CN103279950A - 一种基于行列噪声标准差的遥感图像信噪比评估方法 - Google Patents

一种基于行列噪声标准差的遥感图像信噪比评估方法 Download PDF

Info

Publication number
CN103279950A
CN103279950A CN2013101751766A CN201310175176A CN103279950A CN 103279950 A CN103279950 A CN 103279950A CN 2013101751766 A CN2013101751766 A CN 2013101751766A CN 201310175176 A CN201310175176 A CN 201310175176A CN 103279950 A CN103279950 A CN 103279950A
Authority
CN
China
Prior art keywords
noise
ratio
signal
remote sensing
noise ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101751766A
Other languages
English (en)
Other versions
CN103279950B (zh
Inventor
李传荣
朱博
王新鸿
李晓辉
马灵玲
唐伶俐
李子扬
胡坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Opto Electronics of CAS
Original Assignee
Academy of Opto Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Opto Electronics of CAS filed Critical Academy of Opto Electronics of CAS
Priority to CN201310175176.6A priority Critical patent/CN103279950B/zh
Publication of CN103279950A publication Critical patent/CN103279950A/zh
Application granted granted Critical
Publication of CN103279950B publication Critical patent/CN103279950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种基于行列噪声标准差的遥感图像信噪比评估方法,属于遥感图像处理领域。随着对遥感图像信噪比研究的深入,往往需要先分析遥感图像的行、列噪声再计算整幅遥感图像信噪比(或者噪声)。简单地将行、列方向平均噪声的平方平均数作为整体噪声在不同的情况下会出现较大的误差。本发明基于列、行噪声标准差进行特定方式的整合,从而估计遥感图像噪声标准差,提高了数据利用率,降低了重复计算整幅图像信噪比的时间,控制了计算成本。通过实验验证,该方法所得结果误差小,能够较真实的反映整幅遥感图像信噪比情况。

Description

一种基于行列噪声标准差的遥感图像信噪比评估方法
技术领域
本发明涉及一种基于行列噪声标准差的遥感图像信噪比评估方法,属于遥感图像处理领域。
背景技术
遥感图像数据的信噪比是评价遥感传感器获取数据质量的一项重要指标,图像数据的信噪比能够直接反映遥感图像中平均信号与噪声水平的相对大小以及景物的层次和清晰度,并直接关系到相机的分辨力;同时在很大程度上间接反映了遥感仪器的信噪比性能。而评估遥感图像信噪比的关键在于估算遥感图像的噪声。在光学遥感中,图像噪声主要由周期性噪声(系统噪声)和随机噪声构成,其中周期性噪声可以由频域变换滤波有效地消除,而随机噪声的影响一直存在,这种随机噪声一般认为是加性噪声,即高斯白噪声。对于推扫式成像的传感器,0级数据主要是飞行方向(列方向)受到高斯噪声的影响,而行方向受到CCD探元响应不均匀的影响;对于摆扫式成像的传感器,0级数据受到噪声的影响与推扫式相反;对于面阵传感器,主要受到二维随机噪声的影响。通过分析遥感图像的列噪声、行噪声可以反映传感器CCD探元的信噪比性能以及探元之间响应差异,从而更准确了解传感器性能和图像信噪比,为下一步的图像处理做准备。
随着研究工作深入,需要先分析遥感图像列、行信噪比(或者噪声)情况,然后再计算整幅遥感图像信噪比(或者噪声)。大部分传统的信噪比评估方法的算法原理较复杂,对整幅遥感图像的信噪比进行评估分析所需时间较长。而列、行信噪比是基于图像数据计算所得,那么与整幅图像的信噪比有一定的计算关系,即通过列、行信噪比整合出图像信噪比。这种方法会减少重复计算量、提高效率并降低计算时间,通过一次计算既能获得列、行信噪比性能,又能计算出整幅图像信噪比,从而控制了计算成本。
目前计算图像信噪比是通过评估遥感图像中较大的均匀区域的信噪比而作为图像信噪比。如何获取图像中均匀区域以及选择何种信噪比评估方法不是本技术的研究重点。本技术主要是解决如何通过评估所得的列、行信噪比(或噪声标准差)整合出图像信噪比。然而许多学者将列、行方向平均信噪比(或噪声标准差)的平方平均数作为图像信噪比(或图像噪声标准差),这种方法虽然简单但是不够严谨,不同的情况下会出现较大的误差。
对于整幅图像来说,噪声标准差只表现为一个值,那么信噪比即为:
SNR = S ‾ / σ - - - ( 1 )
或者
SNR = 20 · log 10 ( S ‾ / σ ) (或 SNR = 10 · log 10 ( S ‾ / σ ) )        (2)
其中
Figure BSA00000893689400024
为图像均值,σ为图像噪声标准差,SNR(Signal-to-Noise ratio)为图像信噪比。
发明内容
本发明的目的是针对上述背景技术中的不足,提出了一种基于行列噪声标准差的遥感图像信噪比评估方法。
本发明方法包含如下四个步骤:
步骤一、利用已有信噪比评估方法计算待处理图像的列、行噪声标准差;
步骤二、利用步骤一中得到的列、行噪声标准差计算列、行等效噪声标准差;
步骤三、选择列、行等效噪声标准差中的值较大的一个作为优选的图像噪声标准差;
步骤四、利用步骤三中得到的优选的噪声标准差计算图像信噪比。
对比现有技术,本发明的特点在于:本发明方法基于列、行噪声标准差进行特定方式的整合,从而估计遥感图像噪声标准差。与背景技术中提到的针对整幅图像进行评估的信噪比算法相比,本方法主要有以下两点优势:
1.本方法利用列、行噪声标准差的结果来整合出图像噪声标准差,提高了数据利用率,降低了重复计算整幅图像信噪比的时间,控制了计算成本。
2.本方法可以分析遥感图像中,列、行噪声对整幅图像噪声评估的影响比重,为进一步对传感器信噪比以及图像信噪比分析研究提供支持,也为下一步的图像处理做准备。
附图说明
图1基于行列噪声标准差的遥感图像信噪比评估方法流程图;
图2高光谱第50波段0级数据;
图3(a)情况1下采用本方法计算整幅模拟图像所得信噪比相对误差图;
图3(b)情况1下分别采用本方法、方式1、方式2计算整幅图像所得信噪比相对误差图(“*”为新方法,“○”为方式2,“△”为方式1);
图4(a)情况2下采用本方法计算整幅模拟图像所得信噪比相对误差图;
图4(b)情况2下分别采用本方法、方式1、方式2计算整幅图像所得信噪比相对误差图(位于下方的散点为新方法,位于上方的散点为重合的方式2与方式1);
图5(a)情况3下采用本方法计算整幅模拟图像所得信噪比相对误差图;
图5(b)情况3下分别采用本方法、方式1、方式2计算整幅图像所得信噪比相对误差图(“*”为新方法,“○”为方式2,“△”为方式1);
图6(a)情况4下采用本方法计算整幅模拟图像所得信噪比相对误差图;
图6(b)情况4下分别采用本方法、方式1、方式2计算整幅图像所得信噪比相对误差图(“*”为新方法,“○”为方式2,“△”为方式1);
图7(a)采用本方法计算实测整幅图像所得信噪比结果图(两者曲线重合);
图7(b)分别采用本方法、方式1、方式2计算实测整幅图像所得信噪比结果图(图中位于下方曲线为新方法与整幅图像计算方式重合曲线,位于上方曲线为方式1与方式2重合曲线);
图7(c)分别采用本方法、方式1、方式2计算整幅图像所得信噪比相对误差图(图中位于下方曲线为新方法曲线,位于上方曲线为方式1与方式2的重合曲线);
图8(a)采用本方法计算面阵传感器模拟图像数据所得信噪比相对误差图;
图8(b)分别采用本方法、方式1、方式2计算面阵传感器模拟图像数据所得信噪比相对误差图(“*”为新方法,“○”为方式2,“△”为方式1);
图9实验所用300幅面阵图像之第100幅图像;
图10(a)采用本方法计算整幅面阵传感器实测图像数据所得信噪比相对误差图;
图10(b)分别采用本方法、方式1、方式2计算整幅面阵传感器实测图像数据所得信噪比相对误差图(图中位于下方散点为新方法,位于上方散点为方式2与方式1的重合效果)。
具体实施方式
下面结合附图1和实施例对本发明进行解释。
一般认为遥感图像是由信号与随机噪声(该噪声与信号不相关)构成,可表达为:Z=S+N。其中,Z为遥感图像数据DN值,S为信号所表现的DN值,N为噪声所表现的DN值。则遥感图像数据DN值的噪声标准差可表示如式(3):
σ ( Z ) = σ ( S + N ) = σ ( S ) 2 + σ ( N ) 2 + 2 · cov ( S , N ) - - - ( 3 )
由于S与N是不相关的,所以cov(S,N)=0,并且σ(S)=0,所以式(3)可简化为:
σ ( Z ) = σ ( S + N ) = σ ( N ) 2 - - - ( 4 )
由式(4)可知,遥感图像的噪声标准差取决于随机噪声的标准差。对于N来说,是由列、行两个方向噪声构成,所以σ(N)可表达为:
σ(N)=σ(Ncol,Nrow)            (5)
本发明方法包含如下四个步骤:
步骤一、利用已有的信噪比评估方法计算待处理图像的列、行噪声标准差;
为了保证计算结果的真实、可信,这里的信噪比评估方法要根据图像以及算法适用性、准确性等因素甄选。
假设图像尺寸为n列,m行,即n×m。利用信噪比评估方法计算出列、行噪声标准差,得到式(6)和式(7)列方向和行方向噪声标准差矩阵。
列方向噪声(Ncol)的标准差矩阵:
σ ( N col ) = σ col = [ σ 1 c . . . σ n c ] - - - ( 6 )
行方向噪声(Nrow)的标准差矩阵:
σ ( N row ) = σ row = [ σ 1 r . . . σ m r ] - - - ( 7 )
其中,σcol代表列方向标准差的集合,代表列方向第n列噪声标准差;σrow代表行方向标准差的集合,
Figure BSA00000893689400046
代表行方向第m行噪声标准差。
步骤二、利用步骤一中得到的列、行噪声标准差分别按式(8)和式(9)计算列、行等效噪声标准差。
在实验过程中发现,列方向噪声会对行方向计算噪声产生影响,同理,行方向噪声也会对列方向计算噪声产生影响,即
Figure BSA00000893689400051
是两者相互影响后的结果,而图像所表现出的噪声效果实际上是一个平均水平的表现,所以分别按式(8)和式(9)计算列、行等效噪声标准差。
列方向等效噪声标准差:
σ col ‾ = Σ i = 1 n ( σ i c ) 2 / n - - - ( 8 )
行方向等效噪声标准差:
σ row ‾ = Σ j = 1 m ( σ j r ) 2 / m - - - ( 9 )
其中,为列方向等效噪声标准差;
Figure BSA00000893689400056
为行方向等效噪声标准差。
步骤三、选择列、行等效噪声标准差中的一个作为图像优选的噪声标准差;
在实验过程中也发现图像噪声效果与列、行等效噪声标准差中的较大值接近。于是,本方法选取
Figure BSA00000893689400058
中较大的值作为图像的噪声标准差值。即如果 σ col ‾ ≥ σ row ‾ , σ ( Z ) = σ col ‾ , 反之,则 σ ( Z ) = σ row ‾ .
步骤四、利用步骤三中得到的优选的噪声标准差σ(Z),按式(10)计算图像信噪比。
SNR = S Z ‾ / σ ( Z ) - - - ( 10 )
实施例
下面结合一个实例对本发明作进一步说明。
根据传感器工作方式,可以将主流的光学遥感传感器分为两类:线阵推扫式/摆扫式传感器和面阵摄影式传感器。本实验中将它们分别简称为线阵传感器和面阵传感器,其中线阵传感器以推扫式为例。
●对于线阵传感器,实验中提出以下几种情况进行信噪比评估分析。
1.行方向不加入噪声,列方向增加不同的一维随机噪声
2.行方向不加入噪声,列方向增加相同的一维随机噪声
3.两个方向(行/列)均增加不同的一维随机噪声
4.列方向增加不同的一维随机噪声,行方向增加相同的一维随机噪声
●对于面阵传感器,实验中模拟图像加入的噪声为二维随机噪声
首先对线阵传感器进行模拟实验数据信噪比分析,然后再对面阵传感器进行信噪比评估分析,方式与线阵一致。模拟图像是尺寸为100×100,信号也为100的均匀场景图像。噪声则为均值为零的随机噪声。计算信噪比真值采用的方法是方差法(使用与均匀场景的图像)。实测数据选取的是无人机线阵光学载荷所获取的灰白靶标高光谱数据,具体信息和图像如表1和图2所示。
表1所选无人机高光谱图像数据信息
获取时间 图像尺寸 存储比特 量化比特 波段数 均匀区域类型 产品等级
2011.9 1024×1024 16 12 128 灰白靶标 0
●线阵传感器
分析过程中引入了两种噪声标准差整合方式用于与本技术方案所提出的新方法进行比较分析。为表述方便,这两种方式分别记作:方式1和方式2,公式如下所示。
方式1:
σ ‾ col = Σ i = 1 n σ i c / n
σ ‾ row = Σ i = 1 m σ i r / m
σ best = ( σ ‾ col 2 + σ ‾ row 2 ) / 2
其中,
Figure BSA00000893689400064
为列方向标准差均值,
Figure BSA00000893689400065
为行方向标准差均值。
方式2:
σ best = ( ( σ col · σ col T ) / n + ( σ row · σ row T ) / m ) / 2
下面分列几种情况进行描述。
情况1.行方向不加入噪声,列方向增加不同的一维随机噪声
该情况模拟的是线阵CCD探元行方向响应一致,在列方向(推扫方向)存在噪声。实验制作了1000幅模拟数据,添加的噪声均值为0,标准差为1。
由图3(a)可以看出采用本发明方法计算的相对误差均值介于-0.05%与0%之间。由图3(b)(“*”为新方法,“○”为方式2,“△”为方式1)可以看出,采用方式1计算的相对误差均值介于0.2%与0.3%之间,而且误差要明显大于其它方法。而采用本发明方法和方式2计算的相对误差均值比较接近。
情况2.行方向不加入噪声,列方向增加相同的一维随机噪声
这是一种极端情况,模拟的是线阵CCD各个探元性能彼此完全一致,而且在列方向引入噪声也相同。
由图4(a)可以看出,采用本发明方法计算的相对误差值几乎恒定地等于-0.4963%。由图4(b)(位于下方的散点为新方法,位于上方的散点为重合的方式2与方式1)可以看出,采用方式1与方式2计算的相对误差值曲线重合,数值几乎恒定地等于41%,而采用本发明方法计算的相对误差值较小接近于0%。从该图也可以看出该种情况下采用方式1和方式2计算的误差是采用新方法的100倍左右。
情况3.两个方向(行/列)均增加不同的一维随机噪声
这种情况是一种假设情况,假设线阵CCD探元之间在工作时会在行方向引入随机噪声。该种情况是对其它合理情况的一种对比分析。
从图5(a)和图5(b)(“*”为新方法,“○”为方式2,“△”为方式1)可以看出,情况3的结果与情况1的结果很近似。
情况4.列方向增加不同的一维随机噪声,行方向增加相同的一维随机噪声
这种情况模拟的是线阵CCD探元彼此响应不一致但差异不大。不同CCD在列方向引入不同随机噪声,而行方向主要是响应不一致引起的噪声。
由图6(a)可以看出,采用本发明方法计算的相对误差均值介于-0.25%与-0.2%之间。由图6(b)(“*”为新方法,“○”为方式2,“△”为方式1)可以看出,采用方式1和方式2计算的相对误差结果几乎相同,其值约为15%。采用方法1和方法2计算的误差是采用新方法的60倍左右。
从上面提出的四种可能的噪声分布情况以及相应的模拟数据评估结果可以得出,采用方式1整合的噪声标准差的误差是最大的。对于情况1和3,采用方式2与采用本发明方法处理的结果比较接近。但是对于情况2和4,采用方式2与采用本发明方法处理的差别很大。从实验结果看采用新方计算法的相对误差是很小的,而且从信噪比评估精度来说,新方法的误差几乎可以忽略。
下面将这三种信噪比整合方式应用于实测图像信噪比评估。
选用的实测高光谱图像为无人机获取的灰白靶标图像,具体信息如表1所示。
由图7(a)可以看出采用本发明方法与整幅图像计算信噪比结果曲线重合,所得信噪比数值相同,这与模拟图像所得结论一致。图7(b)(图中位于下方曲线为新方法与整幅图像计算方式重合曲线,位于上方曲线为方式1与方式2重合曲线)与图7(c)(图中位于下方曲线为新方法曲线,位于上方曲线为方式1与方式2的重合曲线)中,方式1、方式2与本发明方法的差别也与模拟图像结论一致。
由上所述,对于线阵传感器,本发明方法中关于列、行噪声标准差整合为优选出的图像噪声标准差,从而计算图像信噪比的方法是正确可行的。而且方式1与方式2的的评估结果明显要差于本发明方法。
●面阵传感器
模拟图像加入的噪声为二维随机噪声。这是模拟面阵传感器工作时引入噪声的情况。
由图8(a)可以看出,对于面阵传感器,采用本发明方法计算的相对误差均值介于-0.05%与0%之间。由图8(b)(“*”为新方法,“○”为方式2,“△”为方式1)可以看出,采用方式1计算的相对误差结果比其它两种方法大,其均值介于0.2%与0.3%之间。而采用本发明方法和方法2的误差结果较接近。
对于实测图像,实验选择了300幅面阵成像的单波段图像用于信噪比评估分析,具体信息和图像如表2和图9所示。
表2所选面阵图像数据信息
获取时间 图像尺寸 存储比特 量化比特 图像个数 均匀区域类型 产品等级
2012.11 180×180 8 8 300 灰白靶标 0
将三种信噪比整合方式应用于面阵实测图像信噪比评估,结果如图10所示。由图10可以看出采用本发明方法计算所得信噪比的相对误差最小,而且要比采用方式1和方式2计算的信噪比误差结果小很多。总体来看,实测图像结果满足模拟图像所得结论。方式2对实测图像评估结果与模拟图像有一定差别,而是本发明方法对模拟图像和实测图像的分析结果完全一致。
综上所述,本技术方案中提出的新方法所得结果误差最小,能够较真实的反映整幅遥感图像信噪比情况。

Claims (2)

1.一种基于行列噪声标准差的遥感图像信噪比评估方法,其特征在于包括以下步骤:
步骤一、利用已有的且合适的信噪比评估方法计算待处理图像的列、行噪声标准差;
步骤二、利用步骤一中得到的列、行噪声标准差计算列、行等效噪声标准差;
步骤三、选择列、行等效噪声标准差中的值较大的那一个作为优选的图像噪声标准差;
步骤四、利用步骤三中得到的优选的噪声标准差计算图像信噪比。
2.根据权利要求1所述的一种基于行列噪声标准差的遥感图像信噪比评估方法,其特征还在于步骤一中所提的信噪比评估方法并不限定,可根据图像特征以及算法适用性、准确性等因素甄选。
CN201310175176.6A 2013-05-14 2013-05-14 一种基于行列噪声标准差的遥感图像信噪比评估方法 Active CN103279950B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175176.6A CN103279950B (zh) 2013-05-14 2013-05-14 一种基于行列噪声标准差的遥感图像信噪比评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175176.6A CN103279950B (zh) 2013-05-14 2013-05-14 一种基于行列噪声标准差的遥感图像信噪比评估方法

Publications (2)

Publication Number Publication Date
CN103279950A true CN103279950A (zh) 2013-09-04
CN103279950B CN103279950B (zh) 2016-03-16

Family

ID=49062457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175176.6A Active CN103279950B (zh) 2013-05-14 2013-05-14 一种基于行列噪声标准差的遥感图像信噪比评估方法

Country Status (1)

Country Link
CN (1) CN103279950B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240242A (zh) * 2014-09-05 2014-12-24 北京空间机电研究所 一种遥感图像最大信噪比测量方法
CN106530301A (zh) * 2016-11-30 2017-03-22 上海卫星工程研究所 卫星地面测试中成像类定量遥感仪器干扰和噪声评价方法
CN107395952A (zh) * 2016-05-16 2017-11-24 安讯士有限公司 相机网络系统中的方法和设备
CN110913182A (zh) * 2019-12-09 2020-03-24 广东欧谱曼迪科技有限公司 一种腹腔镜影像系统图像信噪比快速评估装置及方法
CN111552919A (zh) * 2020-02-12 2020-08-18 国家卫星气象中心(国家空间天气监测预警中心) 一种线阵推扫式遥感成像仪信噪比评估方法
CN114544451A (zh) * 2022-03-09 2022-05-27 中煤科工集团重庆研究院有限公司 基于主动荷电的电荷感应粉尘浓度检测方法
CN116071640A (zh) * 2023-02-17 2023-05-05 自然资源部国土卫星遥感应用中心 一种基于噪声因子的高光谱卫星遥感影像辐射质量评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112831A1 (en) * 2008-04-24 2009-10-28 Psytechnics Ltd Method and apparatus for measuring blockiness in video images
CN101980293A (zh) * 2010-09-02 2011-02-23 北京航空航天大学 一种基于刃边图像的高光谱遥感系统mtf检测方法
CN103020913A (zh) * 2012-12-18 2013-04-03 武汉大学 基于分段校正的遥感影像条带噪声去除方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112831A1 (en) * 2008-04-24 2009-10-28 Psytechnics Ltd Method and apparatus for measuring blockiness in video images
CN101980293A (zh) * 2010-09-02 2011-02-23 北京航空航天大学 一种基于刃边图像的高光谱遥感系统mtf检测方法
CN103020913A (zh) * 2012-12-18 2013-04-03 武汉大学 基于分段校正的遥感影像条带噪声去除方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PAUL J等: "Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data", 《IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING》, vol. 27, no. 5, 30 September 1989 (1989-09-30), pages 620 - 628 *
YUHENG CHEN等: "Computation of Signal-to-noise Ratio of Airborne Hyperspectral Imaging Spectrometer", 《2012 INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI)》, 20 May 2012 (2012-05-20), pages 1046 - 1049, XP032192690, DOI: doi:10.1109/ICSAI.2012.6223191 *
唐海蓉等: "一种评价光学卫星辐射特性及图像质量的噪声分析方法", 《电子与信息学报》, vol. 26, no. 3, 31 March 2004 (2004-03-31), pages 370 - 374 *
朱博等: "光学遥感图像信噪比评估方法研究进展", 《遥感技术与应用》, vol. 25, no. 2, 30 April 2010 (2010-04-30), pages 303 - 309 *
郭齐胜等: "《系统建模》", 31 May 2006, article "建模的一般原则", pages: 13-16 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240242A (zh) * 2014-09-05 2014-12-24 北京空间机电研究所 一种遥感图像最大信噪比测量方法
CN104240242B (zh) * 2014-09-05 2017-03-15 北京空间机电研究所 一种遥感图像最大信噪比测量方法
CN107395952B (zh) * 2016-05-16 2019-08-23 安讯士有限公司 网络相机系统中的方法和设备
CN107395952A (zh) * 2016-05-16 2017-11-24 安讯士有限公司 相机网络系统中的方法和设备
US10136100B2 (en) 2016-05-16 2018-11-20 Axis Ab Method and device in a camera network system
CN106530301B (zh) * 2016-11-30 2019-06-07 上海卫星工程研究所 卫星地面测试中成像类定量遥感仪器干扰和噪声评价方法
CN106530301A (zh) * 2016-11-30 2017-03-22 上海卫星工程研究所 卫星地面测试中成像类定量遥感仪器干扰和噪声评价方法
CN110913182A (zh) * 2019-12-09 2020-03-24 广东欧谱曼迪科技有限公司 一种腹腔镜影像系统图像信噪比快速评估装置及方法
CN110913182B (zh) * 2019-12-09 2024-03-22 广东欧谱曼迪科技有限公司 一种腹腔镜影像系统图像信噪比快速评估装置及方法
CN111552919A (zh) * 2020-02-12 2020-08-18 国家卫星气象中心(国家空间天气监测预警中心) 一种线阵推扫式遥感成像仪信噪比评估方法
CN111552919B (zh) * 2020-02-12 2023-05-23 国家卫星气象中心(国家空间天气监测预警中心) 一种线阵推扫式遥感成像仪信噪比评估方法
CN114544451A (zh) * 2022-03-09 2022-05-27 中煤科工集团重庆研究院有限公司 基于主动荷电的电荷感应粉尘浓度检测方法
CN116071640A (zh) * 2023-02-17 2023-05-05 自然资源部国土卫星遥感应用中心 一种基于噪声因子的高光谱卫星遥感影像辐射质量评价方法
CN116071640B (zh) * 2023-02-17 2023-12-01 自然资源部国土卫星遥感应用中心 一种基于噪声因子的高光谱卫星遥感影像辐射质量评价方法

Also Published As

Publication number Publication date
CN103279950B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN103279950A (zh) 一种基于行列噪声标准差的遥感图像信噪比评估方法
CN103247034B (zh) 一种基于稀疏光谱字典的压缩感知高光谱图像重构方法
CN102436652B (zh) 一种多源遥感图像自动配准方法
CN108896185A (zh) 基于归一化沙漠指数的遥感地表温度空间降尺度方法
CN101980293B (zh) 一种基于刃边图像的高光谱遥感系统mtf检测方法
CN100543496C (zh) 脉冲中子双谱饱和度测井方法
CN109872060B (zh) 一种用于多卫星传感器联合观测方案选择的方法
DeWitt et al. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering
CN111982822B (zh) 一种长时间序列高精度植被指数改进算法
CN112991288A (zh) 基于丰度图像锐化重构的高光谱遥感图像融合方法
CN104463808A (zh) 基于空间相关性的高光谱数据降噪方法及系统
Nelson et al. Effects of satellite image spatial aggregation and resolution on estimates of forest land area
CN107132190A (zh) 一种土壤有机质光谱反演模型校正样本集构建方法
CN110927065B (zh) 遥感辅助的湖库chl-a浓度空间插值方法优选方法和装置
CN103810712A (zh) 一种能谱ct图像质量的评价方法
Xi et al. Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data
CN104182953B (zh) 像元解混逆过程:规格化多端元分解的高光谱重构方法
Birrien et al. On a data-model assimilation method to inverse wave-dominated beach bathymetry using heterogeneous video-derived observations
CN111157115B (zh) 一种水下布里渊散射光谱获取方法及装置
Sefercik et al. Area-based quality control of airborne laser scanning 3D models for different land classes using terrestrial laser scanning: sample survey in Houston, USA
CN114184173B (zh) 一种遥感卫星立体影像测图能力综合评估方法
CN104833425A (zh) 一种偏振成像系统中偏振片角度的组合方法
CN105116407A (zh) 一种利用手持型激光测距仪测量植被覆盖度的方法
CN111127630B (zh) 一种三维空间下钻孔岩心高光谱蚀变信息随机建模方法
CN105279521A (zh) 基于空间抽样的遥感影像分类结果精度检验方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant