CN102787278B - 一种含硼耐候薄带钢及其制造方法 - Google Patents
一种含硼耐候薄带钢及其制造方法 Download PDFInfo
- Publication number
- CN102787278B CN102787278B CN201210317170.3A CN201210317170A CN102787278B CN 102787278 B CN102787278 B CN 102787278B CN 201210317170 A CN201210317170 A CN 201210317170A CN 102787278 B CN102787278 B CN 102787278B
- Authority
- CN
- China
- Prior art keywords
- steel
- cooling
- strip
- continuous casting
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 206
- 239000010959 steel Substances 0.000 title claims abstract description 206
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 96
- 238000009749 continuous casting Methods 0.000 claims abstract description 53
- 238000005096 rolling process Methods 0.000 claims abstract description 42
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 39
- 235000011089 carbon dioxide Nutrition 0.000 claims abstract description 38
- 238000005098 hot rolling Methods 0.000 claims abstract description 29
- 230000003064 anti-oxidating Effects 0.000 claims abstract description 14
- 238000005507 spraying Methods 0.000 claims abstract description 7
- 238000005260 corrosion Methods 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 19
- 238000002425 crystallisation Methods 0.000 claims description 18
- 230000005712 crystallization Effects 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 11
- 238000005728 strengthening Methods 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 7
- 238000003801 milling Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 241001062472 Stokellia anisodon Species 0.000 claims description 3
- 238000005422 blasting Methods 0.000 claims description 3
- 229910001566 austenite Inorganic materials 0.000 abstract description 17
- 238000005097 cold rolling Methods 0.000 abstract description 16
- 238000001556 precipitation Methods 0.000 abstract description 12
- PIGFYZPCRLYGLF-UHFFFAOYSA-N aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 abstract description 11
- 229910017083 AlN Inorganic materials 0.000 abstract description 10
- 238000001953 recrystallisation Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 50
- 239000010949 copper Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 238000005204 segregation Methods 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 230000003628 erosive Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 210000003491 Skin Anatomy 0.000 description 6
- 229910000870 Weathering steel Inorganic materials 0.000 description 6
- 238000005275 alloying Methods 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 210000001519 tissues Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002349 favourable Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000011068 load Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000001131 transforming Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 206010011376 Crepitations Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000001808 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000529 magnetic ferrite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000000930 thermomechanical Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Abstract
一种含硼耐候薄带钢及其制造方法,采用双辊薄带连铸生产含有硼元素的耐大气腐蚀钢,铸带出结晶辊后采用喷洒干冰的方式对铸带进行均匀强化冷却,快速将铸带冷却至1280℃以下,冷却速度200-300℃/s,在这样的冷却方式下可以促进粗大BN的析出,防止低熔点相B2O3的出现以及细小AlN的析出,达到均匀化奥氏体晶粒、降低屈强比的目的;然后经过奥氏体在线再结晶轧制;然后再经过防氧化快速冷却,对热轧后的带钢进行冷却,冷却速度80-200℃/s;卷取温度500-600℃。通过本发明可以得到屈强比较低的钢种,有效解决薄带连铸生产的钢种普遍存在的组织不均匀、屈强比偏高、难成型,不能满足冷轧用料要求的问题。
Description
技术领域
[0001] 本发明涉及双辊薄带连铸工艺,特别涉及一种含硼耐候薄带钢及其制造方法。
背景技术
[0002] 传统的薄带大都是由厚达70-200mm的铸坯经过多道次连续轧制生产出来的,而 采用双辊薄带连铸工艺生产的铸带经过一道次或两道次轧制成为热轧带,即可以投入市场 使用。相比传统带钢的生产工艺,前者的生产线比较短,所需要的能源比较少,是一种低碳 环保的热轧薄带生产工艺。
[0003] 双辊薄带连铸典型的工艺流程为:大包中的熔融钢水通过大包长水口、中间包以 及布流装置直接浇注在一个由两个相对转动并能够快速冷却的结晶辊和侧封装置围成的 熔池中,钢水在结晶辊旋转的周向表面凝固形成凝固壳并逐渐生长,进而在两结晶辊辊缝 隙最小处(nip点)形成l_5mm厚的铸带,铸带经由导板导向被夹送辊送入轧机中轧制成 0. 7-2. 5_的薄带,随后经过冷却装置冷却,经飞剪装置切头后,最后送入卷取机卷取成卷。 薄带连铸生产的带钢,由于厚度较薄,用于冷轧基料,可以大大降低后续冷轧减薄的道次, 大大节约生产成本;此外,对于厚度小于2mm的薄规格热轧带,如果性能允许,可以直接用 来替代冷轧产品(以热代冷),使得薄带连铸的产品领域得到大大的拓展。
[0004] 但是,薄带连铸由于其本身的工艺特性,生产的钢种普遍存在组织细化、屈强比偏 高、成型性不好的现象,而对薄带连铸生产线配备的冷轧机组所需的冷轧基料,以及汽车行 业需要一些"以热代冷"且要求具有良好成型性的产品,一般要求热轧卷的屈强比较低,容 易折弯成型。因此,薄带连铸在生产此类钢种时,需要解决组织不均匀、屈强比偏高的问题, 从而满足冷轧基料的使用要求。
[0005] 带钢作为冷轧基料使用时,带钢需要经过酸洗-除磷工序,为了利于酸洗去除表 面氧化皮,要求带钢表面氧化皮的厚度越薄越好,这就需要在铸带各个阶段控制氧化铁皮 的生成,在典型工艺中,在结晶辊直至轧机入口均采用密闭室装置防止铸带氧化,在密闭室 装置内如专利US6920912添加氢气以及在专利US20060182989中控制氧气含量小于5%,均 可以控制铸带表面的氧化皮厚度。但是在轧机至卷取这段输送过程如何控制氧化皮的厚度 很少有关专利涉及,尤其是在采用层流冷却或喷淋冷却对带钢进行冷却的过程中,高温的 带钢与冷却水接触,铸带表面的氧化皮厚度增长很快;同时,高温的带钢与冷却水接触还会 带来很多问题:其一,会在带钢表面形成水斑(锈斑),影响表面质量;其二,层流冷却或喷淋 冷却用的冷却水容易造成带钢表面局部冷却不均匀,造成带钢内部微观组织的不均匀,从 而造成带钢性能的不均匀,影响产品质量;其三,带钢表面局部冷却不均匀,会造成板形的 恶化,影响板形质量。
[0006] 带钢作为"以热代冷"产品使用时,一般要求钢种具有良好的成型性,其本质也是 要求钢种具有较低的屈强比。此外作为汽车零部件、集装箱板使用时还需要钢种具有一定 的耐腐蚀性,利用薄带连铸生产耐大气腐蚀钢钢种时,具有一种天然的优势,即带钢表面层 会富集一层耐腐蚀性元素,如Cu、P、Cr等元素,可以大大提高带钢的抗腐蚀性能。
[0007] 带钢具有这样的表面层,客观上也要求带钢表面氧化铁皮厚度越薄越好,便于酸 洗。因为较厚的氧化铁皮会使酸洗时间变长,从而破坏带钢表面富集的耐腐蚀性元素层,如 Cu、P、Cr等消失或减少,从而降低带钢耐腐蚀性能。
[0008] 目前国内外已就耐大气腐蚀钢及其制造方法专利见表1。
[0009] 表 1
[0012] 上述耐大气腐蚀钢,均采用传统热轧工艺生产。传统热轧工艺流程是:连铸+铸坯 再加热保温+粗轧+精轧+冷却+卷取,即首先通过连铸得到厚度为200mm左右的铸坯, 对铸坯进行再加热并保温后,再进行粗轧和精轧,得到厚度一般大于2mm的钢带,最后对钢 带进行层流冷却和卷取,完成整个热轧生产过程。如果要生产厚度小于2mm的钢带,一般要 对热轧钢带继续进行冷轧以及后续退火来完成。上述专利也有提及钢中添加硼元素,比如 中国专利CN200610125125. 2和US6315946,但公开的发明内容中没有涉及硼元素添加后 具体的工艺控制方法,而且添加的量也比较少。
[0013]利用传统工艺生产耐大气腐蚀钢,存在的主要问题有:
[0014] (1)工艺流程长、能耗高、机组设备多、基建成本高,导致生产成本高。
[0015] (2)耐候钢中含有较高含量的提高钢带耐大气腐蚀性能的磷、铜等易偏析元素,传 统工艺由于铸坯凝固冷却速度慢,容易造成磷、铜等元素的宏观偏析,从而导致铸坯的各向 异性和出现宏观裂纹,成材率较低。
[0016] (3)耐候钢的耐侯性主要取决于磷和铜的共同作用,由于其在传统工艺中存在 易偏析特征,因此在利用传统工艺生产耐大气腐蚀钢的成分设计中,往往磷含量添加量在 < 0. 12% ;铜的添加量在0. 2-0. 55%的范围,实际生产中通常取下限。其结果造成钢带的耐 侯性不高。
[0017] 如果采用薄板坯连铸连轧工艺生产耐候钢,可在一定程度上克服传统工艺的缺 点。薄板坯连铸连轧工艺流程是:连铸+铸坯保温均热+热连轧+冷却+卷取。该工艺与 传统工艺的主要区别是:薄板坯工艺的铸坯厚度大大减薄,为50-90mm,由于铸坯薄,铸坯 只要经过1~2道次粗轧(铸坯厚度为70-90mm时)或者不需要经过粗轧(铸坯厚度为50mm 时),而传统工艺的连铸坯要经过反复多道次轧制,才能减薄到精轧前所需规格;而且薄板 坯工艺的铸坯不经冷却,直接进入均热炉进行均热保温,或者少量补温,因此薄板坯工艺大 大缩短了工艺流程,降低了能耗,减少了投资,从而降低了生产成本;另外薄板坯工艺的铸 坯凝固冷却速度加快,可在一定程度上减少元素宏观偏析,从而减少了产品缺陷,提高了成 材率,也正是因为这点,利用薄板坯工艺生产耐大气腐蚀钢的成分设计适当放宽了提高耐 腐蚀性的元素磷、铜的含量范围,这对于提高钢的耐候性能是有利的。
[0018] 中国专利CN200610123458. 1公开了 一种基于薄板坯连铸连轧流程采用Ti微 合金化工艺生产700MPa级高强耐候钢的方法,该方法制造耐候钢板的化学成分为:C: 0. 03-0. 07%,Si:0. 3-0. 5%,Mn:1, 2-1. 5,P: ^ 0. 04%,S: ^ 0. 008%,Al:0. 025-0. 05%,Cr: 0• 3-0. 7%,Ni:0• 15-0. 35%,Cu:0• 2-0. 5%,Ti:0• 08-0. 14%,N:彡 0• 008%,余量为Fe和不可 避免的杂质。钢板的屈服强度彡700MPa,抗拉强度彡775MPa,延伸率彡21%。
[0019] 中国专利CN200610035800. 2公开了一种基于薄板坯连铸连轧工艺生产700MPa级 V-N微合金化耐大气腐蚀钢的方法,该方法制造耐候钢板的化学成分为:C: < 0. 08%,Si: 0. 25-0. 75%,Mn:0. 8-2,P: ^ 0. 07-0. 15%,S: ^ 0. 04%,Cr:0. 3-1. 25%,Ni: ^ 0. 65%,Cu: 0. 25-0. 6%,V:0. 05-0. 2%,N:0. 015-0. 03%,余量为Fe和不可避免的杂质。钢板的屈服强度 彡700MPa,抗拉强度彡785MPa,延伸率彡21%。在该专利中,磷是按照提高耐腐蚀性的元素 来控制的,含量为0. 07-0. 15% ;铜的含量为0. 25-0. 6%,其下限和上限分别高于传统工艺的 铜含量下限〇. 2%和上限0. 55%。
[0020] 虽然薄板坯工艺在生产耐大气腐蚀钢上存在一些优势,但薄板坯工艺也会出现 一些新的问题,例如:薄板坯连铸连轧由于较快的冷速会导致钢材强度提高,屈强比提高, 从而增加轧制载荷,增加能耗和辊耗,使得可经济地和实际地生产耐候钢热轧产品的厚度 规格也不可能太薄,一般为彡I. 5mm,见专利CN200610123458. 1,CN200610035800. 2以及 CN200710031548. 2。解决薄板坯连铸连轧组织较细且不均匀,屈强比偏高的问题作为一个 很重要的问题被提出。
发明内容
[0021] 本发明的目的在于提供一种薄带连铸含硼耐候薄带钢及其制造方法,通过在耐大 气腐蚀钢的成份中添加微量元素硼,在薄带连铸带钢出带后,向带钢两侧采用喷洒干冰(固 态C02)的方式对带钢进行快速均匀冷却,提高冷却均匀性和冷却强度以及达到防氧化、降 低轧制温度的效果;同时采用奥氏体在线再结晶轧制,实现铸带热轧后的奥氏体在线再结 晶;然后采用防氧化快速冷却方法可以减小带钢表面氧化皮厚度,改善带钢温度均匀性,提 高带钢表面质量。薄带连铸在生产此类钢种时,能够解决组织不均匀、屈强比偏高、成型性 不好的问题,从而满足冷轧基料和"以热代冷"产品的使用要求。
[0022] 为达到上述目的,本发明的技术方案是:
[0023] 一种含硼耐候薄带钢,其化学成分重量百分比为:C :0. 02-0. 06%,Si:0. 2-0. 4%, Mn :0. 6-1. 5%, P :0. 07-0. 22%, S ^ 0. 008%,N:0. 004-0. 010%, Al :0. 01-0. 06%, Cu : 0• 20-0. 8%,Cr:0• 3-0. 8%,Ni :0• 12-0. 4%,B: 0• 001-0. 006%,其余为Fe和不可避免的杂 质。
[0024] 在本发明钢的化学成分设计中:
[0025] C:C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化来提高钢的强 度。C是奥氏体转变过程中析出渗碳体必不可少的元素,因此C含量的高低在很大程度上决 定钢的强度级别,即较高的C含量对应较高的强度级别。但是,由于C的间隙固溶和析出对 钢的塑性和韧性有较大危害,而且,过高的C含量对焊接性能不利,因此C含量不能过高,钢 的强度通过适当添加合金元素来弥补。故本发明采用的C含量范围是0. 02-0. 06%。
[0026] Si:Si在钢中起固溶强化作用,且钢中加Si能提高钢质纯净度和脱氧,但Si含量 过高会导致可焊性和焊接热影响区韧性恶化。故本发明采用的Si含量范围是0. 2-0. 4%。
[0027] Mn:Mn是价格最便宜的合金元素之一,它能提高钢的淬透性,在钢中具有相当大 的固溶度,通过固溶强化提高钢的强度,同时对钢的塑性和韧性基本无损害,是在降低C含 量情况下提高钢的强度最主要的强化元素。但Mn含量过高会导致可焊性和焊接热影响区 韧性恶化。故本发明采用的Mn含量范围是0. 6-1. 5%。
[0028] P :P可显著提高钢的耐大气腐蚀性能,并且能显著细化奥氏体晶粒。但高含量的 P容易在晶界偏析,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此目 前在传统工艺生产的高强耐大气腐蚀钢中,P大多作为杂质元素来控制,含量很低。
[0029] 在薄带连铸工艺中,铸带的凝固和冷却速率极快,可有效抑制P的偏析,从而可有 效避免P的劣势,充分发挥P的优势,从而提高钢的耐大气腐蚀性能,并通过细化奥氏体晶 粒促进奥氏体再结晶。故在本发明中,采用较传统工艺生产的耐大气腐蚀钢更高的P含量, 范围是 0. 07-0. 22%。
[0030] S:在通常情况下S也是钢中有害元素,使钢产生热脆性,降低钢的延展性和韧性, 在轧制时造成裂纹。S还会降低焊接性能和耐腐蚀性。故在本发明中,S是作为杂质元素来 控制,其含量范围是< 0. 008%。
[0031] Al:A1是为了脱氧而加入钢中的元素,添加0. 01-0. 06%含量的Al有利于细化晶 粒,改善钢材的强韧性能。
[0032] N:与C元素类似,N元素可通过间隙固溶提高钢的强度,本发明要利用钢中的N跟 B作用生成BN的析出相,需要钢中有一定的N含量。但是,N的间隙固溶对钢的塑性和韧性 有较大危害,自由N的存在会提高钢的屈强比,因此N含量也不能过高。本发明采用的N含 量范围是 〇• 004-0. 010%。
[0033] Cr:Cr可有效提高钢的耐大气腐蚀性能,提高钢的淬透性,提高钢的强度,但其含 量高会恶化钢的焊接性能。故本发明采用的Cr含量范围是0. 3-0. 8%。
[0034] Ni:Ni能提高淬透性,显著改善钢材的低温韧性,是提高钢的耐候性和强韧性的 有利元素,不会对钢的可焊性和焊接热影响区韧性造成不利影响。Ni还能有效阻止Cu的热 脆。但Ni含量高会显著提高钢材成本。故本发明采用的Ni含量范围是0. 12-0. 4%。
[0035] Cu :Cu是提高钢的耐大气腐蚀性能的关键元素,与P配合使用效果更为显著。Cu还 能发挥固溶强化作用提高钢的强度,而对焊接性能没有不利的影响。但Cu是易偏析元素, 容易引起钢材热加工时的热脆。因此目前在传统工艺生产的耐大气腐蚀钢中,Cu含量一般 不超过0. 6%。
[0036] 在薄带连铸工艺中,铸带的凝固和冷却速率较快,可有效抑制Cu的偏析,从而可 有效避免Cu的劣势,充分发挥Cu的优势。故在本发明中,采用较传统工艺生产的耐大气腐 蚀钢更高的Cu含量,范围是0. 20-0. 8%。
[0037] B :B在钢中的显著作用是极微量的硼就可以使钢的淬透性成倍增加,B可以在高 温奥氏体中优先析出粗大的BN颗粒从而抑制细小AlN的析出,减弱细小AlN对晶界的钉 扎作用,提高晶粒的生长能力,从而粗化奥氏体晶粒;同时还有一部分固溶B偏聚在奥氏体 晶界抑制了铁素体形核,降低了铁素体的形核率,从而达到降低屈强比、提高成型性能的作 用;另外B与N的结合可以有效防止晶界低熔点相B2O3的出现。
[0038] B是活泼易偏析元素,容易在晶界偏聚,传统工艺生产含B钢时,B含量一般控制 的非常严格,一般在〇. 001-0. 003%左右;而在薄带连铸工艺中,凝固和冷却速率较快,可有 效抑制B的偏析,固溶更多的B含量,因此B的含量可以适当放宽;还可以通过合理的工艺 控制生成粗大的BN颗粒,抑制细小的AlN析出,起到固氮的作用,解决薄带连铸生产的带钢 屈强比偏高、成型性不好的劣势。故在本发明中,采用较传统工艺更高的B含量,范围是 0.001-0. 006%。
[0039] 本发明的一种含硼耐候薄带钢的制造方法,其包括如下步骤:
[0040] a)冶炼
[0041] 按照下述化学成分冶炼,钢水化学成分重量百分比为:C:0.02-0.06%, Si:0.2-0.4%,Mn:0.6-1.5%,P:0.07-0.22%,S^O. 008%,N:0.004-0.010%,Al: 0• 01-0. 06%,Cu:0• 20-0. 8%,Cr:0• 3-0. 8%,Ni:0• 12-0. 4%,B:0• 001-0. 006%,其余为Fe和 不可避免的杂质;
[0042] b)双棍薄带连铸
[0043] 采用双辊薄带连铸,将钢水连铸形成1-5_厚的铸带,结晶辊直径在500-1500_, 浇铸速度60-150m/min;
[0044] c)二次冷却
[0045] 在薄带连铸铸带出结晶辊后,铸带温度在1420_1480°C,在铸带的两侧沿铸带 宽度方向设置二冷装置,二冷装置的开始冷却点设置在离两结晶辊辊缝隙最小处nip点 250-750mm,整个二冷冷却段长度200-500mm;铸带出结晶辊后立即向铸带两侧采用喷洒干 冰的方式对铸带进行快速均匀冷却至1280°C以下,冷却速率200-300°C/s;
[0046] d)在线热轧
[0047] 二次冷却后的铸带出密闭室后经夹送辊送至轧机中轧制成0. 7-2. 5_厚度的带 钢,控制轧制温度为1050-1200°C,乳压下率为20-50% ;
[0048]e)带钢轧后冷却
[0049] 对在线热轧后的带钢进行轧后冷却,冷却采用防氧化快速冷却的方式,将干冰直 接喷射在带钢表面,冷却速率为80-200°C/s;
[0050] f)带钢卷取
[0051] 冷却后的热轧带钢经切头剪切除质量较差的头部后,直接进行卷取成卷,卷取温 度为500-600°C;经过上述制造过程,最终的薄带连铸含B耐大气腐蚀钢带材的性能达到屈 服强度460MPa以上,抗拉强度达到600MPa以上,延伸率达到18%以上,屈强比低于0. 8。
[0052] 进一步,所述的热轧轧制温度1050-1150°C。所述的热轧压下率30-50%。所述的 热轧后钢带厚度为I. 2-2. 0mm。
[0053] 又,所述的二次冷却在铸带下密闭室内进行,采用强化冷却方法将干冰直接喷射 在铸带表面,其中干冰与惰性气体或氮气混合体积比例为5:1~10:1,以0. 5~5MPa的压力直 接将干冰喷射在铸带表面。
[0054] 在线热轧后的带钢轧后冷却采用防氧化快速冷却的方式将干冰直接喷射在带钢 表面,其中干冰与惰性气体或压缩氮气混合体积比例为5:1~10:1,以0. 2-3MPa的压力直接 将干冰喷射在带钢表面。
[0055] 另外,所述的卷取采用双卷取机形式。
[0056] 在本发明制造方法中:
[0057] 采用薄带连铸生产上述成份的高强度耐大气腐蚀钢时,带钢表面会富集一层耐腐 蚀性元素,如Cu、P、Cr等,可以大大提高带材的抗腐蚀性能。富集在基体表面层的耐腐蚀元 素,它们会由于酸洗遭受破坏而变薄,从而影响板带材的抗腐蚀性能,因此在后续的工序中 十分注重带钢表面氧化皮的厚度控制。
[0058] 二次冷却向铸带两侧采用喷洒干冰(固态CO2)的方式对铸带进行快速均匀冷却至 1280°C以下,可以显著提高带钢的冷却均匀性和冷却强度,促进钢中BN的析出。
[0059] 上述二次冷却在铸带下密闭室内进行,采用的强化冷却方法将干冰(固态CO2)直 接喷射在铸带表面,以加速铸带的冷却,一方面起到了降低铸带温度的作用,另一方面固态 的干冰喷到热态的铸带表面会气化,在铸带表面形成高密度的雾状气体,二氧化碳(CO 2)属 于一种惰性气氛,能够包覆在铸带表面,起到铸带防氧化的作用,从而有效控制了铸带表面 氧化皮的生长。
[0060] 本发明设计的铸带二次冷却涉及到的BN析出相的理论基础:
[0061] 钢中硼与氮、铝和氮在Y-Fe中的热力学方程如下:
[0062] BN=B+N;Log[B] [N] =-13970/T+5. 24 (I)
[0063] A1N=A1+N;Log[Al] [N] = -6770/T+l. 03 (2)
[0064] 如图2所示,钢中BN的开始析出温度在1280°C左右,980°C时BN的析出趋于平衡, 而此时AlN的析出才刚刚开始(A1N的析出温度在980°C左右),从热力学上讲,BN的析出要 优先于A1N。因此本发明通过合理的工艺控制手段,促进B与N的结合,生成粗大的BN颗 粒,抑制细小的AlN析出。
[0065] 通常,薄带连铸下密闭室内不采用任何冷却措施,长期浇铸情况下,密闭室的环境 温度高达800°C以上,钢结构的密闭室下框架和密闭室墙壁在长期的高温下承重服役,会发 生变形,影响整个机械框架结构的强度和精度,还容易发生下框架焊接接口处的开裂等危 险。因此很多厂家在密闭室的冷却方面做了很多工作,比如新日铁的光厂薄带连铸就报导 了下密闭室墙壁采用水冷壁的形式达到冷却的目的,具体方案是下密闭室墙壁采用两块钢 板焊接,中间通循环水;美国Nucor的Castrip(见专利US5960856A)采用"水冷枕"的形式 达到冷却的目的,具体方案是在离带钢稍近的地方设置水冷枕,里面通循环水,形式就如在 大的房间里(密闭室)设置一个小隔热房间(水冷枕围成),带钢穿过水冷枕围成的小隔热房 间,温度被吸收,在带钢冷却的同时,起到对大房间(密闭室)的温降作用。本发明在密闭室 内高压喷洒干冰,采用干冰自身的"升华"物理特性,可以吸收大量的热量,在对带钢实现急 速冷却的同时,对密闭室的温度也起到有效降温的作用;密闭室温度的有效降低,对整个密 闭室的下框架(一般是钢结构)及密闭室墙壁起到冷却作用,可以有效防止密闭室下框架的 变形。
[0066] 在线热轧,控制轧制温度1050-1200°C,目的是保证热轧后奥氏体发生完全再结 晶。控制热轧压下率为20-50%,热轧压下量增加会促进奥氏体再结晶。
[0067] 通过二次冷却实现相对较低的轧制温度1050-1200°C,相对较低的轧制温度,对 于轧制来说是有利的,乳制温度越低,越有利于轧制板形质量的控制,在常规薄带工艺过 程中,乳机前的温度往往高达1200°C以上,甚至1250°C以上,此时的带钢非常软,无法施 加较大的轧制力,很难有效轧制。在保证奥氏体在线再结晶的前提下,优选地,乳制温度 1050-1150°C。
[0068] 对在线热轧后的带钢进行轧后冷却,冷却采用防氧化快速冷却的方式,防氧化快 速冷却装置将干冰(固态CO2)直接喷射在带钢表面,以加速带钢的冷却,一方面起到了降低 带钢温度的作用,另一方面CO2属于一种惰性气氛,其比重比氧大,能够包覆在带钢表面,起 到带钢防氧化的作用,从而有效控制了热轧带钢表面氧化皮的生长。该种冷却方式可以避 免传统层流冷却带来的问题,使带钢表面温度均匀下降,提高带钢温度均匀性,从而达到 均匀化内部微观组织的效果;同时冷却均匀,可以提高带钢的板形质量;减少带钢表面的 氧化皮厚度,便于作冷轧基料时的后续酸洗。
[0069] 本发明采用的是高速气体夹裹干冰(固态CO2)喷射带钢表面用于破磷和强化冷 却,由于干冰接触到热的带钢会快速吸收热量后会变成CO2气体,所以不会嵌入带钢表面 而影响带材表面质量和成分;另外,由于干冰的快速吸热作用,会对带材起到了快速冷却作 用;更重要的是,干冰挥发后变成气体二氧化碳(CO2),隔绝了与氧气(O2)的接触,限制带材 表面的氧化皮进一步生成。
[0070] 冷却后的热轧带钢经切头剪切除质量较差的头部后,直接进行卷取成卷。控制热 轧带的卷取温度为500-600°C,以使热轧带具有贝氏体的组织特征。卷取机采用双卷取形 式,保证带钢的连续生产。
[0071] 经过上述制造过程,最终的薄带连铸含B耐大气腐蚀钢带材的性能达到屈服强度 460MPa以上,抗拉强度达到600MPa以上,延伸率达到18%以上,屈强比低于0. 8。
[0072] 耐大气腐蚀钢是一类比较特殊的产品,要求其具有较好的强塑性匹配,较低的屈 强比,较高的延伸率,满足成形加工工艺的要求。利用薄带连铸工艺生产耐大气腐蚀钢产 品,同样具有薄板坯连铸出现的问题:比如屈服强度高,延伸率偏低,屈强比偏高,成型性不 好等问题;同时铸带粗大奥氏体晶粒的不均匀性,会导致奥氏体相变后所获得的最终产品 组织也很不均匀,从而导致产品的性能不稳定。因此本发明在耐大气腐蚀钢中添加B元素, 可以显著均匀化奥氏体晶粒组织,解决薄带连铸工艺过程中组织不均匀、屈强比偏高的问 题,从而满足冷轧基料的使用要求;同时易于折弯成型。另一方面,我们通过试验发现,在 1050-1200°C的温度范围内,热轧压下率大于20%,奥氏体就可以较容易地发生动态再结晶, 可以进一步达到均匀化组织,提高延伸率的目的,这点也将作为本发明的一个重要发明点。
[0073] 综上所述,利用薄带连铸技术生产含硼(B)的耐大气腐蚀钢,迄今为止尚未见报 导,归纳优点如下:
[0074] (1)省去了板坯加热、多道次反复热轧等复杂过程,对薄铸带直接进行一道次在 线热轧,生产成本大幅降低。
[0075] (2)铸带厚度通常在l-5mm,通过在线热轧至期望产品厚度,通常在l-3mm,薄规格 产品的生产不需要经过冷轧,直接"以热代冷";另一方面,由于厚度较薄,用于冷轧基料时, 可以大大降低后续冷轧减薄的道次,大大节约生产成本。
[0076] (3)添加B元素,可以解决薄带连铸工艺过程中组织不均匀、屈强比偏高的问题, 从而满足冷轧基料的使用要求;同时易于折弯成型。
[0077] (4)传统工艺板坯冷却过程中发生合金元素析出,板坯再加热时往往会由于合金 元素回溶不充分而降低合金元素利用率。薄带连铸工艺中,高温铸带直接热轧,所添加的合 金元素主要以固溶态存在,可提高合金利用率。
[0078] 综上所述,为了利用薄带连铸工艺生产具有较好的强塑性匹配、屈强比较低的耐 大气腐蚀钢,在本专利中添加合适的元素,在薄带连铸带钢出带后,向带钢两侧采用高压喷 洒干冰(固态CO2)的方式对带钢进行快速均匀冷却,提高冷却均匀性和冷却强度以及达到 防氧化、降低轧制温度的效果;乳制后的带钢采用防氧化快速冷却方式可以减小带钢表面 氧化皮厚度,改善带钢温度均匀性,提高带钢表面质量。薄带连铸在生产此类钢种时,能够 解决薄带连铸工艺过程中组织不均匀、屈强比偏高、成型性不好的问题,从而满足冷轧基料 和"以热代冷"产品的使用要求。
[0079] 本发明的主要优点:
[0080] 1.采用薄带连铸工艺生产耐大气腐蚀钢带材,进行热轧后直接供给市场使用,达 到满足冷轧基料要求和"以热带冷"目的,可以显著提高板带材的性价比。
[0081] 2.本发明采用添加微量的硼元素,达到有效降低带钢屈强比,提高带钢成型性能 的效果,生产成本较传统和薄板坯生产工艺明显低廉。
[0082] 3.采用本工艺可以大规模使用废钢原料,对钢中P、Cu的含量可以大胆放宽,可以 降低生产成本,提高板带的力学性能和耐腐蚀性能。
[0083] 4.采用二次冷却装置来实现相对较低的轧制温度,有利于在线热轧,有利于轧制 板形质量的控制;此外利用干冰"升华"的物理吸热作用,起到有效降低密闭室温度和防止 密闭室钢结构框架变形的作用。
[0084] 5.合理灵活的工艺参数控制拓宽了生产线的工艺空间,可以满足不同产品规格的 生产需要。
[0085] 本发明与已有技术的区别和改进之处:
[0086] 中国专利CN1633509A提到了一种薄带连铸所生产含铜碳钢产品的方法,该专利 强调要对这种的带钢在400-700°C范围内进行退火、回火等热处理工序使铜元素在带钢中 沉淀或再结晶。与本发明相对比,本发明成份中添加了微量元素B,具有明显区别特征,同时 后续处理工艺完全不一样,而且这种方法中没有涉及带钢出带后的快速冷却方法。
[0087] 中国专利CN200580009354. 1中提到的一种高铜低合金薄带的制造方法,其技术 特点是,在进入轧机前对所述的带钢在非氧化气氛中实施冷却至低于1080°C以防止带钢发 生"热脆"现象。与本发明相比,其权利要求范围中的铜含量与本发明有所不同,且本发明 中添加了微量元素B,对带钢出带后的一系列后续处理方法也有所不同。
[0088] 专利EP0830223A1/CN1180325A/US5960856A/DE69700737D中提到一种浇铸黑色 金属带的方法及装置,在带钢凝固出双辊后,设置一对用于带钢冷却的非接触式吸热器,用 来吸收带钢完全凝固后释放出来的凝固潜热。该专利与本发明相比,主要区别在于冷却强 度上,本发明采用高压喷洒干冰的方法,直接与带钢接触强制冷却,可以实现200°C/s以上 的冷却强度,远远高于非接触式吸热器的冷却效果,有效降低轧制温度,有利于轧制板形质 量的提1¾。
[0089] 中国专利CN1472019A公开了一种薄带连铸方法和装置,在结晶辊出口处,对高温 铸带沿宽度方向喷吹气体对铸带实现冷却。该专利虽然能够对铸带起到冷却作用,但是采 用气冷的方式,冷却速率的控制范围有一定限制,本专利采用高压喷洒干冰的方法,直接与 带钢接触强制冷却,可以实现200°C/s以上的冷却强度,有效降低轧制温度,有利于轧制板 形质量的提商。
[0090] 日本专利JP-A-5-277654在结晶辊出口下端300-400mm增加了一对外径0200mm 的从动辊,通过从动辊与铸带的接触传热,达到对带钢的冷却作用。本发明与该方法采用的 手段完全不同,本发明是通过对带钢直接进行高压喷洒干冰的方法,带走带钢热量。专利 JP-A-5-277654的主要缺点是冷却强度有限,其次是结晶辊与小辊的速度匹配问题,如果 匹配不良,铸带易打折,生产操作不方便,控制不灵活。
附图说明
[0091] 图1为本发明生产工艺布置示意图。
[0092] 图2为BN、AlN析出的热力学曲线示意图。
具体实施方式
[0093] 参见图1,本发明的工艺过程:将钢水经大包1,通过大包长水口 2、中间包3和布 流装置4直接浇注在一个由两个相对转动并能够快速冷却的结晶辊5a、5b和侧封板装置 6a、6b围成的烙池7中,钢水在结晶棍5a、5b旋转的周向表面凝固,进而形成凝固壳并逐渐 生长随后在两结晶辊辊缝隙最小处(nip点)形成l-5mm厚的铸带11。铸带经过在密闭室 10内的二冷装置8,出带后立即向铸带11两侧喷洒干冰(固态CO2),控制其冷却速率,使铸 带11快速均匀冷却至1280°C以下。然后通过摆动导板9、夹送辊12将铸带送至热轧机13, 热轧后形成〇. 7-2. 5_的热轧带,再经轧后防氧化快速冷却装置14,将干冰(固态CO2)直接 喷射在钢带表面,以加速钢带的冷却,控制冷却速率,经输送辊道15至飞剪装置16切头之 后,切头沿着飞剪导板17掉入飞剪坑18中,切头后的热轧带进入卷取机19、19'进行卷取。 将钢卷从卷取机上取下后,自然冷却至室温。
[0094] 上述二次冷却所在的密闭室10内不用另外通惰性气体保护铸带,直接利用喷洒 干冰挥发出来的〇)2气体实现对铸带的防氧化保护。在密闭室10上面设置气体搜集装置 20,以用来搜集过多的高密度二氧化碳气体。
[0095] 本发明实施例化学成分如表1所示。工艺参数以及热轧带冷却到室温后的拉伸性 能见表2,耐大气腐蚀性能测试结果见表3。
[0096] 综上所述,利用薄带连铸工艺技术按本发明提供的钢种成分设计范围制造的含硼 耐大气腐蚀钢,屈服强度达到480MPa以上,抗拉强度达到600MPa以上,延伸率达到18%以 上,屈强比低于0.8,冷加工折弯性能合格;耐大气腐蚀性能对比结果亦表明发明钢种的耐 大气腐蚀性能与传统耐候钢SPA-H相当。
[0097] 通过本发明,可以得到屈强比较低的钢种,有效解决薄带连铸生产的钢种普遍存 在的组织不均匀、屈强比偏高、难成型,不能满足冷轧用料要求的问题。该方法生产的耐大 气腐蚀薄带钢,满足冷轧基料使用要求,也可以"以热代冷"直接使用。
[0098] 表1实施例钢的化学成分(wt. %)
[0100] 表2实施例钢的工艺参数及产品性能
[0101]
Claims (6)
1. 一种含硼耐候薄带钢的制造方法,其包括如下步骤: a) 冶炼 按照下述化学成分冶炼,钢水化学成分重量百分比为:C:0. 02-0. 06 %,Si: 0. 2-0. 4 %,Mn:0. 6-1. 5 %,P:0. 07-0. 22 %,S^ 0. 008 %,N:0. 004-0. 010 %,A1 : 0• 01-0. 06%,Cu:0• 20-0. 8%,Cr:0• 3-0. 8%,Ni:0• 12-0. 4%,B:0• 004-0. 006%,其余为 Fe和不可避免的杂质; b) 双棍薄带连铸 采用双辊薄带连铸,将钢水连铸形成l_5mm厚的铸带,结晶辊直径在500-1500mm,浇铸 速度 60_150m/min; c) 二次冷却 在薄带连铸铸带出结晶辊后,铸带温度在1420-1480°C,在铸带的两侧沿铸带宽度方向 设置二冷装置,二冷装置的开始冷却点设置在离两结晶辊辊缝隙最小处nip点250-750mm, 整个二冷冷却段长度200-500mm;铸带出结晶辊后立即向铸带两侧采用喷洒干冰的方式对 铸带进行快速均匀冷却至1280°C以下,冷却速率200-300°C/s;所述的二次冷却在铸带下 密闭室内进行,采用强化冷却方法将干冰直接喷射在铸带表面,其中干冰与惰性气体或氮 气混合体积比例为5:1〜10:1,以0. 5〜5MPa的压力直接将干冰颗粒喷射在铸带表面; d) 在线热轧 二次冷却后的铸带出密闭室后经夹送辊送至轧机中轧制成〇. 7-2. 5_厚度的带钢,控 制轧制温度为1050-1200°C,乳压下率为20-50% ; e) 带钢轧后冷却 对在线热轧后的带钢进行轧后冷却,冷却采用防氧化快速冷却的方式,将干冰直接喷 射在带钢表面,冷却速率为80-200°C/s; f) 带钢卷取 冷却后的热轧带钢经切头剪切除质量较差的头部后,直接进行卷取成卷,卷取温度为 500-600°C;经过上述制造过程,最终的薄带连铸含B耐大气腐蚀钢带材的性能达到屈服强 度460MPa以上,抗拉强度达到600MPa以上,延伸率达到18%以上,屈强比低于0. 8。
2. 如权利要求1所述的含硼耐候薄带钢的制造方法,其特征是,所述的热轧轧制温度 1050-1150°C。
3. 如权利要求1所述的含硼耐候薄带钢的制造方法,其特征是,所述的热轧压下率 30-50%。
4. 如权利要求1所述的含硼耐候薄带钢的制造方法,其特征是,所述的热轧后带钢厚 度为 1. 2-2. 0mm。
5. 如权利要求1所述的含硼耐候薄带钢的制造方法,其特征是,在线热轧后的带钢轧 后冷却采用防氧化快速冷却的方式将干冰直接喷射在带钢表面,其中干冰与惰性气体或压 缩氮气混合体积比例为5:1〜10:1,以0. 2-3MPa的压力直接将干冰喷射在带钢表面。
6. 如权利要求1所述的含硼耐候薄带钢的制造方法,其特征是,所述的卷取采用双卷 取机形式。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210317170.3A CN102787278B (zh) | 2012-08-31 | 2012-08-31 | 一种含硼耐候薄带钢及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210317170.3A CN102787278B (zh) | 2012-08-31 | 2012-08-31 | 一种含硼耐候薄带钢及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102787278A CN102787278A (zh) | 2012-11-21 |
CN102787278B true CN102787278B (zh) | 2015-04-22 |
Family
ID=47152862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210317170.3A Active CN102787278B (zh) | 2012-08-31 | 2012-08-31 | 一种含硼耐候薄带钢及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102787278B (zh) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102787280B (zh) * | 2012-08-31 | 2014-12-24 | 宝山钢铁股份有限公司 | 一种含硼耐候薄带钢及其制造方法 |
CN103042186A (zh) * | 2013-01-25 | 2013-04-17 | 青岛云路新能源科技有限公司 | 一种带材二次冷却成型的方法及其装置 |
CN104313491B (zh) * | 2014-10-29 | 2016-08-24 | 江苏沙钢集团有限公司 | 一种无p偏析的耐候钢热轧薄带及其制造方法 |
JP6572864B2 (ja) * | 2016-10-18 | 2019-09-11 | Jfeスチール株式会社 | 電磁鋼板製造用の熱延鋼板およびその製造方法 |
CN109332417B (zh) * | 2018-04-18 | 2020-10-30 | 江苏沙钢集团有限公司 | 一种薄规格花纹板及其生产方法 |
CN109865806A (zh) * | 2018-06-08 | 2019-06-11 | 江苏沙钢集团有限公司 | 一种薄带连铸345MPa级耐候钢及其生产方法 |
CN109881090A (zh) * | 2019-02-21 | 2019-06-14 | 江苏沙钢集团有限公司 | 一种低成本耐候钢及其生产方法 |
CN111719081A (zh) * | 2019-03-21 | 2020-09-29 | 本钢板材股份有限公司 | 一种集装箱用钢优化合金降低成本的控制方法 |
CN112522588B (zh) * | 2019-09-19 | 2022-06-28 | 宝山钢铁股份有限公司 | 一种薄带连铸生产高强薄规格花纹钢板/带的方法 |
CN112522643B (zh) * | 2019-09-19 | 2022-06-24 | 宝山钢铁股份有限公司 | 一种薄带连铸生产耐硫酸露点腐蚀用热轧钢板/带的方法 |
CN112522590A (zh) * | 2019-09-19 | 2021-03-19 | 宝山钢铁股份有限公司 | 一种高强高耐蚀钢及其制造方法 |
CN112522572A (zh) * | 2019-09-19 | 2021-03-19 | 宝山钢铁股份有限公司 | 一种双辊薄带连铸生产高耐蚀钢的方法 |
CN112522566B (zh) * | 2019-09-19 | 2022-10-21 | 宝山钢铁股份有限公司 | 一种薄规格花纹钢板/带及其制造方法 |
CN112522568A (zh) * | 2019-09-19 | 2021-03-19 | 宝山钢铁股份有限公司 | 一种耐火耐候钢板/带及其制造方法 |
CN112522595B (zh) * | 2019-09-19 | 2022-10-21 | 宝山钢铁股份有限公司 | 高强薄规格耐火耐候钢板/钢带及其生产方法 |
CN112522589B (zh) * | 2019-09-19 | 2022-10-21 | 宝山钢铁股份有限公司 | 一种含b耐硫酸露点腐蚀用热轧钢板/带及其制造方法 |
CN112522591B (zh) * | 2019-09-19 | 2022-03-18 | 宝山钢铁股份有限公司 | 一种薄带连铸生产高强高耐蚀钢的方法 |
CN112522573B (zh) * | 2019-09-19 | 2022-06-21 | 宝山钢铁股份有限公司 | 一种含b马氏体钢带及其制造方法 |
DE112020004433T5 (de) * | 2019-09-19 | 2022-06-23 | Baoshan Iron & Steel Co., Ltd. | Warmgewalztes Stahlblech/-band mit Beständigkeit gegen Schwefelsäure-Taupunktkorrosion und Herstellungsverfahren dafür |
CN112522597B (zh) * | 2019-09-19 | 2022-10-21 | 宝山钢铁股份有限公司 | 一种含硼高扩孔钢及其生产方法 |
CN111118387B (zh) * | 2019-12-13 | 2021-07-23 | 河钢乐亭钢铁有限公司 | 一种提高含硼钢连铸板坯表面质量的方法 |
CN111101070A (zh) * | 2020-02-17 | 2020-05-05 | 本钢板材股份有限公司 | 一种低温液体集装箱罐车用钢及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101684537A (zh) * | 2008-09-26 | 2010-03-31 | 宝山钢铁股份有限公司 | 一种薄带连铸生产耐大气腐蚀钢及其生产方法 |
CN102787280A (zh) * | 2012-08-31 | 2012-11-21 | 宝山钢铁股份有限公司 | 一种含硼耐候薄带钢及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0641636A (ja) * | 1992-07-22 | 1994-02-15 | Nippon Steel Corp | 耐震特性と耐候性に優れた鋼管または角管の製造方法 |
JPH0688132A (ja) * | 1992-09-09 | 1994-03-29 | Nippon Steel Corp | 降伏比が低く、かつ耐候性に優れた角管の製造方法 |
JPH06269839A (ja) * | 1993-03-23 | 1994-09-27 | Sumitomo Metal Ind Ltd | 鋼片のスケール除去法および圧延法 |
JP3549000B2 (ja) * | 2001-09-14 | 2004-08-04 | 三菱重工業株式会社 | 高燐鋼板製造装置及び高燐鋼板製造方法 |
CN101928894B (zh) * | 2009-06-25 | 2012-09-19 | 宝山钢铁股份有限公司 | 具有Cu2-xS弥散析出相的高强度耐大气腐蚀钢及其制造方法 |
-
2012
- 2012-08-31 CN CN201210317170.3A patent/CN102787278B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101684537A (zh) * | 2008-09-26 | 2010-03-31 | 宝山钢铁股份有限公司 | 一种薄带连铸生产耐大气腐蚀钢及其生产方法 |
CN102787280A (zh) * | 2012-08-31 | 2012-11-21 | 宝山钢铁股份有限公司 | 一种含硼耐候薄带钢及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102787278A (zh) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102787278B (zh) | 一种含硼耐候薄带钢及其制造方法 | |
CN102787280B (zh) | 一种含硼耐候薄带钢及其制造方法 | |
CN102787279B (zh) | 一种含硼微合金耐大气腐蚀钢及其制造方法 | |
CN102796956B (zh) | 一种冷成型用高强薄带钢及其制造方法 | |
CN102796969B (zh) | 一种含硼微合金耐大气腐蚀钢及其制造方法 | |
CN103302255B (zh) | 一种薄带连铸700MPa级高强耐大气腐蚀钢制造方法 | |
CN101845599B (zh) | 一种耐候钢及其制造方法 | |
CN102002628B (zh) | 一种低碳钢薄板的制造方法 | |
CN102199720B (zh) | 屈服强度400MPa以上级别低碳钢薄板及其制造方法 | |
CN103667895B (zh) | 一种冷成型用高强薄带钢的制造方法 | |
CN103305759B (zh) | 一种薄带连铸700MPa级高强耐候钢制造方法 | |
CN102796943B (zh) | 一种薄壁油桶用薄带钢及其制造方法 | |
CN103667878B (zh) | 一种薄壁油桶用薄带钢及其制造方法 | |
CN101684537B (zh) | 一种薄带连铸生产耐大气腐蚀钢及其生产方法 | |
CN103667969B (zh) | 一种利用低温在线静态再结晶生产钢带的方法 | |
CN103305755B (zh) | 一种薄带连铸低碳微合金高强钢带制造方法 | |
WO2021052314A1 (zh) | 耐火耐候钢板/带及其制造方法 | |
CN103305754B (zh) | 一种时效硬化薄带连铸低碳微合金钢带制造方法 | |
EP4033000A1 (en) | Martensitic steel strip and manufacturing method therefor | |
WO2021052319A1 (zh) | 高强薄规格高耐蚀钢及其制造方法 | |
WO2021052426A1 (zh) | 一种薄规格高耐蚀钢及其生产方法 | |
CN112522573B (zh) | 一种含b马氏体钢带及其制造方法 | |
CN112522578B (zh) | 一种薄规格耐火耐候钢板/带及其制造方法 | |
CN103667968B (zh) | 一种利用低温在线静态再结晶生产钢带的方法 | |
CN112522638A (zh) | 一种耐火耐候钢板/带及其生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |