CN103258119A - 一种高压变电站工频电场的评估方法 - Google Patents

一种高压变电站工频电场的评估方法 Download PDF

Info

Publication number
CN103258119A
CN103258119A CN2013101368374A CN201310136837A CN103258119A CN 103258119 A CN103258119 A CN 103258119A CN 2013101368374 A CN2013101368374 A CN 2013101368374A CN 201310136837 A CN201310136837 A CN 201310136837A CN 103258119 A CN103258119 A CN 103258119A
Authority
CN
China
Prior art keywords
electric field
equipment
high voltage
frequency electric
power frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101368374A
Other languages
English (en)
Inventor
刘士利
蔡国伟
潘超
李铁锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JILIN POWER SUPPLY COMPANY JILIN ELECTRIC POWER Co Ltd
State Grid Corp of China SGCC
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN2013101368374A priority Critical patent/CN103258119A/zh
Publication of CN103258119A publication Critical patent/CN103258119A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明是高压变电站工频电场的评估方法,其特点是:它包括基于边界元法的变电站设备表面电场和空间电场计算;能够模拟变电站主变、高抗、开关等各种复杂结构的电气设备,充分考虑其对空间电场的影响,特别是上述关键设备附近的空间电场分布,从而对变电站工频电场做出有效评估,对主变、高抗等面结构设备及均压环、母线等线结构设备具有广泛的适应性,便于考虑各种设备的影响,对整个高压变电站工频电场做出准确评估,具有较高的工程价值。

Description

一种高压变电站工频电场的评估方法
技术领域
本发明是一种高压变电站工频电场的评估方法,应用于高压变电站空间工频电场分析计算以及电磁环境评估。
背景技术
我国正在大力发展特高压输电,电网的输电电压等级不断提高,电力系统的电磁场也变得越来越复杂。为达到电磁环境的各项指标并保证系统的正常运行,研究特高压变电站电磁环境显得尤为重要。变电站运行的各种带电导体上的电荷和在接地架构上感应的电荷在变电装置区的广大空间产生工频电场,强电场能导致导体表面发生电晕、粒子流,引起绝缘的老化。有关文献通过测量研究了变电站电场分布规律,指出电场强度较高的区域集中在主变、开关、断路器、互感器等设备及其连接线附近的区域,因此,在特高压变电站设计过程中,确定变电站空间电场尤其是设备附近电场的分布是相当重要的。
目前,计算变电站空间电场主要有模拟电荷法,用模拟电荷法计算导线产生的电场是非常有效的,但对于边界复杂的情况,该方法需要反复调整模拟电荷的位置和个数,比较繁冗,甚至有时找不到合适的电荷布置位置,导致方法失效,因此,大多数学者用模拟电荷法计算变电站空间电场时,通常忽略设备的影响,只分析母线产生的电场,显然这种简化处理对于分析变电站设备附件的电场分布是不合适的。
发明内容
本发明的目的是提供一种能够实现变电站空间电场的快速、准确计算,适用于分析各种复杂结构的电气设备,具有较高的实际应用价值的高压变电站工频电场的评估方法。
本发明的目的是由以下技术方案来实现的,一种高压变电站工频电场的评估方法,其特征是,它包括以下步骤:
1)基于边界元法的表面等效电荷计算
根据导体系统电位分布的基本原理,边界积分方程为:
Figure 497068DEST_PATH_IMAGE001
                                (1)
式中,φ表示场点电位,R表示场点和线电荷源之间的距离,
Figure 911869DEST_PATH_IMAGE002
表示面积分区域,
Figure 588838DEST_PATH_IMAGE003
表示设备表面等效面电荷密度,
将边界面划分成若干单元,在单元内采用插值方法对电位函数进行线性插值近似,电位的插值表达式为
   
Figure 26772DEST_PATH_IMAGE004
                                          (2)
Figure 24553DEST_PATH_IMAGE005
,表面电场强度的插值表达式为
   
Figure 231543DEST_PATH_IMAGE006
                                         (3)
式中
Figure 344993DEST_PATH_IMAGE007
为插值函数,
应用伽辽金加权余量格式离散式(1),将整个边界的积分用单元积分之和表示,则
   
Figure 332541DEST_PATH_IMAGE008
                 (4)
将方程写成矩阵形式
   
Figure 556849DEST_PATH_IMAGE009
                  (5)
对比方程,可得
   
Figure 696974DEST_PATH_IMAGE010
                                    (6)
   
Figure 981325DEST_PATH_IMAGE011
                        (7)
矩阵元素是单元积分叠加的结果,[A]矩阵只涉及场单元,[B]涉及边界场单元和边界源单元,i是场单元中的节点局部编号,j是源单元中的节点局部编号,
基于基函数、权函数与单元形状函数的关系,将对应的单元形状函数代入,可得
       
Figure 128272DEST_PATH_IMAGE012
                                (8)
   
Figure 218588DEST_PATH_IMAGE013
                         (9)
可以得到已知导体电位求解导体表面等效电荷的代数方程组
Figure 400171DEST_PATH_IMAGE014
                                      (10)
通过求解上述代数方程组,即可得到设备表面等效电荷密度;
2)高压变电站空间工频电场计算
采用步骤1)得出设备的表面等效电荷后,直接利用电场的积分公式,求出空间任意一点的电场,见下式,
                                 (11)
其中,r分别表示场点和源点,
Figure 632941DEST_PATH_IMAGE017
表示源单元。
利用本发明的高压变电站工频电场的评估方法对变电站工频电场进行分析计算,充分考虑了高抗、主变、接地开关等电气设备对电场的影响;与以往的电场计算方法相比,更适合处理各种复杂结构的电气设备,适应性较强,具有较高的实际应用价值。
附图说明
图1 一种高压变电站工频电场的评估方法的变电站设备示意图;
图2 一种高压变电站工频电场的评估方法的电场计算模型图;
图3一种高压变电站工频电场的评估方法的电场计算与测量曲线图。
具体实施方式
下面结合附图和具体实施例对本发明的一种高压变电站工频电场的评估方法作进一步描述:
本发明所提出的一种高压变电站工频电场评估方法,它包括以下步骤:
1)基于边界元法的表面等效电荷计算
根据导体系统电位分布的基本原理,边界积分方程为:
Figure 731347DEST_PATH_IMAGE001
                                (1)
式中,φ表示场点电位,R表示场点和线电荷源之间的距离,
Figure 357500DEST_PATH_IMAGE002
表示面积分区域,
Figure 479040DEST_PATH_IMAGE003
表示设备表面等效面电荷密度,
将边界面划分成若干单元,在单元内采用插值方法对电位函数进行线性插值近似,电位的插值表达式为
   
Figure 661891DEST_PATH_IMAGE004
                                          (2)
Figure 818066DEST_PATH_IMAGE005
,表面电场强度的插值表达式为
   
Figure 615120DEST_PATH_IMAGE006
                                         (3)
式中
Figure 286273DEST_PATH_IMAGE007
为插值函数,
应用伽辽金加权余量格式离散式(1),将整个边界的积分用单元积分之和表示,则
   
Figure 194186DEST_PATH_IMAGE018
                 (4)
将方程写成矩阵形式
                     (5)
对比方程,可得
   
Figure 484408DEST_PATH_IMAGE010
                                    (6)
   
Figure 580540DEST_PATH_IMAGE011
                        (7)
矩阵元素是单元积分叠加的结果,[A]矩阵只涉及场单元,[B]涉及边界场单元和边界源单元,i是场单元中的节点局部编号,j是源单元中的节点局部编号,
基于基函数、权函数与单元形状函数的关系,将对应的单元形状函数代入,可得
       
Figure 354461DEST_PATH_IMAGE012
                                (8)
   
Figure 485228DEST_PATH_IMAGE013
                         (9)
可以得到已知导体电位求解导体表面等效电荷的代数方程组
Figure 624085DEST_PATH_IMAGE014
                                      (10)
通过求解上述代数方程组,即可得到设备表面等效电荷密度;
2)高压变电站空间工频电场计算
采用步骤1)得出设备的表面等效电荷后,直接利用电场的积分公式,求出空间任意一点的电场,见下式,
Figure 754983DEST_PATH_IMAGE020
                                 (11)
其中,r
Figure 270278DEST_PATH_IMAGE021
分别表示场点和源点,
Figure 317869DEST_PATH_IMAGE017
表示源单元。
图1为变电站设备的布置图,包括电抗器、电压互感器、接地开关、母线等。采用本发明所提出的方法对变电站空间电场进行分析,首先建立变电站三相设备的仿真模型,如图2所示,图2中平面P平行于地面,距离地面1.5米。计算电抗器、接地开关等设备沿线上的工频电场分布,并通过现场测量验证本专利方法的正确性,如图3所示,计算曲线和测量曲线基本重合。

Claims (1)

1. 一种高压变电站工频电场评估方法,其特征是,它包括以下步骤:
1)基于边界元法的表面等效电荷计算
根据导体系统电位分布的基本原理,边界积分方程为:
                                (1)
式中,φ表示场点电位,R表示场点和线电荷源之间的距离,
Figure 176854DEST_PATH_IMAGE002
表示面积分区域,
Figure 845732DEST_PATH_IMAGE003
表示设备表面等效面电荷密度,
将边界面划分成若干单元,在单元内采用插值方法对电位函数进行线性插值近似,电位的插值表达式为
    
Figure 104675DEST_PATH_IMAGE004
                                          (2)
Figure 905010DEST_PATH_IMAGE005
,表面电场强度的插值表达式为
                                             (3)
式中
Figure 493303DEST_PATH_IMAGE007
为插值函数,
应用伽辽金加权余量格式离散式(1),将整个边界的积分用单元积分之和表示,则
    
Figure 657568DEST_PATH_IMAGE008
                 (4)
将方程写成矩阵形式
    
Figure 899194DEST_PATH_IMAGE009
                  (5)
对比方程,可得
    
Figure 252946DEST_PATH_IMAGE010
                                    (6)
    
Figure 630838DEST_PATH_IMAGE011
                        (7)
矩阵元素是单元积分叠加的结果,[A]矩阵只涉及场单元,[B]涉及边界场单元和边界源单元,i是场单元中的节点局部编号,j是源单元中的节点局部编号,
基于基函数、权函数与单元形状函数的关系,将对应的单元形状函数代入,可得
                                       (8)
    
Figure 757243DEST_PATH_IMAGE013
                         (9)
可以得到已知导体电位求解导体表面等效电荷的代数方程组
                                      (10)
通过求解上述代数方程组,即可得到设备表面等效电荷密度;
2)高压变电站空间工频电场计算
采用步骤1)得出设备的表面等效电荷后,直接利用电场的积分公式,求出空间任意一点的电场,见下式,
                                 (11)
其中,r分别表示场点和源点,表示源单元,
对变电站空间工频电场做出评估。
CN2013101368374A 2013-04-19 2013-04-19 一种高压变电站工频电场的评估方法 Pending CN103258119A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101368374A CN103258119A (zh) 2013-04-19 2013-04-19 一种高压变电站工频电场的评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101368374A CN103258119A (zh) 2013-04-19 2013-04-19 一种高压变电站工频电场的评估方法

Publications (1)

Publication Number Publication Date
CN103258119A true CN103258119A (zh) 2013-08-21

Family

ID=48962031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101368374A Pending CN103258119A (zh) 2013-04-19 2013-04-19 一种高压变电站工频电场的评估方法

Country Status (1)

Country Link
CN (1) CN103258119A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730842A (zh) * 2013-11-22 2014-04-16 国家电网公司 一种变电站中的高抗回路
CN103810355A (zh) * 2014-03-12 2014-05-21 国家电网公司 变电站高压开关场工频电场三维分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040756A (ja) * 2006-08-04 2008-02-21 Sharp Corp 電磁界回路連携解析プログラム、電磁界回路連携解析プログラムを格納した記録媒体、電磁界回路連携解析装置および電磁界回路連携解析方法
CN101349720A (zh) * 2008-08-28 2009-01-21 重庆电力科学试验研究院 高压架空输电线路工频电场屏蔽分析方法
US20090284249A1 (en) * 2006-09-08 2009-11-19 Syracuse Steven J Sensor, Method and System of Monitoring Transmission Lines
CN101833597A (zh) * 2010-04-08 2010-09-15 西北工业大学 用快速边界元法得到大型复杂飞行器电场分布的方法
US20110275921A1 (en) * 2008-11-27 2011-11-10 "Amycard" Llc. Method of noninvasive electrophysiological study of the heart
CN102721875A (zh) * 2012-06-15 2012-10-10 四川电力科学研究院 一种基于输电导线表面等效电荷曲线积分的三维工频电场的测定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040756A (ja) * 2006-08-04 2008-02-21 Sharp Corp 電磁界回路連携解析プログラム、電磁界回路連携解析プログラムを格納した記録媒体、電磁界回路連携解析装置および電磁界回路連携解析方法
US20090284249A1 (en) * 2006-09-08 2009-11-19 Syracuse Steven J Sensor, Method and System of Monitoring Transmission Lines
CN101349720A (zh) * 2008-08-28 2009-01-21 重庆电力科学试验研究院 高压架空输电线路工频电场屏蔽分析方法
US20110275921A1 (en) * 2008-11-27 2011-11-10 "Amycard" Llc. Method of noninvasive electrophysiological study of the heart
CN101833597A (zh) * 2010-04-08 2010-09-15 西北工业大学 用快速边界元法得到大型复杂飞行器电场分布的方法
CN102721875A (zh) * 2012-06-15 2012-10-10 四川电力科学研究院 一种基于输电导线表面等效电荷曲线积分的三维工频电场的测定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
云玉新等: "采用BEM计算高压变电站工频电场", 《山东电力技术》 *
李乃一等: "特高压变电站工频电场模拟计算及其分布规律", 《高电压技术》 *
王勇等: "高压变电站工频电场计算方法分析", 《重庆科技学院学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730842A (zh) * 2013-11-22 2014-04-16 国家电网公司 一种变电站中的高抗回路
CN103810355A (zh) * 2014-03-12 2014-05-21 国家电网公司 变电站高压开关场工频电场三维分析方法
CN103810355B (zh) * 2014-03-12 2018-01-30 国家电网公司 变电站高压开关场工频电场三维分析方法

Similar Documents

Publication Publication Date Title
Guo et al. Impact of the EHV power system on geomagnetically induced currents in the UHV power system
Davoudi et al. Time domain fault location on transmission lines using genetic algorithm
Huang et al. Analysis of short-circuit current characteristics and its distribution of artificial grounding faults on DC transmission lines
Hetita et al. Experimental and numerical analysis of transient overvoltages of PV systems when struck by lightning
Patsalides et al. Simplified distribution grid model for power quality studies in the presence of photovoltaic generators
Wang et al. A quantitative research on the level of disturbance to secondary signal ports of electronic voltage transformers under the operation of gas‐insulated switchgear
Zhang et al. Effect of various parameters on the inductive induced voltage and current on pipelines
CN105388355A (zh) 一种运用gps同步的地网分流矢量测试系统及测试方法
Wang et al. Calculation of ion-flow field near the crossing of HVdc transmission lines using equivalent corona conductors
CN103258119A (zh) 一种高压变电站工频电场的评估方法
Hinge et al. A novel approach for calibration of instrument transformers using synchrophasors
Wang et al. Studies on the stator single-phase-to-ground fault protection for a high-voltage cable-wound generator
CN206773135U (zh) Gis局部放电特性的检测系统
CN103617372A (zh) 一种换流阀三维电场计算方法
Wang et al. Electric field calculations of residential houses near UHVDC lines using 3D reconstruction method
Li et al. Study on the distributed-parameter resistance earth model and potential distribution of the monopole-ground-return HVDC
Mpanga et al. Electromagnetic Field Evaluation of a 500kV High Voltage Overhead Line
Glik et al. Travelling wave fault location algorithm in HV lines—Simulation test results for arc and high impedance faults
De Oliveira‐De Jesus et al. The neutral‐earth‐voltage (NEV) system state estimation model
Balci et al. A comparative simulation on the grounding grid system of a wind turbine with FEA software
Mu et al. Fault detection system of single-phase grounding based on electric field sensor
Sabiha Lightning-induced overvoltages in medium voltage distribution systems and customer experienced voltage spikes
Feng et al. Analysis of fault characteristics of half-wavelength AC transmission lines
CN105301324B (zh) 以磁平衡理论对特高压直流避雷器泄漏电流采集的方法
Khurshid et al. Impact of geomagnetically induced current on power grid resiliency under extreme geomagnetic disturbance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: STATE ELECTRIC NET CROP.

Free format text: FORMER OWNER: NORTHEAST ELECTRIC POWER UNIVERSITY

Effective date: 20130927

Owner name: NORTHEAST ELECTRIC POWER UNIVERSITY JILIN PROVINCE

Effective date: 20130927

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 132012 JILIN, JILIN PROVINCE TO: 100031 DONGCHENG, BEIJING

TA01 Transfer of patent application right

Effective date of registration: 20130927

Address after: 100031 West Chang'an Avenue, Beijing, No. 86

Applicant after: State Grid Corporation of China

Applicant after: Northeast Dianli University

Applicant after: Jilin Power Supply Company, Jilin Electric Power Company Limited

Address before: Jilin City, Jilin province Changchun ship 132012 Camp Road No. 169

Applicant before: Northeast Dianli University

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130821