CN103273310B - An automatic alignment method of micro parts based on multi-channel micro vision - Google Patents

An automatic alignment method of micro parts based on multi-channel micro vision Download PDF

Info

Publication number
CN103273310B
CN103273310B CN201310196755.9A CN201310196755A CN103273310B CN 103273310 B CN103273310 B CN 103273310B CN 201310196755 A CN201310196755 A CN 201310196755A CN 103273310 B CN103273310 B CN 103273310B
Authority
CN
China
Prior art keywords
micro
vision system
image
microscopic
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310196755.9A
Other languages
Chinese (zh)
Other versions
CN103273310A (en
Inventor
张娟
徐德
张正涛
罗李焱
张大朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN201310196755.9A priority Critical patent/CN103273310B/en
Publication of CN103273310A publication Critical patent/CN103273310A/en
Application granted granted Critical
Publication of CN103273310B publication Critical patent/CN103273310B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于多路显微视觉的微零件自动对准装置及方法。该装置包括第一显微视觉系统、第二显微视觉系统、第三显微视觉系统、第一运动平台、第二运动平台和计算机。首先,利用第一微零件在清晰成像平面内的多次相对运动,实现多路显微视觉系统与第一运动平台之间的标定;然后,利用第二微零件在清晰成像平面内的多次相对运动,实现多路显微视觉系统与第二运动平台之间的标定;最后,基于标定的图像雅可比矩阵,采用PD控制律实现对第一微零件与第二微零件的运动控制,从而实现第一微零件与第二微零件的位姿对准。本发明操作方便、装配时间短、装配精度高,实现了毫米级复杂结构微零件的自动对准,具有广泛的应用前景和可观的社会经济效益。

The invention discloses a micro-part automatic alignment device and method based on multi-channel micro vision. The device comprises a first micro vision system, a second micro vision system, a third micro vision system, a first motion platform, a second motion platform and a computer. First, use the multiple relative movements of the first micro-part in the clear imaging plane to realize the calibration between the multi-channel microscopic vision system and the first motion platform; then, use the multiple times of the second micro-part in the clear imaging plane Relative movement realizes the calibration between the multi-channel microscopic vision system and the second motion platform; finally, based on the calibrated image Jacobian matrix, the PD control law is used to realize the motion control of the first micro-part and the second micro-part, thereby The pose alignment of the first micro-part and the second micro-part is realized. The invention has the advantages of convenient operation, short assembly time and high assembly precision, realizes the automatic alignment of millimeter-level complex structure micro parts, has wide application prospects and considerable social and economic benefits.

Description

一种基于多路显微视觉的微零件自动对准方法An automatic alignment method of micro parts based on multi-channel micro vision

技术领域technical field

本发明属于微装配技术领域中的显微视觉测量和控制,尤其是一种基于多路显微视觉的微零件三维空间自动对准方法。The invention belongs to microscopic vision measurement and control in the technical field of micro-assembly, in particular to a three-dimensional automatic alignment method of micro parts based on multi-channel microscopic vision.

背景技术Background technique

随着微机电系统的快速发展,常常涉及不同加工工艺、复杂几何外形以及不同加工材料的产品装配,先进的微小型零件装配技术对于提高微小型产品的制造质量、缩短周期、降低产品成本等方面具有重要的意义,因此,显微视觉在微装配领域中应用广泛。然而,由于显微视觉系统具有景深小的特点,各路显微视觉几乎没有公共的视野,所以难以构成传统的立体视觉系统,使得微零件装配自动化面对困难。With the rapid development of micro-electro-mechanical systems, it often involves product assembly of different processing techniques, complex geometric shapes, and different processing materials. Advanced micro-miniature parts assembly technology can improve the manufacturing quality of micro-miniature products, shorten cycle times, and reduce product costs. It is of great significance, therefore, micro vision is widely used in the field of micro assembly. However, due to the small depth of field of the microscopic vision system, each microscopic vision has almost no common field of view, so it is difficult to form a traditional stereoscopic vision system, which makes the assembly automation of micro parts difficult.

目前的微装配流程往往较为复杂,并且自动化程度普遍不高。常用的微装配技术中,一类采用不同放大倍数的显微视觉系统实现微装配,但装配流程复杂,对系统硬件的要求较高(可参见文献:S.J.Ralis,B.Vikramadiya,B.J.Nelson.Micropositioning of a weakly calibratedmicroassembly system using coarse-to-fine visual servoing strategies.IEEETransactions on Electronics Packaging Manufacturing,2000,23(2):123-131);另一类采用粗精结合的装配方法,但是同样面临装配效率较低的问题(可参见文献:X.Tao,H.Cho,Y.Cho.Visually guided microassembly with activezooming.Robotics and Mechatronics,2006,18(6):787-794)。Current micro-assembly processes are often complex and generally not highly automated. Among the commonly used micro-assembly technologies, one class uses microscopic vision systems with different magnifications to achieve micro-assembly, but the assembly process is complex and requires high system hardware (see literature: S.J.Ralis, B.Vikramadiya, B.J.Nelson.Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23(2): 123-131); another type of assembly method using coarse-to-fine combination, but also faces low assembly efficiency Low problem (see literature: X.Tao, H.Cho, Y.Cho.Visually guided microassembly with activezooming. Robotics and Mechatronics, 2006,18(6):787-794).

发明内容Contents of the invention

为了解决现有技术中微零件装配流程复杂,装配效率低的问题,本发明的目的在于提供一种基于多路显微视觉的微零件三维空间自动对准方法,能够满足微零件三维空间快速自动对准的要求。In order to solve the problem of complex assembly process and low assembly efficiency of micro-parts in the prior art, the purpose of the present invention is to provide a method for automatic alignment of micro-parts in three-dimensional space based on multi-channel microscopic vision, which can meet the needs of rapid and automatic alignment of micro-parts in three-dimensional space. alignment requirements.

本发明的突出特点是:1)实现了微零件三维空间位姿的自动对准;2)本发明自动对准方法简单易行、装配效率高、并且能够到达较高的控制精度。The outstanding features of the present invention are: 1) the automatic alignment of the three-dimensional space pose of the micro parts is realized; 2) the automatic alignment method of the present invention is simple and easy to implement, has high assembly efficiency, and can achieve high control precision.

根据本发明的一方面,提出一种基于多路显微视觉的微零件自动对准装置,该装置包括:第一显微视觉系统1、第二显微视觉系统2、第三显微视觉系统3、第一运动平台4、第二运动平台5、计算机13,其中:According to one aspect of the present invention, an automatic alignment device for micro parts based on multi-channel micro vision is proposed, the device includes: a first micro vision system 1, a second micro vision system 2, and a third micro vision system 3, the first motion platform 4, the second motion platform 5, the computer 13, wherein:

所述第一显微视觉系统1、第二显微视觉系统2和第三显微视觉系统3在空间上近似正交排布,其中一路显微视觉系统的光轴与X轴近似平行,一路显微视觉系统的光轴与Y轴近似平行,一路显微视觉系统的光轴与Z轴近似平行,所述第一、第二和第三显微视觉系统均指向待对准的第一微零件6和第二微零件7,用于采集第一微零件6和第二微零件7的显微视觉图像;The first microscopic vision system 1, the second microscopic vision system 2 and the third microscopic vision system 3 are arranged approximately orthogonally in space, wherein the optical axis of one microscopic vision system is approximately parallel to the X axis, and one path The optical axis of the microscopic vision system is approximately parallel to the Y axis, and the optical axis of the microscopic vision system along the way is approximately parallel to the Z axis. The first, second and third microscopic vision systems all point to the first microscopic vision system to be aligned. The part 6 and the second micro part 7 are used to collect the microscopic visual images of the first micro part 6 and the second micro part 7;

所述第一运动平台4安装于所述第一、第二和第三显微视觉系统的附近,其用于承载所述第一微零件6,并使得所述第一微零件6处于所述第一、第二和第三显微视觉系统的视野范围内;The first motion platform 4 is installed near the first, second and third micro vision systems, and it is used to carry the first micro parts 6, and make the first micro parts 6 in the Within the field of view of the first, second and third microscopic vision systems;

所述第一微零件6安装于所述第一运动平台4,其随着所述第一运动平台4一起运动;The first micro-part 6 is installed on the first motion platform 4, and it moves together with the first motion platform 4;

所述第二运动平台5安装于光轴与Z轴近似平行的显微视觉系统的下方空间,其用于承载所述第二微零件7,并使得所述第二微零件7处于所述第一、第二和第三显微视觉系统的视野范围内;The second motion platform 5 is installed in the space below the microscopic vision system whose optical axis is approximately parallel to the Z axis, and it is used to carry the second micro parts 7 and make the second micro parts 7 in the first position. 1. Within the field of view of the second and third microscopic vision systems;

所述第二微零件7安装于所述第二运动平台5,其随着所述第二运动平台5一起运动;The second micro-part 7 is installed on the second motion platform 5, and it moves together with the second motion platform 5;

所述第一显微视觉系统1通过第一视觉联接线8连接至计算机13;所述第二显微视觉系统2通过第二视觉联接线9连接至计算机13;所述第三显微视觉系统3通过第三视觉联接线10连接至计算机13;所述第一运动平台4通过第一控制线11连接至计算机13;所述第二运动平台5通过第二控制线12连接至计算机13;The first micro vision system 1 is connected to the computer 13 by the first visual connection line 8; the second micro vision system 2 is connected to the computer 13 by the second visual connection line 9; the third micro vision system 3 is connected to the computer 13 through the third visual connection line 10; the first motion platform 4 is connected to the computer 13 through the first control line 11; the second motion platform 5 is connected to the computer 13 through the second control line 12;

所述计算机13用于接收所述第一显微视觉系统1、所述第二显微视觉系统2、所述第三显微视觉系统3采集到的显微视觉图像,并根据所接收的显微视觉图像对于第一运动平台4和第二运动平台5进行运动控制,使得第一微零件6和第二微零件7实现自动对准。The computer 13 is used to receive the microscopic vision images collected by the first microscopic vision system 1, the second microscopic vision system 2, and the third microscopic vision system 3, and The micro-vision image controls the movement of the first moving platform 4 and the second moving platform 5, so that the first micro-part 6 and the second micro-part 7 are automatically aligned.

根据本发明的另一方面,还提出一种基于多路显微视觉的微零件自动对准方法,该方法包括以下步骤:According to another aspect of the present invention, a method for automatic alignment of micro parts based on multi-channel microscopic vision is also proposed, the method includes the following steps:

步骤S1:通过调整第一运动平台4带动第一微零件6进入多路显微视觉系统的视野范围,并且位于多路显微视觉系统的清晰成像平面内,所述多路显微视觉系统包括在空间上近似正交排布的第一显微视觉系统1、第二显微视觉系统2和第三显微视觉系统3,所述第一、第二和第三显微视觉系统均指向所述第一微零件6和第二微零件7;Step S1: Adjusting the first motion platform 4 to drive the first micro-component 6 into the field of view of the multi-channel micro-vision system, and located in the clear imaging plane of the multi-channel micro-vision system, the multi-channel micro-vision system includes The first microscopic vision system 1, the second microscopic vision system 2 and the third microscopic vision system 3 arranged approximately orthogonally in space, the first, second and third microscopic vision systems all point to the Describe the first micro-part 6 and the second micro-part 7;

步骤S2:通过调整所述第一运动平台4带动所述第一微零件6在所述多路显微视觉系统的清晰成像平面内进行多次相对运动,分别计算所述第一微零件6每次运动前后的第一图像特征参数变化量,根据所述图像特征参数变化量和所述第一运动平台4的对应相对位移量,利用最小二乘法计算出所述第一微零件6运动控制的图像雅可比矩阵,即得到J11~J63参数;Step S2: Adjusting the first motion platform 4 to drive the first micro-part 6 to perform multiple relative movements in the clear imaging plane of the multi-channel microscopic vision system, and calculating each time of the first micro-part 6 The amount of change of the first image feature parameter before and after the second movement, according to the amount of change of the image feature parameter and the corresponding relative displacement of the first motion platform 4, the least square method is used to calculate the motion control of the first micro part 6 Image Jacobian matrix, that is, get J 11 ~ J 63 parameters;

步骤S3:通过调整所述第二运动平台5带动所述第二微零件7进入所述多路显微视觉系统的视野范围,并且位于所述多路显微视觉系统的清晰成像平面内;Step S3: Adjusting the second motion platform 5 to drive the second micro part 7 into the field of view of the multi-channel micro-vision system, and to be located in the clear imaging plane of the multi-channel micro-vision system;

步骤S4:通过调整所述第二运动平台5带动所述第二微零件7在所述第一显微视觉系统1和所述第二显微视觉系统2的清晰成像平面内进行多次相对运动,分别计算每次运动前后的第二图像特征参数变化量,根据所述第二图像特征参数变化量和所述第二运动平台5的对应相对位移量,利用最小二乘法计算出所述第二微零件7运动控制的图像雅可比矩阵,即得到J11~J22参数;Step S4: Adjusting the second motion platform 5 to drive the second micro part 7 to perform multiple relative movements within the clear imaging planes of the first micro vision system 1 and the second micro vision system 2 , respectively calculate the variation of the second image characteristic parameter before and after each movement, according to the variation of the second image characteristic parameter and the corresponding relative displacement of the second motion platform 5, calculate the second The image Jacobian matrix of the motion control of the micro-part 7, that is, the J 11 ~ J 22 parameters are obtained;

步骤S5:提取出所述第一微零件6与所述第二微零件7在所述多路显微视觉系统中的第三图像特征,计算出所述第一微零件6与所述第二微零件7在图像空间的姿态偏差,然后,通过基于图像雅可比矩阵的视觉伺服控制方法实现所述第二微零件7的位姿姿态调整,使其与所述第一微零件6的位姿姿态偏差小于给定范围;Step S5: Extract the third image features of the first micro-part 6 and the second micro-part 7 in the multi-channel microscopic vision system, and calculate the first micro-part 6 and the second micro-part 7 The posture deviation of the micro-part 7 in the image space, and then, through the visual servo control method based on the image Jacobian matrix, the posture and posture adjustment of the second micro-part 7 is realized, so that it is consistent with the posture of the first micro-part 6 The attitude deviation is less than the given range;

步骤S6:提取出所述第一微零件6与所述第二微零件7在所述多路显微视觉系统中的第四图像特征,计算出所述第一微零件6与所述第二微零件7在图像空间的位置偏差,通过基于图像雅可比矩阵的视觉伺服控制方法实现所述第一微零件6的位置调整,使其与所述第二微零件7的位置偏差小于给定范围,完成所述第一微零件6和所述第二微零件7的自动对准。Step S6: Extract the fourth image features of the first micro-part 6 and the second micro-part 7 in the multi-channel microscopic vision system, and calculate the first micro-part 6 and the second micro-part 6 For the positional deviation of the micro-part 7 in the image space, the position adjustment of the first micro-part 6 is realized through the visual servo control method based on the image Jacobian matrix, so that the positional deviation between the second micro-part 7 and the second micro-part 7 is less than a given range , completing the automatic alignment of the first micro-component 6 and the second micro-component 7 .

本发明基于多路显微视觉的运动控制模型,利用零件清晰图像的坐标增量实现了零件在三维空间的相对位姿测量。本发明的基于多路显微视觉的微零件自动对准方法,具有简单易行,装配效率高的特点,可方便高效的实现微零件三维空间的自动装配。随着MEMS(Micro-electro-mechanicalsystems)的快速发展,本发明的应用前景和社会经济效益是可观的。The invention is based on a multi-channel microscopic vision motion control model, and realizes the relative pose measurement of the part in three-dimensional space by using the coordinate increment of the clear image of the part. The multi-channel microscopic vision-based automatic alignment method for micro-parts of the present invention has the characteristics of simplicity and high assembly efficiency, and can conveniently and efficiently realize the automatic assembly of micro-parts in three-dimensional space. With the rapid development of MEMS (Micro-electro-mechanical systems), the application prospect and social and economic benefits of the present invention are considerable.

附图说明Description of drawings

图1是本发明基于多路显微视觉的微零件自动对准装置结构示意图。FIG. 1 is a schematic diagram of the structure of an automatic alignment device for micro parts based on multi-channel micro vision according to the present invention.

图2是本发明基于多路显微视觉的微零件自动对准方法流程图。Fig. 2 is a flow chart of the method for automatic alignment of micro parts based on multi-channel micro vision in the present invention.

图3是本发明基于图像雅可比矩阵的视觉伺服运动控制方法流程图。Fig. 3 is a flow chart of the visual servo motion control method based on the image Jacobian matrix of the present invention.

图4是根据本发明一实施例的第二微零件运动控制误差结果示意图。FIG. 4 is a schematic diagram of a motion control error result of a second micro-component according to an embodiment of the present invention.

图5是根据本发明一实施例的第一微零件运动控制误差结果示意图。FIG. 5 is a schematic diagram of a motion control error result of a first micro-component according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

图1为本发明基于多路显微视觉的微零件自动对准装置结构示意图,如图1所示,所述微零件自动对准装置包括:第一显微视觉系统1、第二显微视觉系统2、第三显微视觉系统3、第一运动平台4、第二运动平台5、计算机13,其中:Figure 1 is a schematic structural diagram of the micro-parts automatic alignment device based on multi-channel micro-vision in the present invention. As shown in Figure 1, the micro-parts automatic alignment device includes: a first micro-vision system 1, a second micro-vision system System 2, the third micro vision system 3, the first motion platform 4, the second motion platform 5, and the computer 13, wherein:

所述第一显微视觉系统1、第二显微视觉系统2和第三显微视觉系统3在空间上近似正交排布,其中一路显微视觉系统的光轴与X轴近似平行,一路显微视觉系统的光轴与Y轴近似平行,一路显微视觉系统的光轴与Z轴近似平行,所述第一、第二和第三显微视觉系统均指向待对准的第一微零件6和第二微零件7,用于采集第一微零件6和第二微零件7的显微视觉图像;The first microscopic vision system 1, the second microscopic vision system 2 and the third microscopic vision system 3 are arranged approximately orthogonally in space, wherein the optical axis of one microscopic vision system is approximately parallel to the X axis, and one path The optical axis of the microscopic vision system is approximately parallel to the Y axis, and the optical axis of the microscopic vision system along the way is approximately parallel to the Z axis. The first, second and third microscopic vision systems all point to the first microscopic vision system to be aligned. The part 6 and the second micro part 7 are used to collect the microscopic visual images of the first micro part 6 and the second micro part 7;

所述第一运动平台4安装于所述第一、第二和第三显微视觉系统的附近,其用于承载所述第一微零件6,并使得所述第一微零件6处于所述第一、第二和第三显微视觉系统的视野范围内,优选地,所述第一运动平台4的安装位置使得所述第一微零件6的上表面平面与Z轴近似垂直;The first motion platform 4 is installed near the first, second and third micro vision systems, and it is used to carry the first micro parts 6, and make the first micro parts 6 in the Within the field of view of the first, second and third microscopic vision systems, preferably, the installation position of the first motion platform 4 is such that the plane of the upper surface of the first micro part 6 is approximately perpendicular to the Z axis;

所述第一微零件6安装于所述第一运动平台4,其随着所述第一运动平台4一起运动;The first micro-part 6 is installed on the first motion platform 4, and it moves together with the first motion platform 4;

所述第二运动平台5安装于光轴与Z轴近似平行的显微视觉系统的下方空间,其用于承载所述第二微零件7,并使得所述第二微零件7处于所述第一、第二和第三显微视觉系统的视野范围内,优选地,所述第二运动平台5的安装位置使得所述第二微零件7的上表面平面与Z轴近似垂直;The second motion platform 5 is installed in the space below the microscopic vision system whose optical axis is approximately parallel to the Z axis, and it is used to carry the second micro parts 7 and make the second micro parts 7 in the first position. 1. Within the field of view of the second and third microscopic vision systems, preferably, the installation position of the second motion platform 5 is such that the upper surface plane of the second micro part 7 is approximately perpendicular to the Z axis;

所述第二微零件7安装于所述第二运动平台5,其随着所述第二运动平台5一起运动;The second micro-part 7 is installed on the second motion platform 5, and it moves together with the second motion platform 5;

所述第一显微视觉系统1通过第一视觉联接线8连接至计算机13;所述第二显微视觉系统2通过第二视觉联接线9连接至计算机13;所述第三显微视觉系统3通过第三视觉联接线10连接至计算机13;所述第一运动平台4通过第一控制线11连接至计算机13;所述第二运动平台5通过第二控制线12连接至计算机13;The first micro vision system 1 is connected to the computer 13 by the first visual connection line 8; the second micro vision system 2 is connected to the computer 13 by the second visual connection line 9; the third micro vision system 3 is connected to the computer 13 through the third visual connection line 10; the first motion platform 4 is connected to the computer 13 through the first control line 11; the second motion platform 5 is connected to the computer 13 through the second control line 12;

所述计算机13用于接收所述第一显微视觉系统1、所述第二显微视觉系统2、所述第三显微视觉系统3采集到的显微视觉图像,并根据所接收的显微视觉图像对于第一运动平台4和第二运动平台5进行运动控制,使得第一微零件6和第二微零件7实现自动对准。The computer 13 is used to receive the microscopic vision images collected by the first microscopic vision system 1, the second microscopic vision system 2, and the third microscopic vision system 3, and The micro-vision image controls the movement of the first moving platform 4 and the second moving platform 5, so that the first micro-part 6 and the second micro-part 7 are automatically aligned.

在本发明一实施例中,所述第一运动平台4具有3个电动平移自由度;所述第二运动平台5具有绕X轴、Y轴的电动旋转自由度,以及沿Z轴方向的电动平移自由度;所述第一、第二和第三显微视觉系统1、2、3均由GC2450摄像机和Navitar显微镜头构成;计算机13采用Dell Inspiron 545S;所述第一微零件6末端为薄片环形结构,高度约为1mm,外径约为10mm;所述第二微零件7为内部中空的柱形结构,高度约为6mm,外径约为7mm。In one embodiment of the present invention, the first motion platform 4 has three degrees of freedom in translation; Translational degree of freedom; the first, second and third microscopic vision systems 1, 2, and 3 are all composed of a GC2450 camera and a Navitar microscope lens; the computer 13 adopts Dell Inspiron 545S; the end of the first micro part 6 is a sheet An annular structure with a height of about 1 mm and an outer diameter of about 10 mm; the second micro-part 7 is a hollow cylindrical structure with a height of about 6 mm and an outer diameter of about 7 mm.

图2为本发明基于多路显微视觉的微零件自动对准方法流程图,该方法能够根据基于多路显微视觉的运动控制模型,实现所述第一微零件6和所述第二微零件7的自动对准。如图2所示,所述自动对准方法包括以下步骤:Fig. 2 is a flowchart of the automatic alignment method of micro parts based on multi-channel micro-vision in the present invention, which can realize the first micro-part 6 and the second micro-part 6 according to the motion control model based on multi-channel micro-vision Automatic alignment of part 7. As shown in Figure 2, the automatic alignment method includes the following steps:

步骤S1:通过调整第一运动平台4带动第一微零件6进入多路显微视觉系统的视野范围,并且位于所述多路显微视觉系统的清晰成像平面内;Step S1: Adjusting the first motion platform 4 to drive the first micro-component 6 into the field of view of the multi-channel micro-vision system, and located in the clear imaging plane of the multi-channel micro-vision system;

其中,所述多路显微视觉系统包括在空间上近似正交排布的第一显微视觉系统1、第二显微视觉系统2和第三显微视觉系统3,所述第一、第二和第三显微视觉系统均指向所述第一微零件6和第二微零件7;Wherein, the multi-channel micro-vision system includes a first micro-vision system 1, a second micro-vision system 2 and a third micro-vision system 3 which are approximately orthogonally arranged in space. Both the second and third microscopic vision systems point to the first micro-part 6 and the second micro-part 7;

步骤S2:通过调整所述第一运动平台4带动所述第一微零件6在所述多路显微视觉系统的清晰成像平面内进行多次相对运动,分别计算所述第一微零件6每次运动前后的第一图像特征参数变化量,根据所述图像特征参数变化量和所述第一运动平台4的对应相对位移量,利用最小二乘法计算出所述第一微零件6运动控制的图像雅可比矩阵,即得到J11~J63参数;Step S2: Adjusting the first motion platform 4 to drive the first micro-part 6 to perform multiple relative movements in the clear imaging plane of the multi-channel microscopic vision system, and calculating each time of the first micro-part 6 The amount of change of the first image feature parameter before and after the second movement, according to the amount of change of the image feature parameter and the corresponding relative displacement of the first motion platform 4, the least square method is used to calculate the motion control of the first micro part 6 Image Jacobian matrix, that is, get J 11 ~ J 63 parameters;

其中,所述第一微零件6在所述第一显微视觉系统1和所述第二显微视觉系统2中的第一图像特征参数为所述第一微零件6垂直边缘线和水平边缘线交点的坐标,在所述第三显微视觉系统3中的第一图像特征参数为所述第一微零件6上表面圆心的坐标。Wherein, the first image characteristic parameter of the first micro-part 6 in the first micro-vision system 1 and the second micro-vision system 2 is the vertical edge line and the horizontal edge of the first micro-part 6 The coordinates of the line intersection point, the first image characteristic parameter in the third micro vision system 3 is the coordinates of the center of the upper surface of the first micro part 6 .

步骤S3:通过调整所述第二运动平台5带动所述第二微零件7进入所述多路显微视觉系统的视野范围,并且位于所述多路显微视觉系统的清晰成像平面内;Step S3: Adjusting the second motion platform 5 to drive the second micro part 7 into the field of view of the multi-channel micro-vision system, and to be located in the clear imaging plane of the multi-channel micro-vision system;

在所述步骤S1和S3对所述第一微零件6和所述第二微零件7进行位姿调整的过程中,通过多路显微视觉系统的自动聚焦,来保证所述第一微零件6第一图像特征提取区域和所述第二微零件7第二图像特征提取区域保持清晰。所述第一微零件6第一图像特征提取区域在所述第一显微视觉系统1和所述第二显微视觉系统2中为垂直边缘线和水平边缘线交点区域,在所述第三显微视觉系统3中为上表面区域;所述第二微零件7的第二图像特征提取区域在所述第一显微视觉系统1和所述第二显微视觉系统2中为垂直边缘线所在区域。In the process of adjusting the pose of the first micro-part 6 and the second micro-part 7 in the steps S1 and S3, the automatic focusing of the multi-channel microscopic vision system is used to ensure that the first micro-part 6 The feature extraction area of the first image and the feature extraction area of the second micro-part 7 remain clear. The first image feature extraction area of the first micro part 6 is the intersection area of vertical edge lines and horizontal edge lines in the first micro vision system 1 and the second micro vision system 2, and in the third In the micro vision system 3, it is the upper surface area; the second image feature extraction area of the second micro part 7 is a vertical edge line in the first micro vision system 1 and the second micro vision system 2 your region.

步骤S4:通过调整所述第二运动平台5带动所述第二微零件7在所述第一显微视觉系统1和所述第二显微视觉系统2的清晰成像平面内进行多次相对运动,分别计算每次运动前后的第二图像特征参数变化量,根据所述第二图像特征参数变化量和所述第二运动平台5的对应相对位移量,利用最小二乘法计算出所述第二微零件7运动控制的图像雅可比矩阵,即得到J11~J22参数;Step S4: Adjusting the second motion platform 5 to drive the second micro part 7 to perform multiple relative movements within the clear imaging planes of the first micro vision system 1 and the second micro vision system 2 , respectively calculate the variation of the second image characteristic parameter before and after each movement, according to the variation of the second image characteristic parameter and the corresponding relative displacement of the second motion platform 5, calculate the second The image Jacobian matrix of the motion control of the micro-part 7, that is, the J 11 ~ J 22 parameters are obtained;

其中,在运动平台带动目标进行相对运动的过程中,零件末端图像在多路显微视觉系统中保持清晰。Among them, when the moving platform drives the target to move relative to each other, the image of the end of the part remains clear in the multi-channel microscopic vision system.

所述第二微零件7在所述第一显微视觉系统1和所述第二显微视觉系统2中的第二图像特征参数为垂直边缘线的角度。The second image characteristic parameter of the second micro component 7 in the first micro vision system 1 and the second micro vision system 2 is the angle of the vertical edge line.

步骤S5:提取出所述第一微零件6与所述第二微零件7在所述多路显微视觉系统中的第三图像特征,计算出所述第一微零件6与所述第二微零件7在图像空间的姿态偏差,然后,通过基于图像雅可比矩阵的视觉伺服控制方式实现所述第二微零件7的位姿姿态调整,使其与所述第一微零件6的位姿姿态偏差小于给定范围;Step S5: Extract the third image features of the first micro-part 6 and the second micro-part 7 in the multi-channel microscopic vision system, and calculate the first micro-part 6 and the second micro-part 7 The posture deviation of the micro-part 7 in the image space, and then, through the visual servo control method based on the image Jacobian matrix, the posture and posture adjustment of the second micro-part 7 is realized, so that it is consistent with the posture of the first micro-part 6 The attitude deviation is less than the given range;

其中,所述第一微零件6的第三图像特征为在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直边缘线,所述第二微零件7的第三图像特征为在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直边缘线。Wherein, the third image feature of the first micro part 6 is the vertical edge line in the first micro vision system 1 and the second micro vision system 2, and the first micro part 7 of the second micro part 7 Three image features are vertical edge lines in the first microvision system 1 and the second microvision system 2 .

所述姿态偏差的计算公式如下式所示:The calculation formula of the attitude deviation is shown in the following formula:

ee angang 11 == arctanarctan (( kk 11 )) ++ ππ // 22 -- ββ ee angang 22 == arctanarctan (( kk 22 )) ++ ππ // 22 -- αα

其中,eang1,eang2分别指所述第一微零件6与所述第二微零件7在所述第一,第二显微视觉系统中的图像角度差,k1和k2分别为所述第一微零件6在所述第一、第二显微视觉系统中的垂直边缘线斜率,β和α分别为所述第二微零件7在所述第一、第二显微视觉系统中的垂直边缘线角度。Wherein, e ang1 and e ang2 respectively refer to the image angle difference between the first micro-part 6 and the second micro-part 7 in the first and second microscopic vision systems, k 1 and k 2 are respectively The slope of the vertical edge line of the first micro part 6 in the first and second micro vision systems, β and α are respectively the slopes of the second micro parts 7 in the first and second micro vision systems The vertical edge line angle of .

步骤S6:提取出所述第一微零件6与所述第二微零件7在所述多路显微视觉系统中的第四图像特征,计算出所述第一微零件6与所述第二微零件7在图像空间的位置偏差,通过基于图像雅可比矩阵的视觉伺服控制方式实现所述第一微零件6的位置调整,使其与所述第二微零件7的位置偏差小于给定范围,完成所述第一微零件6和所述第二微零件7的自动对准。Step S6: Extract the fourth image features of the first micro-part 6 and the second micro-part 7 in the multi-channel microscopic vision system, and calculate the first micro-part 6 and the second micro-part 6 For the positional deviation of the micro-part 7 in the image space, the position adjustment of the first micro-part 6 is realized through the visual servo control method based on the image Jacobian matrix, so that the positional deviation from the second micro-part 7 is less than a given range , completing the automatic alignment of the first micro-component 6 and the second micro-component 7 .

其中,所述第一微零件6的第四图像特征为在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直边缘线和水平边缘线,在所述第三显微视觉系统3中的上表面圆心,所述第二微零件7的第四图像特征为在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直和水平边缘线,在所述第三显微视觉系统3中的上表面圆心。Wherein, the fourth image feature of the first micro component 6 is the vertical edge line and the horizontal edge line in the first micro vision system 1 and the second micro vision system 2, and in the third micro vision system The center of the upper surface in the micro vision system 3, the fourth image feature of the second micro part 7 is the vertical and horizontal edges in the first micro vision system 1 and the second micro vision system 2 Line, the center of the upper surface in the third microscopic vision system 3 .

所述位置偏差通过所述第一微零件6与所述第二微零件7的第四图像特征坐标相减计算得到。The position deviation is calculated by subtracting the fourth image feature coordinates of the first micro-part 6 and the second micro-part 7 .

在所述步骤S5和S6中,基于图像雅可比矩阵的视觉伺服控制方式对于微零件的位置或姿态调整可表示为以下运动控制模型,该模型利用零件在多路显微视觉系统中清晰图像的图像特征参数变化量控制零件在三维空间的相对位姿变化量:In the steps S5 and S6, the visual servo control method based on the image Jacobian matrix can be expressed as the following motion control model for the position or attitude adjustment of the micro-parts. The variation of the image feature parameters controls the variation of the relative pose of the part in the three-dimensional space:

ΔΔ TT xx ΔΔ TT ythe y ΔΔ TT zz ΔΔ θθ xx ΔΔ θθ ythe y ΔΔ θθ zz == JJ 1111 JJ 1212 .. .. .. JJ 11 nno JJ 21twenty one JJ 22twenty two .. .. .. JJ 22 nno .. .. .. .. .. .. .. .. .. .. .. .. JJ mm 11 JJ mm 22 .. .. .. JJ mnmn ΔpΔp 11 ΔΔ pp 22 .. .. .. ΔΔ pp ii .. .. .. ΔΔ pp nno ,,

其中,ΔTx,ΔTy,ΔTz分别为零件在三维空间沿X,Y,Z轴的相对位置变化量,Δθx,Δθy,Δθz分别为零件在三维空间绕X,Y,Z轴的相对姿态变化量,Δpi是零件在第i路显微视觉系统中清晰图像的图像特征参数变化量,i=1,2,…n,J11~Jmn是控制零件运动的图像雅可比矩阵的元素。Among them, ΔT x , ΔT y , ΔT z are the relative position changes of the parts along the X, Y, and Z axes in the three-dimensional space, respectively, and Δθ x , Δθ y , and Δθ z are the relative position changes of the parts around the X, Y, and Z axes in the three-dimensional space, respectively. Δp i is the variation of the image feature parameters of the clear image in the i-th microscopic vision system of the part, i=1, 2,...n, J 11 ~J mn is the image Jacobian that controls the movement of the part elements of the matrix.

图3是本发明基于图像雅可比矩阵的视觉伺服运动控制流程图,以所述第一微零件6的视觉伺服运动控制为例,所述运动控制方法包括以下步骤:Fig. 3 is a flow chart of the visual servo motion control based on the image Jacobian matrix of the present invention, taking the visual servo motion control of the first micro-part 6 as an example, the motion control method includes the following steps:

1)分别提取出所述第一微零件6在多路显微视觉系统中的第四图像特征,所述第四图像特征指所述第一微零件6在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直边缘线和水平边缘线,在所述第三显微视觉系统3中的上表面圆心;1) extracting the fourth image feature of the first micro-part 6 in the multi-channel micro-vision system, the fourth image feature refers to the first micro-part 6 in the first micro-vision system 1 And the vertical edge line and the horizontal edge line in the second micro vision system 2, the upper surface circle center in the third micro vision system 3;

2)划分出所述第一微零件6在多路显微视觉系统中的第四图像特征区域;2) dividing the fourth image feature area of the first micro-component 6 in the multi-channel micro-vision system;

3)在第四图像特征区域中提取出所述第一微零件6的第四图像特征参数,所述第四图像特征参数为所述第一微零件6在所述第一显微视觉系统1和所述第二显微视觉系统2中的垂直边缘线和水平边缘线交点的坐标,在所述第三显微视觉系统3中的上表面圆心的坐标;3) Extracting the fourth image feature parameter of the first micro-part 6 in the fourth image feature area, the fourth image feature parameter is the first micro-part 6 in the first micro vision system 1 The coordinates of the intersection of the vertical edge line and the horizontal edge line in the second micro vision system 2, and the coordinates of the center of the upper surface in the third micro vision system 3;

4)计算所述第一微零件6和所述第二微零件7的第四图像特征参数差,基于标定的图像雅可比矩阵,将其转换为三维空间的位姿误差;4) calculating the fourth image feature parameter difference between the first micro-part 6 and the second micro-part 7, and converting it into a pose error in three-dimensional space based on the calibrated image Jacobian matrix;

5)判断所述位姿误差是否小于给定的误差范围,如果是,结束控制过程,如果否,采用PD(Proportion derivative)控制律控制调整所述第一微零件6的位姿,重复过程3)~5)。5) Judging whether the pose error is less than a given error range, if yes, end the control process, if not, adopt PD (Proportion derivative) control law to control and adjust the pose of the first micropart 6, and repeat process 3 )~5).

综上,在本发明方法中,首先,按照步骤S1调整第一微零件6的位置;其次,按照步骤S2实现对第一微零件6运动控制的图像雅可比矩阵的标定;再次,按照步骤S3调整第二微零件7的位置;然后,按照步骤S4实现对第二微零件7运动控制的图像雅可比矩阵的标定。在本发明一实施例中,步骤S2进行了3次相对平移运动,步骤S4进行了2次相对旋转运动,标定的第一微零件6运动控制的图像雅可比矩阵和第二微零件7运动控制的图像雅可比矩阵如下所示:In summary, in the method of the present invention, at first, adjust the position of the first micro-part 6 according to step S1; secondly, realize the calibration of the image Jacobian matrix of the motion control of the first micro-part 6 according to step S2; again, according to step S3 Adjust the position of the second micro-part 7; then, realize the calibration of the image Jacobian matrix for the motion control of the second micro-part 7 according to step S4. In one embodiment of the present invention, step S2 carries out 3 relative translational movements, step S4 carries out 2 relative rotational movements, the image Jacobian matrix of the calibrated first micropart 6 movement control and the second micropart 7 movement control The image Jacobian matrix looks like this:

JJ TT == 1.01.0 0.00.0 -- 0.20.2 1.21.2 ,,

JJ GG == -- 0.00100.0010 -- 0.20700.2070 00 -- 0.00700.0070 -- 0.00100.0010 -- 0.19900.1990 0.32100.3210 00 00 0.00400.0040 0.00300.0030 -- 0.32700.3270 0.25500.2550 0.01400.0140 -- 0.01100.0110 -- 0.00400.0040 -- 0.19500.1950 -- 0.00100.0010 ,,

其中,JT是第二微零件7运动控制的图像雅可比矩阵,JG是第一微零件6运动控制的图像雅可比矩阵。Wherein, J T is the image Jacobian matrix of the motion control of the second micro-component 7 , and J G is the image Jacobian matrix of the motion control of the first micro-component 6 .

基于图像雅可比矩阵标定结果,首先,按照步骤S5控制第二微零件7的姿态调整,然后,按照步骤S6控制第一微零件6的位置调整。在步骤S5中,PD控制器的参数分别选为0.5和0.1,给定误差设定为0.2度,其运动控制误差结果如图4所示。在步骤S6中,PD控制器的参数分别为0.7和0.12,给定误差为5μm,其运动控制误差结果如图5所示。Based on the calibration result of the image Jacobian matrix, firstly, control the attitude adjustment of the second micro-part 7 according to step S5, and then control the position adjustment of the first micro-part 6 according to step S6. In step S5, the parameters of the PD controller are respectively selected as 0.5 and 0.1, and the given error is set to 0.2 degrees. The result of the motion control error is shown in Figure 4. In step S6, the parameters of the PD controller are 0.7 and 0.12 respectively, and the given error is 5 μm. The result of the motion control error is shown in Fig. 5 .

从图4和图5中可以看出,第一微零件6与第二微零件7的位姿误差能够快速收敛到给定误差范围内,具有良好的控制效果,达到了微装配应用要求。It can be seen from Fig. 4 and Fig. 5 that the pose error of the first micro-part 6 and the second micro-part 7 can quickly converge to a given error range, which has a good control effect and meets the requirements of micro-assembly applications.

本发明基于三路显微视觉系统,实现了微零件三维空间位姿的自动对准,并且自动对准方法简单易行、装配效率高、能够到达较高的控制精度。Based on the three-way microscopic vision system, the invention realizes the automatic alignment of the three-dimensional space pose of the micro parts, and the automatic alignment method is simple and easy, the assembly efficiency is high, and high control precision can be achieved.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (6)

1.一种基于多路显微视觉的微零件自动对准方法,其特征在于,该方法包括以下步骤:1. A method for automatic alignment of micro parts based on multi-channel micro vision, characterized in that the method may further comprise the steps: 步骤S1:通过调整第一运动平台(4)带动第一微零件(6)进入多路显微视觉系统的视野范围,并且位于多路显微视觉系统的清晰成像平面内,所述多路显微视觉系统包括在空间上近似正交排布的第一显微视觉系统(1)、第二显微视觉系统(2)和第三显微视觉系统(3),所述第一、第二和第三显微视觉系统均指向所述第一微零件(6)和第二微零件(7);Step S1: By adjusting the first motion platform (4), the first micro-part (6) enters the field of vision of the multi-channel microscopic vision system, and is located in the clear imaging plane of the multi-channel microscopic vision system. The micro vision system comprises a first micro vision system (1), a second micro vision system (2) and a third micro vision system (3) arranged approximately orthogonally in space, the first and second and the third microscopic vision system all point to the first micro-part (6) and the second micro-part (7); 步骤S2:通过调整所述第一运动平台(4)带动所述第一微零件(6)在所述多路显微视觉系统的清晰成像平面内进行多次相对运动,分别计算所述第一微零件(6)每次运动前后的第一图像特征参数变化量,根据所述图像特征参数变化量和所述第一运动平台(4)的对应相对位移量,利用最小二乘法计算出所述第一微零件(6)运动控制的图像雅可比矩阵,即得到图像雅可比矩阵的元素J11~J63Step S2: by adjusting the first motion platform (4) to drive the first micro-component (6) to perform multiple relative movements in the clear imaging plane of the multi-channel microscopic vision system, respectively calculate the first The change amount of the first image characteristic parameter before and after each movement of the micro-part (6), according to the change amount of the image characteristic parameter and the corresponding relative displacement of the first motion platform (4), the least squares method is used to calculate the The image Jacobian matrix of the motion control of the first micro-part (6), that is, the elements J 11 to J 63 of the image Jacobian matrix are obtained; 步骤S3:通过调整第二运动平台(5)带动所述第二微零件(7)进入所述多路显微视觉系统的视野范围,并且位于所述多路显微视觉系统的清晰成像平面内;Step S3: Adjusting the second motion platform (5) to drive the second micro part (7) into the field of view of the multi-channel microscopic vision system, and to be located in the clear imaging plane of the multi-channel microscopic vision system ; 步骤S4:通过调整所述第二运动平台(5)带动所述第二微零件(7)在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)的清晰成像平面内进行多次相对运动,分别计算每次运动前后的第二图像特征参数变化量,根据所述第二图像特征参数变化量和所述第二运动平台(5)的对应相对位移量,利用最小二乘法计算出所述第二微零件(7)运动控制的图像雅可比矩阵,即得到图像雅可比矩阵的元素J11~J22Step S4: adjusting the second motion platform (5) to drive the clarity of the second micro parts (7) in the first micro vision system (1) and the second micro vision system (2) Carry out multiple relative movements in the imaging plane, respectively calculate the variation of the second image characteristic parameter before and after each movement, and according to the variation of the second image characteristic parameter and the corresponding relative displacement of the second motion platform (5), Calculating the image Jacobian matrix of the motion control of the second micro-part (7) by using the least square method, that is, obtaining the elements J 11 -J 22 of the image Jacobian matrix; 步骤S5:提取出所述第一微零件(6)与所述第二微零件(7)在所述多路显微视觉系统中的第三图像特征,计算出所述第一微零件(6)与所述第二微零件(7)在图像空间的姿态偏差,然后,通过基于图像雅可比矩阵的视觉伺服控制方法实现所述第二微零件(7)的位姿姿态调整,使其与所述第一微零件(6)的位姿姿态偏差小于给定范围;Step S5: Extract the third image features of the first micro-part (6) and the second micro-part (7) in the multi-channel microscopic vision system, and calculate the first micro-part (6) ) and the attitude deviation of the second micro-part (7) in the image space, and then realize the adjustment of the pose and attitude of the second micro-part (7) through the visual servo control method based on the image Jacobian matrix, so that it is consistent with The posture posture deviation of the first micro-part (6) is smaller than a given range; 步骤S6:提取出所述第一微零件(6)与所述第二微零件(7)在所述多路显微视觉系统中的第四图像特征,计算出所述第一微零件(6)与所述第二微零件(7)在图像空间的位置偏差,通过基于图像雅可比矩阵的视觉伺服控制方法实现所述第一微零件(6)的位置调整,使其与所述第二微零件(7)的位置偏差小于给定范围,完成所述第一微零件(6)和所述第二微零件(7)的自动对准。Step S6: extracting the fourth image features of the first micro-part (6) and the second micro-part (7) in the multi-channel micro vision system, and calculating the first micro-part (6) ) and the position deviation of the second micro-part (7) in the image space, the position adjustment of the first micro-part (6) is realized through the visual servo control method based on the image Jacobian matrix, so that it is different from the second micro-part (7) The position deviation of the micro part (7) is less than a given range, and the automatic alignment of the first micro part (6) and the second micro part (7) is completed. 2.根据权利要求1所述的方法,其特征在于,所述第一微零件(6)在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的第一图像特征参数为所述第一微零件(6)垂直边缘线和水平边缘线交点的坐标,在所述第三显微视觉系统(3)中的第一图像特征参数为所述第一微零件(6)上表面圆心的坐标;2. The method according to claim 1, characterized in that, the first micro part (6) in the first micro vision system (1) and the second micro vision system (2) The first image feature parameter is the coordinates of the intersection of the vertical edge line and the horizontal edge line of the first micro-part (6), and the first image feature parameter in the third microscopic vision system (3) is the first The coordinates of the center of circle on the upper surface of the micropart (6); 所述第二微零件(7)在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的第二图像特征参数为垂直边缘线的角度;The second image characteristic parameter of the second micro part (7) in the first micro vision system (1) and the second micro vision system (2) is the angle of the vertical edge line; 所述第一微零件(6)的第三图像特征为在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的垂直边缘线,所述第二微零件(7)的第三图像特征为在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的垂直边缘线;The third image feature of the first micropart (6) is a vertical edge line in the first microscopic vision system (1) and the second microscopic vision system (2), the second microscopic vision system (2) a third image feature of the part (7) is a vertical edge line in said first microvision system (1) and said second microvision system (2); 所述第一微零件(6)的第四图像特征为在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的垂直边缘线和水平边缘线,在所述第三显微视觉系统(3)中的上表面圆心,所述第二微零件(7)的第四图像特征为在所述第一显微视觉系统(1)和所述第二显微视觉系统(2)中的垂直和水平边缘线,在所述第三显微视觉系统(3)中的上表面圆心。The fourth image feature of the first micro part (6) is the vertical edge line and the horizontal edge line in the first micro vision system (1) and the second micro vision system (2), in The upper surface circle center in the third microscopic vision system (3), the fourth image feature of the second micro part (7) is that it is in the first microscopic vision system (1) and the second display The vertical and horizontal edge lines in the micro vision system (2), the upper surface circle center in the third micro vision system (3). 3.根据权利要求1所述的方法,其特征在于,利用下式来计算所述姿态偏差:3. method according to claim 1, is characterized in that, utilizes following formula to calculate described posture deviation: ee angang 11 == arctanarctan (( kk 11 )) ++ ππ // 22 -- ββ ee angang 22 == arctanarctan (( kk 22 )) ++ ππ // 22 -- αα ,, 其中,eang1,eang2分别指所述第一微零件(6)与所述第二微零件(7)在所述第一,第二显微视觉系统中的图像角度差,k1和k2分别为所述第一微零件(6)在所述第一、第二显微视觉系统中的垂直边缘线斜率,β和α分别为所述第二微零件(7)在所述第一、第二显微视觉系统中的垂直边缘线角度。Wherein, e ang1 , e ang2 respectively refer to the image angle difference between the first micro-part (6) and the second micro-part (7) in the first and second microscopic vision systems, k 1 and k 2 are respectively the vertical edge line slopes of the first micro-part (6) in the first and second microscopic vision systems, β and α are the slopes of the second micro-part (7) in the first , the vertical edge line angle in the second microscopic vision system. 4.根据权利要求1所述的方法,其特征在于,所述位置偏差通过所述第一微零件(6)与所述第二微零件(7)的第四图像特征坐标相减计算得到。4. The method according to claim 1, wherein the position deviation is calculated by subtracting the fourth image feature coordinates of the first micro-part (6) and the second micro-part (7). 5.根据权利要求1所述的方法,其特征在于,所述基于图像雅可比矩阵的视觉伺服控制方法对于微零件的位置或姿态调整可表示为以下运动控制模型:5. The method according to claim 1, wherein the visual servo control method based on the image Jacobian matrix can be expressed as the following motion control model for the position or attitude adjustment of micro parts: ΔTΔT xx ΔTΔT ythe y ΔTΔT zz ΔθΔθ xx ΔθΔθ ythe y ΔθΔθ zz == JJ 1111 JJ 1212 .. .. .. JJ 11 nno JJ 21twenty one JJ 22twenty two .. .. .. JJ 22 nno .. .. .. .. .. .. .. .. .. .. .. .. JJ mm 11 JJ mm 22 .. .. .. JJ mnmn ΔpΔp 11 ΔpΔp 22 .. .. .. ΔpΔp ii .. .. .. ΔpΔp nno 其中,ΔTx,ΔTy,ΔTz分别为零件在三维空间沿X,Y,Z轴的相对位置变化量,Δθx,Δθy,Δθz分别为零件在三维空间绕X,Y,Z轴的相对姿态变化量,Δpi是零件在第i路显微视觉系统中清晰图像的图像特征参数变化量,i=1,2,...n,J11~Jmn是控制零件运动的图像雅可比矩阵的元素。Among them, ΔT x , ΔT y , ΔT z are the relative position changes of the parts along the X, Y, and Z axes in the three-dimensional space, respectively, and Δθ x , Δθ y , and Δθ z are the relative position changes of the parts around the X, Y, and Z axes in the three-dimensional space, respectively. Δp i is the variation of the image feature parameters of the clear image of the part in the i-th microscopic vision system, i=1,2,...n, J 11 ~ J mn are the images that control the movement of the part Elements of the Jacobian matrix. 6.根据权利要求1所述的方法,其特征在于,基于图像雅可比矩阵的视觉伺服运动控制方法包括以下步骤:6. method according to claim 1, is characterized in that, based on the visual servo motion control method of image Jacobian matrix, comprises the following steps: 1)分别提取出一微零件在多路显微视觉系统中的第四图像特征;1) respectively extracting the fourth image feature of a micro part in the multi-channel micro vision system; 2)划分出所述微零件在多路显微视觉系统中的第四图像特征区域;2) dividing the fourth image characteristic area of the micro-part in the multi-channel micro-vision system; 3)在第四图像特征区域中提取出所述微零件的第四图像特征参数;3) extracting the fourth image feature parameter of the micro-part in the fourth image feature area; 4)计算所述微零件和另一微零件的第四图像特征参数差,基于标定的图像雅可比矩阵,将其转换为三维空间的位姿误差;4) calculating the fourth image feature parameter difference between the micro-part and another micro-part, and converting it into a pose error in three-dimensional space based on the calibrated image Jacobian matrix; 5)判断所述位姿误差是否小于给定的误差范围,如果是,结束控制过程,如果否,控制调整所述微零件的位姿,并重复步骤3)~5)。5) Judging whether the pose error is smaller than a given error range, if yes, end the control process, if not, control and adjust the pose of the micro-part, and repeat steps 3) to 5).
CN201310196755.9A 2013-05-24 2013-05-24 An automatic alignment method of micro parts based on multi-channel micro vision Expired - Fee Related CN103273310B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310196755.9A CN103273310B (en) 2013-05-24 2013-05-24 An automatic alignment method of micro parts based on multi-channel micro vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310196755.9A CN103273310B (en) 2013-05-24 2013-05-24 An automatic alignment method of micro parts based on multi-channel micro vision

Publications (2)

Publication Number Publication Date
CN103273310A CN103273310A (en) 2013-09-04
CN103273310B true CN103273310B (en) 2015-11-04

Family

ID=49055987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310196755.9A Expired - Fee Related CN103273310B (en) 2013-05-24 2013-05-24 An automatic alignment method of micro parts based on multi-channel micro vision

Country Status (1)

Country Link
CN (1) CN103273310B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107363143A (en) * 2017-07-31 2017-11-21 江苏大学 A kind of automation equipment and its method of dynamic Laser loading and shaping micro-volume part

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103544701B (en) * 2013-10-15 2016-03-02 中国科学院自动化研究所 A kind of multipath microscopic vision calibration system and method
JP6643072B2 (en) * 2015-12-10 2020-02-12 キヤノン株式会社 Microscope system and control method thereof
US10377021B2 (en) * 2016-12-12 2019-08-13 Wipro Limited Smart power tool
CN107363504B (en) * 2017-08-24 2023-04-18 金石机器人银川有限公司 Piston positioning and grabbing mechanism
CN109307585A (en) * 2018-04-26 2019-02-05 东南大学 An intelligent test system for near-eye display performance
CN108972557B (en) * 2018-08-16 2020-09-01 中国科学院自动化研究所 Micro-part pose automatic alignment device and method
CN111612794B (en) * 2020-04-15 2024-07-19 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) High-precision three-dimensional pose estimation method and system for parts based on multi-2D vision

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972928A (en) * 2010-08-19 2011-02-16 北京理工大学 Automatic aligning assembly system for micro members
US8082660B2 (en) * 2004-12-14 2011-12-27 Palo Alto Research Center Incorporated Xerographic micro-assembler
CN102842117A (en) * 2012-07-13 2012-12-26 浙江工业大学 Method for correcting kinematic errors in microscopic vision system
CN102873523A (en) * 2012-09-13 2013-01-16 中国科学院自动化研究所 Device for detecting micro-devices on line during assembly based on micro-vision

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152340A (en) * 1984-12-26 1986-07-11 Pioneer Electronic Corp Automatic aligning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8082660B2 (en) * 2004-12-14 2011-12-27 Palo Alto Research Center Incorporated Xerographic micro-assembler
CN101972928A (en) * 2010-08-19 2011-02-16 北京理工大学 Automatic aligning assembly system for micro members
CN102842117A (en) * 2012-07-13 2012-12-26 浙江工业大学 Method for correcting kinematic errors in microscopic vision system
CN102873523A (en) * 2012-09-13 2013-01-16 中国科学院自动化研究所 Device for detecting micro-devices on line during assembly based on micro-vision

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107363143A (en) * 2017-07-31 2017-11-21 江苏大学 A kind of automation equipment and its method of dynamic Laser loading and shaping micro-volume part

Also Published As

Publication number Publication date
CN103273310A (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103273310B (en) An automatic alignment method of micro parts based on multi-channel micro vision
CN108972557B (en) Micro-part pose automatic alignment device and method
Liu et al. High precision automatic assembly based on microscopic vision and force information
CN108871209B (en) Large-size workpiece moving measurement robot system and method
CN108801142B (en) A dual-movement measuring robot system and method for extra-large workpieces
CN108827155B (en) Robot vision measurement system and method
CN102873523B (en) Device for detecting micro-devices on line during assembly based on micro-vision
CN104690551A (en) Robot automatic assembly system
CN102922521A (en) Mechanical arm system based on stereo visual serving and real-time calibrating method thereof
CN102430779B (en) Device and method for measuring normal vector at any point on free-form surface
CN103791838B (en) Method for automatic measurement of pose of micro part
CN102937426B (en) Measurement method for large and complex parts based on robot visual servo
CN103386598B (en) A kind of micro-part is automatically directed at and assembles apparatus and method
CN103170823B (en) Control device and method of inserting micro-pipe into micro-hole through monocular microscopy visual guidance
Shen et al. High-precision automated 3-D assembly with attitude adjustment performed by LMTI and vision-based control
CN103759635A (en) Scanning measurement robot detection method allowing precision to be irrelevant to robot
CN111347426A (en) A 3D vision-based trajectory planning method for precise placement of robotic arms
CN111531407A (en) Workpiece attitude rapid measurement method based on image processing
CN106323286B (en) A kind of robot coordinate system and the transform method of three-dimensional measurement coordinate system
Xing et al. Precision assembly among multiple thin objects with various fit types
Wang et al. Combined measurement based wing-fuselage assembly coordination via multiconstraint optimization
CN105773661A (en) Horizontal robot fixed camera lower workpiece translation and rotation calibration method
CN202239806U (en) Device for measuring normal vector of arbitrary point of free-form surface
CN110553584A (en) Measuring tool, automatic measuring system and measuring method for small-sized complex parts
CN103288039B (en) Micro-Assembly of the parts system and corresponding online assembly method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151104