CN103275758A - 一种重油全馏份加氢处理方法及系统 - Google Patents

一种重油全馏份加氢处理方法及系统 Download PDF

Info

Publication number
CN103275758A
CN103275758A CN2013102247748A CN201310224774A CN103275758A CN 103275758 A CN103275758 A CN 103275758A CN 2013102247748 A CN2013102247748 A CN 2013102247748A CN 201310224774 A CN201310224774 A CN 201310224774A CN 103275758 A CN103275758 A CN 103275758A
Authority
CN
China
Prior art keywords
oil
reaction
bed hydrogenation
boiling bed
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102247748A
Other languages
English (en)
Other versions
CN103275758B (zh
Inventor
白建明
单小勇
张波
金毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huadian Heavy Industries Co Ltd
Original Assignee
Huadian Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huadian Heavy Industries Co Ltd filed Critical Huadian Heavy Industries Co Ltd
Priority to CN201310224774.8A priority Critical patent/CN103275758B/zh
Publication of CN103275758A publication Critical patent/CN103275758A/zh
Application granted granted Critical
Publication of CN103275758B publication Critical patent/CN103275758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种重油全馏份加氢处理方法及系统,所述方法包括:重组分原料油经脱水、升压换热处理后与氢气混合;混合后的重组分原料油与氢气再经加热升温后进入沸腾床加氢精制反应器进行加氢精制反应;加氢精制反应后的产物进入热高压分离器分离出轻、重组分;轻组分进入固定床加氢改质反应器进行加氢改质反应,重组分进入沸腾床加氢裂化反应器进行加氢裂化反应;加氢改质反应后的流出物与加氢裂化反应后的流出物混合并经换热冷却后进行气、油、水分离,分离后的油经换热升温后,分馏出合格油品,分馏后的尾油经升压换热处理后作为加氢进料的原料油。本发明的工艺处理量大、运转周期长,且能最大量的产出轻质组分,油品收率高,达到90%以上。

Description

一种重油全馏份加氢处理方法及系统
技术领域
本发明涉及一种重油全馏份加氢处理方法及系统,属于煤化工技术领域。
背景技术
随着世界经济的发展,尤其是随着发展中国家经济的发展,世界各国对于液体燃料的需求量越来越大。而由于诸多因素的影响,石油资源日趋临近枯竭边缘,资源十分紧张。
煤炭是当前主要的能源和化工原料,在未来几十年内,煤炭仍可能是我国国民经济高速、健康、持续发展的重要支柱。焦化工业是煤炭利用的重要方式这一,随着我国焦化行业的迅速发展,其副产品的深加工工业也发展迅速,尤其是煤焦油的深加工。2008年我国煤焦油总产量已达到1000万吨以上,如此大的产量使得煤焦油深加工成为我国的一个重要产业。
煤焦油为煤热解、气化、炼焦等工艺的副产品,按反应温度可分为低温煤焦油、中温煤焦油和高温煤焦油。渣油大多为石油化工行业中产出的尾油重油,与煤焦油同属重油之一,其密度大,含水、大量杂质、胶质、沥青等,不利于固定床加氢工艺。虽然我国目前有许多煤焦油深加工项目,但是不论是处理工艺还是处理设备都存在较大的问题。比如专利号为200710012679.6的发明专利公开了一种沸腾床组合工艺,其存在的缺点是:
(1)沸腾床反应器的反应流出物直接进入固定床反应器,由于气相组分没有足够的停留时间,从而容易将催化剂或杂质等带入固定床反应器,影响改质反应的效果;
(2)液相组分的抽出口过高,导致循环泵容易抽空,进而造成设备损坏;
(3)只能对清洁油质进行处理,应用范围具有较大的局限性;
(4)轻油率较低,能耗高,资源浪费较严重。
发明内容
本发明的目的在于,提供一种重油全馏份加氢处理方法及系统,它可以有效解决现有技术中存在的问题,尤其是轻油率较低,资源浪费较严重的问题。
为解决上述技术问题,本发明采用如下的技术方案:一种重油全馏份加氢处理方法,重组分原料油经脱水、升压换热处理后与氢气混合;混合后的重组分原料油与氢气再经加热升温后进入沸腾床加氢精制反应器进行加氢精制反应;加氢精制反应后的产物进入热高压分离器分离出轻、重组分;轻组分进入固定床加氢改质反应器进行加氢改质反应,重组分进入沸腾床加氢裂化反应器进行加氢裂化反应;加氢改质反应后的流出物与加氢裂化反应后的流出物混合并经换热冷却后进行气、油、水分离,分离后的油经换热升温后,分馏出合格油品,分馏后的尾油经升压换热处理后作为加氢进料的原料油。
本发明中所述的加氢精制反应的反应温度为360~385℃,系统压力为15~18MPa,氢油比为800:1,空速为1.5。
所述的加氢改质反应的反应温度为350~360℃,系统压力为14~17MPa,氢油比为1200:1,空速为1.5。
所述的加氢裂化反应的反应温度为380~400℃,系统压力为14~17MPa,氢油比为1200:1,空速为1.5。
本发明还包括:初馏点为420℃以上的尾油进入延迟焦化装置进行延迟焦化处理,尾油经加热炉对流段升温至350℃后进入焦化分馏塔;分馏后的重油返回加热炉辐射段加热到450~550℃后进入焦炭塔,分馏后的轻油经升压换热处理后作为加氢进料的原料油;所述的焦炭塔的压力为0.1~0.5MPa,焦炭塔的温度为450~550℃;焦炭塔顶的油气进入焦化分馏塔,其余成分生成焦炭。
本发明中所述的重组分原料油为一种或多种类型,即可以单独采用煤焦油加氢处理或渣油加氢处理,也可以将两种或多种类似重油按比例混合后加氢处理。
实现前述方法的一种重油全馏份加氢处理系统,包括脱水塔、进料泵、加热炉、加氢处理装置、冷高压分离器、冷低压分离器和分馏塔,脱水塔、进料泵、加热炉、加氢处理装置、冷高压分离器、冷低压分离器和分馏塔顺次连接,分馏塔下端的出口与进料泵的入口连接,所述的加氢处理装置包括沸腾床加氢精制反应器、热高压分离器、固定床加氢改质反应器和沸腾床加氢裂化反应器,沸腾床加氢精制反应器下端的入口与加热炉的出口连接,沸腾床加氢精制反应器上端的出口与热高压分离器侧端的入口连接;固定床加氢改质反应器的入口与热高压分离器上端的出口连接,固定床加氢改质反应器的出口与冷高压分离器的入口连接;沸腾床加氢裂化反应器下端的入口与热高压分离器下端的出口连接,沸腾床加氢裂化反应器上端的出口与冷高压分离器的入口连接。
本发明还包括:延迟焦化装置,延迟焦化装置内设有焦化加热炉、焦化分馏塔和焦炭塔;焦化加热炉分别与分馏塔和焦化分馏塔连接,焦化分馏塔的沥青出口与焦炭塔的入口连接,焦化分馏塔的产品出口与进料泵的入口连接。
还包括催化剂装卸系统,催化剂装卸系统分别与沸腾床加氢精制反应器和沸腾床加氢裂化反应器连接,可选择催化剂在线装卸技术保持催化剂的活性,具体的,可采用差压式方法在线卸出与添加催化剂,在停工过程中沸腾床加氢精制反应器和沸腾床加氢裂化反应器中存油可由催化剂装卸系统退出。另外,沸腾床加氢精制反应器和沸腾床加氢裂化反应器共用一个催化剂装卸系统,从而可以节省投资、减少占地面积且操作性灵活。由于精制催化剂与裂化催化剂在添加与卸出时容易造成混合而不利于反应,因而通过增加冲洗油与分离罐,使这两种催化剂分离,避免造成催化剂混乱而影响反应过程。
本发明中所述的沸腾床加氢精制反应器和沸腾床加氢裂化反应器的底部分别设有循环泵,通过调整循环泵的循环量,使反应器内的床层温度平均分布,更加有效的控制好催化剂床层料位。
沸腾床加氢裂化反应器的入口设有高压急冷氢与急冷油管线,通过双路急冷介质,可以更加有效的控制反应器床层温度。
本发明采用单质硫注硫方式,从而可以降低硫化剂成本。
上述的沸腾床加氢精制反应器和沸腾床加氢裂化反应器采用全返混沸腾床反应器。采用全返混沸腾床反应器的好处是:1.可以通过调整循环量更加有效的控制床层料位;2.可以更加有效的控制反应温度,使反应温度分布均匀;3.可增大催化剂的与油的接触面积,增大催化剂的比表面积;4.可以避免出现床层差压过大而发生沟流现像,可以防止局部过热;5.可加工含有固体颗粒、胶质、沥青质等性质恶劣的油品。
与现有技术相比,本发明通过将价值低廉、油品性质恶劣、生产工艺条件苛刻的重油组分(如煤焦油、渣油等)先通过沸腾床加氢精制反应器预加氢处理后进入热高压分离器,热高压分离器顶部的高分气(即轻油部分)进入固定床加氢改质反应器进一步加氢改质提纯,经减压蒸馏后获得合格燃料油品;热高压分离器下部的重油进入沸腾床加氢裂化反应器参加加氢裂化反应并进一步加工处理,经减压蒸馏后最终得到液化汽、石脑油、柴油、等产品。本发明的工艺处理量大、流程简单、操作稳定、运转周期长,且充分考虑了重油全馏份加氢组成的特点,在保证装置长周期运转的情况下,最大量的产出轻质组分,油品收率高,是可靠的重油全馏份加氢生产工艺。据大量数据统计表明,采用本发明后,系统的轻油率达90%以上,石油、汽油的产量提高了30%~50%。当处理规模较大时,本发明中可以通过对初馏点为420℃以上的含有沥青和胶质的尾油进行延迟焦化处理,产出焦化汽油、焦化柴油等焦化产品,焦化产品可返回原料部分作为加氢进料,从而可以进一步提高轻油率,减少资源的浪费,而且成本低廉。此外,本发明可用于多种重油的处理,包括胶质、沥青质、杂质及含固颗粒等,处理过程中可以对一种重油进行处理,也可以同时对几种重油的混合物进行处理,适用范围较广泛。本发明中沸腾床加氢精制反应器的顶部气体直接进入热高压分离器,停留时间长,不会造成催化剂与重油夹带,影响改质反应条件;另外,本发明中所述的沸腾床加氢精制反应器和沸腾床加氢裂化反应器的底部分别设有循环泵,由于沸腾床加氢精制反应器的反应产物由反应器顶部进入热高压分离器,从而可以避免循环泵发生抽空现象,造成事故。本发明是对重油全馏份进行加氢处理,无需对重油进行其他的处理(比如去渣等),从而可以降低处理成本。
另外,发明人进行了大量的试验研究对本发明中的工艺参数进行筛选,试验结果显示:沸腾床加氢精制反应器的温度控制在360~385℃之间,从而可以脱除原料油中的硫、氮、氧及使得不饱合烃加氢饱和;温度低于360℃时,达不到加氢精制的目的;而温度高于385℃时,则易发生裂化反应,影响催化剂的活性。固定床加氢改质反应器的温度控制在350~360℃,从而可以通过二次加氢改质提纯,提高油品的稳定性。温度低于350℃时,不利于反应,达不到加氢改质的目的;而温度高于360℃时,又会导致油品轻质化过大。沸腾床加氢裂化反应器的温度控制在380~400℃,由于油品组分重,从而高温高压易使油品中大分子碳键断裂,生成小分子油品。若温度低于380℃,则不利于反应,达不到加氢裂化的目的;温度高于400℃时,则会导致油品轻质化过大,对催化剂活性不利。
由于本发明的工艺可加工多种重质油品,因油品性质变化大,目前尚无法选择系统的最佳操作温度,但是可根据原料油品分析结果在设计中选择最佳操作温度。
附图说明
图1是本发明的一种实施例的结构示意图;
图2是加氢处理装置的结构示意图;
图3是本发明的一种实施例的方法示意图。
附图标记:1-沸腾床加氢精制反应器,2-热高压分离器,3-固定床加氢改质反应器,4-沸腾床加氢裂化反应器,5-脱水塔,6-进料泵,7-加热炉,8-加氢处理装置,9-冷高压分离器,10-冷低压分离器,11-分馏塔,12-延迟焦化装置,13-焦化分馏塔,14-焦炭塔,15-焦化加热炉,16-催化剂装卸系统,17-循环泵,18-分离罐。
下面结合附图和具体实施方式对本发明作进一步的说明。
具体实施方式
实施例1:如图1、图2、图3所示:重组分原料油来自界区外,经过与系统换热器换热后升温到150~180℃,进入减压脱水塔5脱除水分。脱水后的原料油经进料泵6升压、换热后与氢气混合进入原料加热炉7,原料油经加热炉7加热升温到260~300℃后进入加氢处理装置8进行加氢处理,具体包括:原料油进入沸腾床加氢精制反应器1(下进上出式),在高温、高压、临氢、催化剂的作用下发生加氢精制反应。反应温度控制在360~385℃,反应压力控制在15~18MPa左右,氢油比控制在800:1,空速控制在1.5。加氢精制后的反应产物由沸腾床加氢精制反应器1出来后直接进入热高压分离器2,经闪蒸分离分为轻、重组分两部分。
热高分气部分(即轻组分)直接进入固定床加氢改质反应器3进行加氢改质反应,反应温度控制在350~360℃,系统压力控制在14~17MPa,氢油比控制在1200:1,空速控制在1.5。
热高分油部分(即重组分)离开热高压分离器2与氢气混合进入装有加氢裂化催化剂的沸腾床加氢裂化反应器4,在高温、高压、临氢、催化剂作用下发生加氢裂化反应,反应温度控制在380~400℃,系统压力控制在14~17MPa,氢油比控制在1200:1,空速控制在1.5。还包括催化剂装卸系统16,催化剂装卸系统16分别与沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4连接。所述的催化剂装卸系统16中设有分离罐18。由于精制催化剂与裂化催化剂在添加与卸出时容易造成混合而不利于反应,因而通过增加冲洗油与分离罐,使这两种催化剂分离。沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4底部设有循环泵17,通过调整循环量可以控制床层料位,同时也可使沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4内床层温度分布匀均。所述的沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4可采用全返混沸腾床反应器。
加氢裂化后的反应流出物与加氢改质后的反应流出物混合后经换热冷却后进入冷高压分离器9,冷高压分离器9分离出的气体进入循环氢压缩机系统,分离出的酸性水进入冷低压分离器10,冷高压分离器9分离出的油经减压后进入冷低压分离器10进行二次气、油、水分离,酸性气进入脱硫系统,酸性水进入污水汽提系统,冷低压分离器10分离的油经换热升温后,进入分馏塔11,分离出合格油品。
分馏塔11底部尾油分两部分:一部分返回原料系统作为加氢进料;初馏点为420℃以上的尾油则进入延迟焦化装置12进行延迟焦化处理,尾油经延迟焦化装置12中的焦化加热炉15对流段升温至350℃后进入焦化分馏塔13;分馏后的重油返回延迟焦化装置12中的焦化加热炉15辐射段加热到450~550℃后进入焦炭塔14,分馏后的轻油经升压换热处理后作为加氢进料的原料油;所述的焦炭塔14的压力为0.1~0.5MPa,焦炭塔14的温度为450~550℃;焦炭塔14顶的油气进入焦化分馏塔13,其余成分生成焦炭。其产品焦化汽油、焦化柴油、焦化蜡油返回原料部分作为加氢进料。上述的重组分原料油为一种或多种类型。
实施例2:如图1、图2、图3所示:重组分原料油来自界区外,经过与系统换热器换热后升温到150~180℃,进入减压脱水塔5脱除水分。脱水后的原料油经进料泵6升压、换热后与氢气混合进入原料加热炉7,原料油经加热炉7加热升温到260~300℃后进入加氢处理装置8进行加氢处理,具体包括:原料油进入沸腾床加氢精制反应器1(下进上出式),在高温、高压、临氢、催化剂的作用下发生加氢精制反应。反应温度控制在360~385℃,反应压力控制在15~18MPa左右,氢油比控制在800:1,空速控制在1.5。加氢精制后的反应产物由沸腾床加氢精制反应器1出来后直接进入热高压分离器2,经闪蒸分离分为轻、重组分两部分。
热高分气部分(即轻组分)直接进入固定床加氢改质反应器3进行加氢改质反应,反应温度控制在350~360℃,系统压力控制在14~17MPa,氢油比控制在1200:1,空速控制在1.5。
热高分油部分(即重组分)离开热高压分离器2与氢气混合进入装有加氢裂化催化剂的沸腾床加氢裂化反应器4,在高温、高压、临氢、催化剂作用下发生加氢裂化反应,反应温度控制在380~400℃,系统压力控制在14~17MPa,氢油比控制在1200:1,空速控制在1.5。还包括催化剂装卸系统16,催化剂装卸系统16分别与沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4连接。沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4底部设有循环泵17,通过调整循环量可以控制床层料位,同时也可使沸腾床加氢精制反应器1和沸腾床加氢裂化反应器4内床层温度分布匀均。
加氢裂化后的反应流出物与加氢改质后的反应流出物混合后经换热冷却后进入冷高压分离器9,冷高压分离器9分离出的气体进入循环氢压缩机系统,分离出的酸性水进入冷低压分离器10,冷高压分离器9分离出的油经减压后进入冷低压分离器10进行二次气、油、水分离,酸性气进入脱硫系统,酸性水进入污水汽提系统,冷低压分离器10分离的油经换热升温后,进入分馏塔11,分离出合格油品。
分馏塔11底部尾油返回原料系统作为加氢进料。上述的重组分原料油为一种或多种类型。
实例说明:
本发明因重油的组成不同而得到的产品也不同,下面以汽油、柴油为产品,原料油品的性质与工艺条件详见下表1、表2和表3。
表1原料油的性质
Figure BDA00003315768400061
Figure BDA00003315768400071
表2工艺条件
Figure BDA00003315768400072
Figure BDA00003315768400081
表3产品分析
分析项目 汽油 柴油
馏程范围(℃) <175 175-360
密度 0.753 0.84
馏程
IBP/10% 70/101 185/225
30/50% 115/128 245/283
70/90% 140/166 313/336
95/EPB 173/181 354-361
闪点(℃) 78
凝点(℃) -15
残炭 <0.01
辛烷值 80
十六烷值 38

Claims (10)

1.一种重油全馏份加氢处理方法,其特征在于:重组分原料油经脱水、升压换热处理后与氢气混合;混合后的重组分原料油与氢气再经加热升温后进入沸腾床加氢精制反应器(1)进行加氢精制反应;加氢精制反应后的产物进入热高压分离器(2)分离出轻、重组分;轻组分进入固定床加氢改质反应器(3)进行加氢改质反应,重组分进入沸腾床加氢裂化反应器(4)进行加氢裂化反应;加氢改质反应后的流出物与加氢裂化反应后的流出物混合并经换热冷却后进行气、油、水分离,分离后的油经换热升温后,分馏出合格油品,分馏后的尾油经升压换热处理后作为加氢进料的原料油。
2.根据权利要求1所述的重油全馏份加氢处理方法,其特征在于,所述的加氢精制反应的反应温度为360~385℃,系统压力为15~18MPa,氢油比为800:1,空速为1.5。
3.根据权利要求2所述的重油全馏份加氢处理方法,其特征在于,所述的加氢改质反应的反应温度为350~360℃,系统压力为14~17MPa,氢油比为1200:1,空速为1.5。
4.根据权利要求3所述的重油全馏份加氢处理方法,其特征在于,所述的加氢裂化反应的反应温度为380~400℃,系统压力为14~17MPa,氢油比为1200:1,空速为1.5。
5.根据权利要求1~4任一所述的重油全馏份加氢处理方法,其特征在于,还包括:初馏点为420℃以上的尾油进入延迟焦化装置进行延迟焦化处理,尾油经加热炉对流段升温至350℃后进入焦化分馏塔;分馏后的重油返回加热炉辐射段加热到450~550℃后进入焦炭塔,分馏后的轻油经升压换热处理后作为加氢进料的原料油;所述的焦炭塔的压力为0.1~0.5MPa,焦炭塔的温度为450~550℃;焦炭塔顶的油气进入焦化分馏塔,其余成分生成焦炭。
6.根据权利要求5所述的重油全馏份加氢处理方法,其特征在于,所述的重组分原料油为一种或多种类型。
7.实现权利要求1~6所述方法的一种重油全馏份加氢处理系统,包括脱水塔(5)、进料泵(6)、加热炉(7)、加氢处理装置(8)、冷高压分离器(9)、冷低压分离器(10)和分馏塔(11),脱水塔(5)、进料泵(6)、加热炉(7)、加氢处理装置(8)、冷高压分离器(9)、冷低压分离器(10)和分馏塔(11)顺次连接,分馏塔(11)下端的出口与进料泵(6)的入口连接,其特征在于:所述的加氢处理装置(8)包括沸腾床加氢精制反应器(1)、热高压分离器(2)、固定床加氢改质反应器(3)和沸腾床加氢裂化反应器(4),沸腾床加氢精制反应器(1)下端的入口与加热炉(7)的出口连接,沸腾床加氢精制反应器(1)上端的出口与热高压分离器(2)侧端的入口连接;固定床加氢改质反应器(3)的入口与热高压分离器(2)上端的出口连接,固定床加氢改质反应器(3)的出口与冷高压分离器(9)的入口连接;沸腾床加氢裂化反应器(4)下端的入口与热高压分离器(2)下端的出口连接,沸腾床加氢裂化反应器(4)上端的出口与冷高压分离器(9)的入口连接。
8.根据权利要求7所述的重油全馏份加氢处理系统,其特征在于,还包括:延迟焦化装置(12),延迟焦化装置(12)内设有焦化加热炉(15)、焦化分馏塔(13)和焦炭塔(14);焦化加热炉(15)分别与分馏塔(11)和焦化分馏塔(13)连接,焦化分馏塔(13)的沥青出口与焦炭塔(14)的入口连接,焦化分馏塔(13)的产品出口与进料泵(6)的入口连接。
9.根据权利要求7或8所述的重油全馏份加氢处理系统,其特征在于,还包括催化剂装卸系统(16),催化剂装卸系统(16)分别与沸腾床加氢精制反应器(1)和沸腾床加氢裂化反应器(4)连接。
10.根据权利要求9所述的重油全馏份加氢处理系统,其特征在于,所述的沸腾床加氢精制反应器(1)和沸腾床加氢裂化反应器(4)的底部分别设有循环泵(17),通过调整循环泵(17)的循环量,使反应器内的床层温度平均分布,更加有效的控制好催化剂床层料位。
CN201310224774.8A 2013-06-07 2013-06-07 一种重油全馏份加氢处理方法及系统 Active CN103275758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310224774.8A CN103275758B (zh) 2013-06-07 2013-06-07 一种重油全馏份加氢处理方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310224774.8A CN103275758B (zh) 2013-06-07 2013-06-07 一种重油全馏份加氢处理方法及系统

Publications (2)

Publication Number Publication Date
CN103275758A true CN103275758A (zh) 2013-09-04
CN103275758B CN103275758B (zh) 2015-02-18

Family

ID=49058386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310224774.8A Active CN103275758B (zh) 2013-06-07 2013-06-07 一种重油全馏份加氢处理方法及系统

Country Status (1)

Country Link
CN (1) CN103275758B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695036A (zh) * 2013-12-31 2014-04-02 上海新佑能源科技有限公司 中低温煤焦油加工处理方法
CN104371761A (zh) * 2014-10-15 2015-02-25 上海建安化工设计有限公司 一种重苯加氢提质工艺
CN109777494A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种催化柴油生产优质汽油和柴油的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112785A (ja) * 1991-10-18 1993-05-07 Idemitsu Kosan Co Ltd 重質炭化水素油の処理方法
CN1952071A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种煤焦油生产清洁油品的组合方法
US20090100746A1 (en) * 2007-10-22 2009-04-23 Chevron U.S.A. Inc. Method of making high energy distillate fuels
WO2009103881A2 (fr) * 2008-01-04 2009-08-27 Ifp Procédé multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procédé fischer-tropsch
CN102021028A (zh) * 2010-12-09 2011-04-20 何巨堂 一种两段法高芳烃油加氢转化方法
CN102021029A (zh) * 2010-12-08 2011-04-20 何巨堂 一种两段法高芳烃油加氢转化方法
CN102071057A (zh) * 2010-12-29 2011-05-25 何巨堂 一种两段法高氮高芳烃油加氢转化方法
CN103059981A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种煤焦油加氢方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112785A (ja) * 1991-10-18 1993-05-07 Idemitsu Kosan Co Ltd 重質炭化水素油の処理方法
CN1952071A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种煤焦油生产清洁油品的组合方法
US20090100746A1 (en) * 2007-10-22 2009-04-23 Chevron U.S.A. Inc. Method of making high energy distillate fuels
WO2009103881A2 (fr) * 2008-01-04 2009-08-27 Ifp Procédé multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procédé fischer-tropsch
CN102021029A (zh) * 2010-12-08 2011-04-20 何巨堂 一种两段法高芳烃油加氢转化方法
CN102021028A (zh) * 2010-12-09 2011-04-20 何巨堂 一种两段法高芳烃油加氢转化方法
CN102071057A (zh) * 2010-12-29 2011-05-25 何巨堂 一种两段法高氮高芳烃油加氢转化方法
CN103059981A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种煤焦油加氢方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695036A (zh) * 2013-12-31 2014-04-02 上海新佑能源科技有限公司 中低温煤焦油加工处理方法
CN103695036B (zh) * 2013-12-31 2015-10-28 上海新佑能源科技有限公司 中低温煤焦油加工处理方法
CN104371761A (zh) * 2014-10-15 2015-02-25 上海建安化工设计有限公司 一种重苯加氢提质工艺
CN109777494A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种催化柴油生产优质汽油和柴油的方法
CN109777494B (zh) * 2017-11-14 2021-05-04 中国石油化工股份有限公司 一种催化柴油生产优质汽油和柴油的方法

Also Published As

Publication number Publication date
CN103275758B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
EP1783194A1 (en) A process for direct liquefaction of coal
CN102585897B (zh) 一种使用供氢烃的低氢含量重油的加氢轻质化方法
CN102120934B (zh) 一种循环液相加氢方法
CN107177378B (zh) 重油原料的超临界萃取与悬浮床加氢的组合系统及方法
CN101067095A (zh) 一种烃类加氢转化过程热量回收方法
CN103305271A (zh) 一种渣油/中低温煤焦油轻质化的组合工艺方法
CN105647581A (zh) 催化汽油加氢方法
CN103275758B (zh) 一种重油全馏份加氢处理方法及系统
CN103740404A (zh) 一种高氮高芳烃加氢改质方法
CN108048121B (zh) 煤直接液化方法及煤直接液化装置
CN105038853B (zh) 一种利用fcc油浆和煤共炼制油的方法
CN103484159A (zh) 一种煤焦油悬浮床加氢裂化装置优化进料的配套工艺方法
CN102796560B (zh) 煤焦油全馏分加氢的方法
CN115537231B (zh) 一种改变物料流向而实现减油增化的方法
CN102585898A (zh) 一种高氮高芳烃油两段法烃氢化方法
CN1417293A (zh) 一种低循环比的延迟焦化工艺方法
RU128612U1 (ru) Установка для получения моторных топлив
CN104004542A (zh) 一种煤基高芳烃潜含量原料油的制备方法
CN112877090A (zh) 煤直接液化循环溶剂及其制备方法和系统
CN109722297B (zh) 一种催化重整工艺系统和工艺方法
CN206279143U (zh) 一种处理低阶煤的系统
CN106924984B (zh) 一种控制分馏塔塔底液位和反应苛刻度的方法
CN104479737B (zh) 带低芳烃油循环的高温煤焦油馏分油加氢装置
CN104419438A (zh) 一种混有中低温煤焦油的煤直接液化工艺
CN212152198U (zh) 一种煤焦油分段预处理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant