Mo的含量范围是0• 05-0. 5 %。
[0069] 优选的,Mo的含量范围是0. 05-0. 25%,钢带可具有更优的强度和塑性配比。
[0070] 在本发明制造工艺中:
[0071] 薄带连铸,即钢水被引入到一对相对旋转且内部水冷的结晶辊和侧封板形成的熔 池之内,经过快速凝固后直接浇铸出厚度为1-5_的铸带。
[0072] 铸带冷却,铸带从结晶辊连铸出来后,经过密闭室,在密闭室内进行冷却。为了快 速降低铸带温度,以防止奥氏体晶粒在高温下长大过快,控制铸带的冷却速率大于20°C / s。铸带冷却采用气冷方式,冷却气体的压力、流量和气喷嘴位置可以调节和控制。冷却气 体可以是氩气、氮气、氦气等惰性气体,或者是几种气体的混和气体。通过控制冷却气体的 类型、压力、流量,以及喷嘴到铸带之间的距离等,实现对铸带冷却速率的控制。
[0073] 铸带在线热轧,控制轧制温度为1050-1250°C,目的是实现热轧后奥氏体发生完 全再结晶,细化奥氏体晶粒。在本发明的化学成分设计中,添加了 Nb、V、Ti、Mo合金元 素,如前所述,合金元素的添加对奥氏体再结晶有一定的抑制作用,尽管在薄带连铸工艺 下这种抑制作用会降低,但在低于1050°C下进行热轧,很难发生奥氏体完全再结晶。而 在高于1250°C下进行热轧,由于带钢强度低,使得热轧过程很难控制。因此本发明选择 1050-1250°C轧制温度范围。优选的,热轧温度范围是1100_1250°C,或者是1150-1250°C。 控制热轧压下率为20-50 %,热轧压下量增加会促进奥氏体再结晶,细化奥氏体晶粒,优选 的热轧压下率范围是30-50%。控制热轧形变速率> 20s'形变速率增加会促进奥氏体再 结晶,优选的形变速率范围是> 30s'热轧后钢带的厚度范围是0. 5-3. 0_。
[0074] 热轧带冷却,采用气雾冷却、层流冷却或者喷淋冷却等方式对热轧带进行冷却。冷 却水的流量、流速,以及出水口位置等可以调节,从而实现对热轧带冷却速率的控制。控制 热轧带的冷却速率为10-80°C /s,冷却热轧带到所需要的卷取温度。冷却速率是影响奥氏 体相变实际开始温度的重要因素之一,冷却速率越大,奥氏体相变实际开始温度越低,这样 相变后所获得的组织晶粒尺寸也就越细小,对提高钢带的强韧性都是有利的,优选的冷却 速率范围是30-80 °C /s。
[0075] 热轧带卷取,控制热轧带的卷取温度为550_700°C,以使热轧带具有细小的铁素体 +珠光体的组织特征。优选的,卷取温度范围是600-700°C。
[0076] 本发明的有益效果:
[0077]与现有中国专利 200880023157. 9、200880023167. 2、200880023586. 6 相比,本发 明的不同之处在于:专利200880023157. 9、200880023167. 2、200880023586. 6通过添加微 合金元素抑制奥氏体热轧后的再结晶,保留粗大奥氏体晶粒的高淬透性,使钢带获得贝氏 体和针状铁素体组织,强度较高,延伸率较低。本发明通过控制微合金元素添加量、热轧温 度、热轧压下率、热轧形变速率,实现热轧后奥氏体再结晶,细化奥氏体晶粒,使钢带获得细 小均匀的铁素体+珠光体组织,具有良好的强塑性匹配。
[0078] 与现有中国专利02825466. X相比,本发明的不同之处在于:中国专利02825466. X 控制热轧后奥氏体发生再结晶是通过增加在线加热系统实现的。本发明控制热轧后奥氏体 发生再结晶是通过控制微合金元素添加量、热轧温度、热轧压下率、热轧形变速率实现的。 [0079] 本发明的有益效果:
[0080] 本发明通过薄带连铸生产过程中合理的成分设计,合理的热轧温度、热轧压下率、 热轧形变速率设计,在不增加生产装备情况下,控制实现铸带热轧后奥氏体在线再结晶,生 产出具有尺寸细小的多边形铁素体加珠光体组织的钢带,从而具有良好的强度和延伸率匹 配。
附图说明
[0081] 图1为薄带连铸工艺过程示意图。
[0082] 图2为本发明实施例2中热轧钢带的显微组织。
[0083] 图3为本发明实施例2中铸带的显微组织。
具体实施方式
[0084] 参见图1,本发明的薄带连铸工艺过程,大包1中的钢水经过长水口 2、中间包3和 浸入式水口 4,浇入到由两个相对旋转的水冷结晶辊5a、5b和侧封板6a、6b形成的熔池7 内,经过水冷结晶辊的冷却形成1-5_铸带11,铸带经过在密闭室10内的二次冷却装置8 控制其冷却速率,通过摆动导板9、夹送辊12将铸带送至热轧机13,热轧后形成0. 5-3_的 热轧带,再经三次冷却装置14,之后热轧带进入卷取机15。将钢卷从卷取机上取下后,自然 冷却至室温。
[0085] 本发明实施例1-10的钢水均采用电炉冶炼得到,具体化学成分如表1所示。薄 带连铸后得到的铸带厚度,铸带冷却速率,热轧温度,热轧压下率,热轧形变速率,热轧带厚 度,热轧带冷却速率,卷取温度等工艺参数,以及热轧带冷却到室温后的拉伸性能见表2。
[0086] 图2所示为实施例2中钢带的显微组织,主要由细小的多边形铁素体和少量珠光 体构成。奥氏体热轧后发生再结晶,晶粒尺寸得到细化,其淬透性降低,采用和铸带相同的 冷却速率和卷取温度,将更容易获得多边形铁素体和珠光体组织。图3对比给出了未经过 热轧的铸带的显微组织,为贝氏体加针状铁素体。未经过热轧和再结晶的铸带,保留了粗大 奥氏体晶粒的高淬透性,更容易形成贝氏体、针状铁素体。
[0087] 从表2可以看出,本发明钢带的屈服强度彡340MPa,抗拉强度彡450MPa,延伸率 彡15%,具有优良的强塑性匹配。
[0088] 表1实施例1-10的钢水化学成分(wt. % )
[0089]
Figure CN103305753BD00111

Claims (15)

1. 一种薄带连铸低碳微合金钢带制造方法,其包括如下步骤: 1) 在双辊连铸机中铸造厚度为l-5mm的铸带,其化学成分重量百分比为:C 0• 01-0. 25 %,Si 彡 0• 4 %,Mn 0• 6-2. 0%,P 彡 0.015%,S 彡 0.01%,N 彡 0.012%,此 外,还包含微合金元素Nb、V、Ti、Mo中至少一种,Nb 0.005-0. 1%,V 0.005-0. 1%,Ti 0. 005-0. 1 %,Mo 0. 05-0. 5 %,其余为Fe和不可避免的杂质; 2) 对铸带进行冷却,冷却速率大于20°C /s ; 3) 对铸带进行热轧,热轧温度为1050-1250°C,热轧压下率为20-50%,热轧形变速率 >20s'热轧后钢带的厚度为0. 5-3. 0_,钢带热轧后发生奥氏体在线再结晶; 4) 对热轧带进行冷却,冷却速率为10-80°C /s ; 5) 对热轧带进行卷取,卷取温度为550-700°C ; 最终获得钢带显微组织主要由细小的多边形铁素体和珠光体构成;钢带的屈服强度 彡340MPa,抗拉强度彡450MPa,延伸率彡15%。
2. 如权利要求1所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤1) 中,C的含量范围为0. 01-0. 1%,以质量百分比计。
3. 如权利要求1或2所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步 骤1)中,Nb、V、Ti的含量范围均为0. 005-0. 05%,或均为0. 005-0. 01%,以质量百分比计。
4. 如权利要求1或2所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步 骤1)中,Mo的含量范围为0. 05-0. 25%,以质量百分比计。
5. 如权利要求4所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤1) 中,Mo的含量范围为0. 05-0. 25%,以质量百分比计。
6. 如权利要求1所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤3) 中,热轧温度为1100-1250°C,或热轧温度为1150-1250°C。
7. 如权利要求1或6所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步 骤3)中,热轧压下率为30-50 %。
8. 如权利要求1或6所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步 骤3)中,热轧形变速率>30^。
9. 如权利要求7所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤3) 中,热轧形变速率MOs'
10. 如权利要求1所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤4) 中,热轧带冷却速率为30-80°C /s。
11. 如权利要求1所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述步骤5) 中,卷取温度为600-700 °C。
12. 如权利要求1所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述钢带的 厚度小于3mm,或小于2mm,或小于1mm。
13. 如权利要求1或10所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述 钢带的屈服强度至少为340MPa,或至少为410MPa,或至少为480MPa,或至少为550MPa,或至 少为 620MPa。
14. 如权利要求1或10所述的薄带连铸低碳微合金钢带制造方法,其特征在于:所述 钢带的抗拉强度至少为450MPa,或至少为520MPa,或至少为585MPa,或至少为620MPa,或至
CN201210066962.8A 2012-03-14 2012-03-14 一种薄带连铸低碳微合金钢带制造方法 Active CN103305753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210066962.8A CN103305753B (zh) 2012-03-14 2012-03-14 一种薄带连铸低碳微合金钢带制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210066962.8A CN103305753B (zh) 2012-03-14 2012-03-14 一种薄带连铸低碳微合金钢带制造方法

Publications (2)

Publication Number Publication Date
CN103305753A CN103305753A (zh) 2013-09-18
CN103305753B true CN103305753B (zh) 2015-08-26

Family

ID=49131464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210066962.8A Active CN103305753B (zh) 2012-03-14 2012-03-14 一种薄带连铸低碳微合金钢带制造方法

Country Status (1)

Country Link
CN (1) CN103305753B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757536B (zh) * 2014-01-24 2016-10-05 宝山钢铁股份有限公司 抗拉强度≥1100MPa的薄带连铸经济性高强捆带及其制造方法
CN103757531B (zh) * 2014-01-24 2016-10-05 宝山钢铁股份有限公司 抗拉强度≥1000MPa的薄带连铸经济性高强捆带及其制造方法
CN103757533B (zh) * 2014-01-24 2016-10-05 宝山钢铁股份有限公司 抗拉强度≥1000MPa的薄带连铸经济性高强捆带及其制造方法
CN103911546B (zh) * 2014-04-17 2016-01-06 攀钢集团攀枝花钢铁研究院有限公司 一种低成本中厚钢板及其生产方法
CN107058859A (zh) * 2016-08-30 2017-08-18 刘海永 一种用包钢钢渣制作的稀土复合微合金化合金及其应用
CN109881084A (zh) * 2018-06-08 2019-06-14 江苏沙钢集团有限公司 一种薄带铸轧550MPa级耐候钢及其生产方法
CN109082602A (zh) * 2018-09-17 2018-12-25 四川易亨机械制造有限公司 一种综合性能优异的合金钢及其制备方法
CN112522579A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种利用废钢的30CrMo热轧钢板/带及其生产方法
CN112522581A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种薄带连铸生产30CrMo热轧钢板/带的方法
CN112522629A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种Nb微合金化高强高扩孔钢及其生产方法
CN112522568A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种耐火耐候钢板/带及其制造方法
CN112522593A (zh) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 一种薄规格30CrMo热轧钢板/带及其生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845599A (zh) * 2009-03-24 2010-09-29 宝山钢铁股份有限公司 一种耐候钢及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845599A (zh) * 2009-03-24 2010-09-29 宝山钢铁股份有限公司 一种耐候钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔忠圻 等.再结晶.《金属学与热处理》.机械工业出版社,2011, *

Also Published As

Publication number Publication date
CN103305753A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
CN103305770B (zh) 一种薄带连铸550MPa级高强耐大气腐蚀钢带的制造方法
CN103305753B (zh) 一种薄带连铸低碳微合金钢带制造方法
CN103302255B (zh) 一种薄带连铸700MPa级高强耐大气腐蚀钢制造方法
CN103305746B (zh) 一种时效硬化薄带连铸低碳微合金高强钢带制造方法
CN103305759B (zh) 一种薄带连铸700MPa级高强耐候钢制造方法
CN103305760B (zh) 一种薄带连铸550MPa级高强耐候钢制造方法
CN102041367B (zh) 薄带连铸冷轧无取向电工钢的制造方法
CN102787278B (zh) 一种含硼耐候薄带钢及其制造方法
CN102787279B (zh) 一种含硼微合金耐大气腐蚀钢及其制造方法
CN102199720B (zh) 屈服强度400MPa以上级别低碳钢薄板及其制造方法
CN102796969B (zh) 一种含硼微合金耐大气腐蚀钢及其制造方法
CN102787280B (zh) 一种含硼耐候薄带钢及其制造方法
CN107287489B (zh) 基于全无头薄板坯连铸连轧流程生产钛微合金钢的方法
CN101713046A (zh) 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法
CN102796956A (zh) 一种冷成型用高强薄带钢及其制造方法
CN103667895B (zh) 一种冷成型用高强薄带钢的制造方法
CN103667878B (zh) 一种薄壁油桶用薄带钢及其制造方法
CN102796943B (zh) 一种薄壁油桶用薄带钢及其制造方法
CN103774041A (zh) 抗拉强度≥1100MPa的薄带连铸经济性高强捆带及其制造方法
CN103305755B (zh) 一种薄带连铸低碳微合金高强钢带制造方法
CN103305754B (zh) 一种时效硬化薄带连铸低碳微合金钢带制造方法
CN103667969B (zh) 一种利用低温在线静态再结晶生产钢带的方法
CN103757536A (zh) 抗拉强度≥1100MPa的薄带连铸经济性高强捆带及其制造方法
CN103667968B (zh) 一种利用低温在线静态再结晶生产钢带的方法
CN101168169A (zh) 采用薄板坯连铸连轧生产低碳高铌高强韧性钢带的工艺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant