CN103257244B - 微化学分析装置、微混合装置和微化学分析系统 - Google Patents

微化学分析装置、微混合装置和微化学分析系统 Download PDF

Info

Publication number
CN103257244B
CN103257244B CN201310153917.0A CN201310153917A CN103257244B CN 103257244 B CN103257244 B CN 103257244B CN 201310153917 A CN201310153917 A CN 201310153917A CN 103257244 B CN103257244 B CN 103257244B
Authority
CN
China
Prior art keywords
mentioned
liquid
mixing
mixing tank
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310153917.0A
Other languages
English (en)
Other versions
CN103257244A (zh
Inventor
伊藤直子
金山省一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of CN103257244A publication Critical patent/CN103257244A/zh
Application granted granted Critical
Publication of CN103257244B publication Critical patent/CN103257244B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3017Mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/30Mixers with shaking, oscillating, or vibrating mechanisms comprising a receptacle to only a part of which the shaking, oscillating, or vibrating movement is imparted
    • B01F31/31Mixers with shaking, oscillating, or vibrating mechanisms comprising a receptacle to only a part of which the shaking, oscillating, or vibrating movement is imparted using receptacles with deformable parts, e.g. membranes, to which a motion is imparted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2131Colour or luminescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution

Abstract

本发明提供一种微化学分析装置、微混合装置和微化学分析系统。在第1液体和第2液体的合流点或其以后的流路内,配置暂时保存这些液体的混合罐,通过将检测上述第1液体和上述第2液体的反应结果的分析传感器配置在混合罐的下游,在该流路中混合不同种类的液体并使它们发生反应,进行一种液体的化学分析。由此,在液体流完合流点以后的流路前,在混合罐内产生紊流或涡流而一口气地均匀混合。

Description

微化学分析装置、微混合装置和微化学分析系统
本申请是申请号200710192883.0、申请日2007年11月28日、发明名称为“微化学分析装置、微混合装置和微化学分析系统”的申请的分案申请。
技术领域
本发明涉及为了从不同种类的液体的反应结果分析一种液体的化学特性,用小型装置混合不同种类的液体的技术。
背景技术
化学分析系统使样品液和试剂液进行化学反应或生物化学反应,分析反应结果。结果,测定样品液的化学特性。将该化学分析系统用于血液检查、感染症诊断、遗传因子诊断、遗传因子解析、或遗传因子合成、机械熔合(mechanofusion)、耦合(coupling)反应、有机金属反应、催化剂合成反应、电解合成反应、酸碱分解反应、电分解反应的观察。例如,化学分析系统将被检查体的血清或尿等作为样品液,与试剂液进行化学反应或生物化学反应,进行测光,进行胆甾醇量、中性脂肪量、血糖量、GOT活性值等的各种项目的分析。
为此,该化学分析系统,分配注入样品,与试剂混合,使样品液与试剂液进行反应。而且,检测该反应结果,将反应数据变换成表示样品液的化学特性的物理量。最后,可以视认地输出得到的物理量。作为代表例,有例如日本专利公报第3300704号所示的那样测定被检测试料中的被测定物质或酶的浓度或活性的化学分析系统。在该化学分析系统中,自动地将一定量的相当于被检测试料和测定项目的试剂分配注入到反应管,在搅拌混合后在一定温度下使它们反应。而且,通过测定由于该反应产生的色调的变化,测定被检测试料中的被测定物质或酶的浓度或活性。
近年来,该化学分析系统,正在进行小型化,提出了例如日本专利公报第2995088号公报所示的那样盒式的利用流路的便携式血液分析器或日本公开专利公报2002-340911号所示的那样用片状的微反应器(microreactor)的移动型化学检查装置。
这些微化学分析系统,一般地,通过在使样品液和试剂液合流的状态下将液体输送到共同的流路内,利用分子扩散的效果在该流路内的液体输送中混合样品液和试剂液。但是,为了在该流路内完全地混合,需要使该流路充分地长。因此,这种机构成为阻碍小型化的主要因素。进一步,当一面在流路中进行液体输送,一面徐徐地使它们混合时,因为存在着在反应未完全的状态下测定反应结果的可能性,所以容易在反应结果中产生误差。
因此,为了促进在该流路内的混合,在流路内,有时也备有各种混合促进单元。作为混合促进单元,有例如日本公开专利公报2006-153785号所示的那样,通过将使样品液和试剂液合流,并输送液体的流路的一部分变形,将该变形力作为搅拌力赋予的技术。又,有例如美国公开专利公报2004/0115097号所示的那样,利用通过压电体表面的畸变在压电体表面激振的弹性表面波的技术。在这种微化学分析系统中,在合流样品液和试剂液的状态下输送液体的流路内配置这些混合促进单元。
在已有的微化学分析系统中,正在提供为了促进混合,在流路内备有混合促进单元的技术,但是,产生了利用该流路内备有的混合促进单元,不能够得到充分的搅拌效果那样的问题。这是因为当为了在流路内扩散样品液和试剂液并输送液体,在流路内的一部分区间中备有混合促进单元时,在样品液和试剂液中,只能够将搅拌力赋予刚好通过备有混合促进单元的区间的最中间一部分样品液和试剂液上的缘故。换句话说,这是因为不能够整体地搅拌样品液和试剂液的缘故。如果要进行整体地搅拌,则需要很长的时间。
即便设置混合促进单元,也只是对通过混合促进单元的每个部分促进混合,徐徐地进行混合这一点没有变化,反应变得不均匀,或反应系不同,在反应结果中生成误差。
发明内容
本发明涉及为了从不同种类液体的反应结果分析一种液体的化学特性,用小型装置混合不同种类的液体的技术,本发明的目的是提供能够在短时间内并且均匀地混合不同种类的液体的技术。
与本发明的第1方式有关的微化学分析系统是备有检测第1液体和第2液体的反应结果的分析传感器和将分析传感器输出的反应结果换算成表示液体的化学特性的物理量的处理单元的系统。该微化学分析系统备有流路和混合罐。流路使第1液体和第2液体合流并送出。混合罐具有从上述流路鼓出的预定容积,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,由此暂时保存上述第1液体和上述第2液体。进一步,该微化学分析系统备有混合促进单元、监视单元和混合控制单元。混合促进单元将搅拌力赋予到混合罐内。监视单元监视上述混合罐内的上述第1液体和上述第2液体的混合程度。混合控制单元根据上述监视单元的监视结果,控制上述混合促进单元。
与本发明的第2方式有关的微混合装置混合不同种类的液体。该微混合装置备有流路和混合罐。流路使第1液体和第2液体合流并送出。混合罐具有从上述流路鼓出的预定容积,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,由此暂时保存上述第1液体和上述第2液体。进一步,该微化学分析系统备有混合促进单元、监视单元和混合控制单元。混合促进单元将搅拌力赋予到混合罐内。监视单元监视上述混合罐内的上述第1液体和上述第2液体的混合程度。混合控制单元根据上述监视单元的监视结果,控制上述混合促进单元。
与本发明的第3方式有关的微化学分析装置与微混合装置连接,从微混合装置混合了的不同种类的液体的反应结果,分析一种液体的化学特性。微混合装置备有使第1液体和第2液体合流并送出的流路;和插入到上述第1液体和上述第2液体的合流点或其以后的流路内,具有从上述流路鼓出的预定容积,暂时保存上述第1液体和上述第2液体的混合罐。与该微混合装置连接的微化学分析装置备有混合促进单元、监视单元和混合控制单元。混合促进单元将搅拌力赋予到混合罐内。监视单元监视上述混合罐内的上述第1液体和上述第2液体的混合程度。混合控制单元根据上述监视单元的监视结果,控制上述混合促进单元。
如果根据该第1到第3方式,则由于将搅拌力赋予到暂时保存了第1液体和第2液体的大部分的混合罐内,在混合罐内产生紊流或涡流,一口气地使第1液体和第2液体混合。而且,因为根据监视单元的监视结果,控制混合促进单元,所以能够充分地赋予搅拌力直到使第1液体和第2液体均匀地混合为止,保证了均匀的混合。从而,因为能够在混合罐内结束均匀的混合,合流点以后的流路变短,所以能够维持系统或装置的小型化。又,通过在暂时保存了第1液体和第2液体的大部分的混合罐中设置监视单元和混合促进单元,就不需要在流路上多阶段地设置混合促进单元和监视单元,能够实现系统或装置的小型化。
附图说明
图1是表示与本实施方式有关的化学分析系统的构成图的图。
图2是表示化学分析系统的第1外观的图。
图3是表示化学分析系统的第2外观的图。
图4是表示与样品液和试剂液的混合有关的第1形态的示意图。
图5是表示与样品液和试剂液的混合有关的第2形态的示意图。
图6是表示混合构成部分的第1方式的示意图。
图7是表示混合构成部分的第2方式的示意图。
图8是表示与第2方式有关的混合构成部分的驱动的图。
图9是表示混合构成部分的第3方式的示意图。
图10是表示混合构成部分的第4方式的示意图。
图11是表示混合构成部分的第5方式的示意图。
图12是表示混合构成部分的第6方式的示意图。
图13是表示混合构成部分的第7方式的示意图。
图14是表示混合构成部分的第8方式的示意图。
图15是表示实施化学分析系统的混合促进控制的构成的框图。
图16是表示作为监视结果数据的混合罐的投影图像的示意图,表示还没有均匀混合的状态。
图17是表示当未完全进行样品液和试剂液的混合时生成的直方图的图。
图18是表示作为监视结果数据的混合罐的投影图像的示意图,表示均匀混合了样品液和试剂液的状态。
图19是表示从均匀混合了样品液和试剂液的状态中的投影图像生成的直方图的图。
图20是表示混合控制部的第1混合促进控制工作的流程图。
图21是表示在第1混合促进控制工作中生成的直方图和阈值的关系的图。
图22是表示混合控制部的第2混合促进控制工作的流程图。
图23是表示在第2混合促进控制工作中生成的直方图和阈值的关系的图。
具体实施方式
下面,一面参照附图一面详细说明与本发明有关的微化学分析系统的各实施方式。
图1是表示与本实施方式有关的微化学分析系统的构成图的图。微化学分析系统1(以下,简单地称为“化学分析系统1”)是使样品液和试剂液进行化学反应或生物化学反应,并分析反应结果的系统。因此能够测定样品液的化学特性。将化学分析系统1用于血液检查、感染症诊断、遗传因子诊断、遗传因子解析、或遗传因子合成、机械熔合、耦合反应、有机金属反应、催化剂合成反应、电解合成反应、酸碱分解反应、电分解反应的观察。例如,化学分析系统1,将被检查体的血清等作为样品液,与试剂液进行化学反应或生物化学反应,并进行测定,进行胆甾醇量、中性脂肪量、血糖量、GOT活性值等的各种项目的分析。
为此,该化学分析系统1,分配注入样品液,与试剂液混合,使样品液与试剂液进行反应。而且,检测该反应结果,将反应数据变换成表示样品液的化学特性的物理量。最后,可视认地将得到的物理量输出到监视器或打印纸等上。
这种化学分析系统1经过接口部17使分析装置2和混合装置3连接而构成。分析装置2是分析反应结果的装置。混合装置3是使样品液与试剂液混合并进行反应的装置。该混合装置3是轻便型装料盒(cartridge)或芯片。在该化学分析系统1中,将在混合装置3中检测出的反应结果输出到分析装置2中,在分析装置2中进行化学分析。接口部17将从混合装置3输出的数据发送到分析装置2的内部。从混合装置3输出的数据是通过检测样品液与试剂液的反应得到的反应数据和通过检测样品液与试剂液的混合程度得到的监视结果数据。
混合装置3备有滴落口11、分注部12、混合部13、试剂收容部14、溶液收容部15和分析传感器16。
在滴落口11中由分析者滴落样品液。通过在滴落口11中滴落样品液,将样品液取入到混合装置3内。滴落口11经过分注部12与混合部13连通。分注部12包含阀门而构成,通过从在滴落口11滴落的样品液分配注入预定量并输送到混合部13。
试剂收容部14和溶液收容部15经过阀门等的门扉(flapper)与混合部13连通。试剂收容部14保存与样品液混合而发生反应的试剂液。又,溶液收容部15保存调整样品液的状态的稀释液或成为测定基准的校正液等。从试剂收容部14或溶液收容部15将调整了的预定量的试剂液输送到混合部13。
在混合部13中,使样品液和试剂液混合而发生反应。在混合部13中,检测样品液和试剂液混合的程度,作为监视结果数据输出到分析装置2。
将分析传感器16配置在混合部13的流路后级。作为该分析传感器16,能够使用测定伴随着样品液和试剂液的反应的颜色变化或浊度变化的光学测定法、测定伴随着样品液和试剂液的反应的电流或电压变化的电化学测定法等。分析传感器16输出用上述光学测定法或上述电化学测定法得到的反应数据。经过接口部17将分析传感器16输出的反应数据发送到分析装置2。也能够将构成分析传感器16的一部分配置在分析装置2中。
分析装置2备有电源部29和电源按钮31。通过按下电源按钮31从电源单元29将电力供给到分析装置2内的各结构。分析装置2由该电力驱动。分析装置2处理反应数据并输出反应结果。该分析装置2作为处理反应数据的结构,备有信号放大部19、数据收集部20和数据分析部21。将接口部17和信号放大部19,信号放大部19和数据收集部20,以及数据收集部20和数据分析部21电连接起来。又,分析装置2作为输出反应结果的结构,备有数据存储部22和显示部23。
信号放大部19放大经过接口部17得到的监视结果数据或反应数据。将放大了的监视结果数据或反应数据从信号放大部19输出到数据收集部20中。数据收集部20包含A/D变换电路和存储电路而构成。该数据收集部20对放大了的监视结果数据或反应数据进行数字变换,暂时存储起来。数据分析部21解析数据收集部20收集到的监视结果数据或反应数据。数据分析部21,当得到监视结果数据时,进行从监视结果数据检测在混合部13中的样品液和试剂液的混合程度的处理。又,数据分析部21,当得到反应数据时,将反应数据变换成表示样品液的化学特性的物理量的数据。例如,当将被检查体的血清作为样品液时,变换成表示胆甾醇量、中性脂肪量、血糖量、GOT活性值等的样品液的特性的物理量的数据。
数据存储部22包含RAM(Random Access Memory(随机存取存储器))而构成,存储表示通过数据分析部21的变换得到的样品液的特性的物理量的数据。显示部23包含液晶显示器等的显示画面而构成,可视认地显示表示存储在数据存储部22中的样品液的特性的物理量的数据。
该分析装置2,除了处理反应数据并输出反应结果外,对混合装置3进行控制。作为该控制结构,备有温度控制部24、分注控制部25、送液部26和混合促进部105。
温度控制部24包含以包围混合装置3的方式配置的加热器或配置在混合装置3内部的加热器而构成。该温度控制部24以保持混合装置3内部的温度为一定的方式调节温度。分注控制部25以将控制分注部12的阀门而在滴落口11中滴落的样品液的预定量输送到混合部13的方式进行控制。送液部26,以样品液和试剂液流过混合部13而到达分析传感器16的方式,在分配注入的样品液和收容在试剂收容部14和溶液收溶部15的试剂液上施加压力。混合促进部105搅拌混合部13内的样品液和试剂液。通过该混合促进部105的搅拌促进样品液和试剂液的均匀混合。
该分析装置2备有控制部28,由控制部28控制分析装置2内的各构成的驱动。控制部28,用在分析装置2中备有的操作按钮30接受分析者的操作,按照操作按钮30的按下信号控制各构成的驱动。又,与由数据分析部21得到的样品液和试剂液的混合程度的检测结果相应地控制混合促进部105。
图2和图3是表示化学分析系统1的外观的图。图2表示化学分析系统1的第1外观,图3表示化学分析系统1的第2外观。
具有上述构成的化学分析系统1,如图2所示,例如由轻便型的分析装置2和混合装置3构成。该分析装置2具有长方体形状。在分析装置2的一个面上,在表面露出配置着电源按钮31、显示部23和操作按钮30。又,在分析装置2的一个侧部上,穿设着盒插入口32。在该盒插入口32中配置着接口部17。如果将混合装置3插入到该盒插入口32中,则经过接口部17使分析装置2和混合装置3电连接,将反应数据或监视结果数据输出到分析装置2中。
又,作为具有上述构成的化学分析系统1,如图3所示,分析装置2将装置筐体2a、监视器2b和键盘2c电连接起来而构成。监视器2b构成显示部23,在键盘2c中配置着操作按钮30。装置筐体2a将显示部23和操作按钮30以外的结构收容在内部。在装置筐体2a的一个面上穿设着多个盒插入部32,在该盒插入部32中配置着接口部17。通过将混合装置3插入到该盒插入口32中,经过接口部17使分析装置2和混合装置3电连接起来,将反应数据或监视结果数据输出到分析装置2中。分析者通过键盘2c进行操作。将分析结果显示在监视器2b中。
图4和图5是表示与样品液和试剂液的混合有关的更详细的构成的示意图。图4表示第1形态,图5表示第2形态。
如图4所示的那样,混合部13备有第1流路101、第2流路102、第3流路103和混合罐104。第1流路101的一端侧与溶液收容部13和试剂收容部14连通。该第1流路101是送出试剂液的流路。第2流路102的一端侧与分注部12连通。该第2流路102是送出样品液的流路。使第1流路101和第2流路102合流而延伸出第3流路103。在第3流路103的下游配置着分析传感器16。
混合罐104,插入到第1流路101和第2流路102的合流点以后的第3流路103内而进行配置。在该第1形态中,配置在第1流路101和第2流路102的合流点上。混合罐104具有可以同时暂时保存样品液全部量和试剂液全部量的容积。该混合罐104与第1流路101和第2流路102连通。使试剂液和样品液流入到混合罐104的内部。又,混合罐104与第3流路103连通。将在该混合罐104的内部均匀混合了的试剂液和样品液的混合液向第3流路送出。
与混合罐104的外壳的一部分相接地配置混合促进部105。混合促进部105,将搅拌力赋予到混合罐104内,促进样品液和试剂液的混合。在混合罐104附近,配置着监视混合罐104内部的监视部106。监视部106检测混合罐104内的样品液与试剂液的混合程度。该监视部106与配置在分析装置2中的混合控制部107电连接。将监视部106的监视结果输出到混合控制部107。混合控制部107,与监视结果相应地控制混合促进部105。
又,如图5所示,在第2方式中,混合罐104插入到第3流路103的中途。与第1方式同样,使样品液和试剂液流入到混合罐104中,在其内部混合。混合促进部105与混合罐104的外壳的一部分相接,赋予搅拌力而促进混合。由配置在混合罐104附近的监视部106监视混合的程度。混合控制部107与监视部106的监视结果相应地控制混合促进部105。
在与该混合样品液和试剂液的第1和第2方式有关的流路构成中,将样品液和试剂液的大部分暂时保存在混合罐104内。而且,在该混合罐104内部,通过紊流或涡流使样品液和试剂液的大部分一次混合起来。因此,在均匀地混合了样品液和试剂液后,使其从混合罐104流出并向第3流路103的下游送出。从而,因为至少减少了在第3流路103内进行混合的需要,所以能够缩短第3流路103,实现混合装置3的小型化。
又,因为在将样品液和试剂液的大部分保存在1个地方的状态中开始反应,所以能够减少在未反应的样品液和完成了反应的样品液混合的状态中到达分析传感器16,在检测结果中生成的误差。
当以将搅拌力赋予到暂时保存样品液和试剂液的大部分的混合罐104内的方式配置混合促进部105时,与在流路内设置混合促进部并将搅拌力部分地赋予通过该设置部分的混合液比较,格外地提高了搅拌效果,能够缩短混合时间。
进一步,通过设置混合罐104,不需要沿第3流路103多阶段地交替设置混合促进部105和监视部106。从而,能够削减成本,并且实现混合装置3的小型化。
图6到图14表示由该混合罐104、混合促进部105和监视部106构成的混合构成部分的各种方式。
图6是表示混合构成部分的第1方式的示意图。如图6所示,混合罐104具有内部中空的球形状,从第3流路103鼓出。划分该混合罐104的外部和内部的外壳的一部分由传播路径104a构成。该传播路径104a由树脂构成,将在混合罐104的外部发生的搅拌力传播到内部。
压电振子105a从混合罐104的外部与传播路径104a相接。在压电振子105a中安装着导电线。振荡器105b和开关105c与导电线连接。该压电振子105a、振荡器105b和开关105c构成混合促进部105。当开关105c处于通电状态时,从振荡器105b输出脉冲,将信号电压施加到压电振子105a上。压电振子105a是由钛酸铅等的压电陶瓷构成的声/电可逆的变换元件。该压电振子105a,当施加信号电压时由于压电效应而被激振,发出振动波。经过与压电振子105a相接的传播路径104a将该振动波发送到混合罐104的内部,使混合罐104内的样品液和试剂液被激振,促进混合。即,该振动波形成搅拌力。
监视部106包含光源106b和图像传感器106a而构成。隔着混合罐104对置配置光源106b和图像传感器106a。光源106b照射混合罐104。图像传感器106a取得混合罐104的投影图像。该图像传感器106a由CCD传感器或CMOS传感器等构成。经过接口部17将图像传感器106a取得的混合罐104的投影图像输出到分析装置2。该投影图像成为表示混合程度的监视结果数据。如果投影图像的色调的不均匀性(inhomogeneity)大,则是未混合,如果投影图像的色调的不均匀性少,则是均匀地混合了。色调的不均匀性是指不同的颜色在处处混杂着或存在着浓淡。通过分析该投影图像,控制开关105c的接通/断开、振荡器105b发送的脉冲的振幅或周期,调整搅拌力。
图7是表示混合构成部分的第2方式的示意图。又,图8是表示该第2方式的驱动的图。
如图7所示,混合罐104具有内部中空的球形状,从第3流路103鼓出。划分该混合罐104的外部和内部的外壳的一部分由弹性膜104b构成。该弹性膜104b由橡胶等的弹性体构成,当施加外力时发生挠曲。根据该弹性膜104b的挠曲在混合罐104的一部分中发生连续的变形,该变形成为搅拌内部的样品液和试剂液的搅拌力。
调节器105d从混合罐104的外部与弹性膜104b相接。调节器105d包含调节器本体和使调节器本体滑动的支持部件而构成。该调节器105d,如图8所示,根据电力向弹性膜104b反复进行突出和埋没的往复运动。由于该往复运动,弹性膜104b反复进行挠曲和从挠曲恢复的运动。在混合罐104的一部分中发生连续的变形。该变形力转播到混合罐104内,搅拌样品液和试剂液。在该调节器105d中安装着导电线。电源105e和开关105c与导电线连接。电源105e、调节器105d和开关105c构成混合促进部105。
监视部106,与第1方式同样,包含光源106b和图像传感器106a而构成。图像传感器106a取得混合罐104的投影图像作为监视结果数据。通过分析该投影图像,控制开关105c的接通/断开、振荡器105b发送的脉冲的振幅或周期,调整搅拌力。
图9是表示混合构成部分的第3方式的示意图,图10是表示混合构成部分的第4方式的示意图。如图9和图10所示,混合罐104具有内部中空的圆柱形状,以半径方向沿第3流路103的延伸方向扩展的方式,从第3流路103鼓出。将传播路径104a或弹性膜104b配置在一方的圆柱面上。
图11是表示混合构成部分的第5方式的示意图,图12是表示混合构成部分的第6方式的示意图。如图11和图12所示,混合罐104具有内部中空的圆柱形状,以半径方向沿与第3流路103的延伸方向正交的方向扩展的方式,从第3流路103鼓出。将传播路径104a或弹性膜104b配置在圆周面的一部分上。
图13是表示混合构成部分的第7方式的示意图,图14是表示混合构成部分的第8方式的示意图。如图13和图14所示,混合罐104具有内部中空的扇形形状,从第3流路103的一个面鼓出圆弧形状的一部分,圆弧面的延伸方向和第3流路103的延伸方向一致。传播路径104a或弹性膜104b配置在形成弦的面的一部分上。
下面,说明由该化学分析系统1进行的取样液和试剂液的混合促进控制。图15是表示实施化学分析系统1的混合促进控制的构成的框图。如图15所示,混合控制部107由信号放大部19、数据收集部20、数据分析部21和控制部28构成。该混合控制部107,解析监视部106的监视结果数据,取得样品液和试剂液的混合程度,与该混合程度相应地控制混合促进部105。经过接口部17将监视结果数据输入到混合控制部107。即,将监视结果数据,在由信号放大部19放大后,存储在数据收集部20中。数据分析部21解析存储在该数据收集部20中的监视结果数据。
图16是表示作为监视结果数据的混合罐104的投影图像的示意图,表示还没有均匀混合的状态。如图16所示,在投影图像中,样品液的色泽、试剂液的色泽和混合了样品液与试剂液的混合液的色泽混在一起,生成大的色调的不均匀性。数据分析部21生成表示该投影图像的色调不均匀性的直方图。从直方图对色调的不均匀性进行数值化,与预先存储着的阈值比较。控制部28,与该比较结果相应地,控制混合促进部105。通过对直方图的分布宽度或直方图的峰值进行数值化得到色调的不均匀性。直方图表示样品液和试剂液的混合程度。色调的直方图将当把投影图像的象素值分成多个色调时的值分成多个区间,将该区间排列在横轴,具有包含在该区间中的色调的象素的个数是与纵轴对应的数据。显示分布在投影图像内的色调偏差或分布宽度。图17是表示当未完全进行样品液和试剂液的混合时生成的直方图的图。当未完全进行样品液和试剂液的混合时生成的直方图,色调的分布宽度广,且该分布的峰值也低。这是因为未完全混合,所以存在各种色调,且因为与样品液和试剂液的总量相比较,混合的部分的量少的缘故。
另一方面,图18是表示作为监视结果数据的混合罐104的投影图像的示意图,表示均匀混合了样品液和试剂液的状态。如图18所示,因为均匀混合了样品液和试剂液,所以在投影图像中,统一为单一色调,色调的不均匀性少。图19是表示从该均匀混合了样品液和试剂液的状态中的投影图像生成的直方图的图。通过均匀混合了样品液和试剂液,直方图的分布宽度变窄,且峰值高。
图20是表示该混合控制部107的第1混合促进控制工作的流程图。又,图21是表示在该第1混合促进控制工作中生成的直方图和阈值的关系的图。作为第1混合促进控制方式,混合控制部107切换混合促进部105的开关105c的接通/断开。如果混合罐104内的色调的不均匀性小于预定大小,则通过将混合促进部105的开关105c切换到断开来停止赋予搅拌力,如果混合罐104内的色调的不均匀性在预定大小以上,则通过使混合促进部105的开关105c的接通状态保持不变来继续赋予搅拌力。
首先,如果从监视部106输入监视结果数据(S01),则将信号强度置换成像素值并生成投影图像(S02),对该投影图像进行色调的滤波处理(S03)。其次,从得到的投影图像生成表示色调的不均匀性的直方图(S04),将直方图数值化为表示色调的不均匀性的数值(S05)。通过对直方图进行数值化得到的表示色调的不均匀性的数值是峰值P的取得或直方图的统计性的分散值D。峰值P的情形表示,值越大色调的不均匀性越少。分散值D的情形表示,值越小色调的不均匀性越少。
当得到表示色调的不均匀性的数值时,混合控制部107读出与表示色调的不均匀性的数值对应的阈值,即与峰值P对应的阈值sp或与分散值D对应的阈值sd(S06),比较取得的表示色调的不均匀性的数值和阈值(S07)。比较的结果,如果色调的不均匀性小于预定大小(S07,“是”),则使混合促进部105停止赋予搅拌力(S08)。另一方面,如果色调的不均匀性在预定大小以上(S07,“否”),则使混合促进部105继续赋予搅拌力(S09)。
色调的不均匀性小于预定大小是指当将表示色调的不均匀性的数值作为峰值P时,该峰值P大于阈值sp。色调的不均匀性在预定大小以上是指当将表示色调的不均匀性的数值作为峰值P时,该峰值P在阈值sp以下。又,色调的不均匀性小于预定大小是指当将表示色调的不均匀性的数值作为分散值D时,该分散值D小于阈值sd。色调的不均匀性在预定大小以上是指当将表示色调的不均匀性的数值作为分散值D时,该分散值D大于阈值sd。
图22是表示该混合控制部107的第2混合促进控制工作的流程图。又,图23是表示在该第2混合促进控制工作中生成的直方图和阈值的关系的图。作为第2混合促进控制方式,混合控制部107,通过增减混合促进部105的振荡器105b的脉冲间隔或电源105e的电力,控制混合促进部105的驱动力,赋予与混合罐104内的色调的不均匀性的大小成比例的搅拌力。
首先,如果从监视部106输入监视结果数据(S11),则混合控制部107,将信号强度置换成像素值并生成投影图像(S12),对该投影图像进行色调的滤波处理(S13)。其次,混合控制部107,从得到的投影图像生成表示色调的不均匀性的直方图(S14),将直方图数值化为表示色调的不均匀性的数值(S15)。通过对直方图进行数值化得到的表示色调的不均匀性的数值是峰值P的取得或直方图的统计性分散值D。峰值P的情形下表示,值越大色调的不均匀性越少。分散值D的情形下表示,值越小色调的不均匀性越少。
当得到表示色调的不均匀性的数值时,混合控制部107读出与峰值P对应的多个阶段的阈值sp1,sp2,sp3……或与分散值D对应的多个阶段的阈值sd1,sd2,sd3……(S16),比较取得的表示色调的不均匀性的数据和各阈值(S17),检测该数值所属的不均匀性的阶段(S18)。
阈值的数值,以sp3<sp2<sp1的顺序增大。当表示色调的不均匀性的数值是峰值P时,如果超过阈值sp1则色调的不均匀性属于第1阶段,如果阈值sp2是所超过的最大的阈值,则色调的不均匀性属于第2阶段。又,阈值的数值,以sd1<sd2<sd3的顺序增大。当表示色调的不均匀性的数值是分散值D时,如果低于阈值sd1则色调的不均匀性属于第1阶段,如果阈值sd2是所低于的最小阈值,则色调的不均匀性属于第2阶段。即,阶段越下降色调的不均匀性越少,阶段越高色调的不均匀性越大。
当检测到色调的不均匀性所属的阶段时,混合控制部107,使混合促进部105,赋予与色调的不均匀性的大小成比例的,换句话说与检测出的色调的不均匀性所属的阶段成比例的搅拌力(S19)。又,如果色调的不均匀性所属的阶段到达第1阶段,则停止搅拌。
这样,在本实施方式中,备有插入在样品液和试剂液的合流点或其以后的流路内,暂时保存样品液和试剂液的混合罐104。因此,暂时保存样品液和试剂液的大部分,在保存状态中通过紊流和涡流使其混合起来。因此,在均匀地混合了样品液和试剂液后,从混合罐104流出并向第3流路103的下游送出,所以至少能够减少在第3流路103内进行混合的需要。从而,在输送到第3流路前,在混合罐内产生紊流或涡流而一口气地均匀混合,并且使混合时间缩短到比在第3流路103内进行混合的时间短。能够缩短第3流路103,实现混合装置3的小型化。又,因为在将样品液和试剂液的大部分保存在1个地方的状态中开始反应,所以不会出现反应不均匀,能够防止在反应结果中产生误差。
又,备有将搅拌力赋予到该混合罐104内的混合促进部105。因此,因为以将搅拌力赋予到暂时保存样品液和试剂液的大部分的混合罐104内的方式配置混合促进部105,所以与在流路内设置混合促进部而将搅拌力赋予通过该设置部分的混合液部分相比较,格外地提高搅拌效果,能够缩短混合时间,并且能够更可靠地实现均匀的混合。
又,备有监视混合罐104内的样品液和试剂液的混合程度的监视部106,根据监视部106的监视结果,控制继续或停止赋予混合促进部105的搅拌力,或搅拌力的增减。因此,能够充分地赋予搅拌力直到使样品液和试剂液的大部分均匀地混合为止,保证了均匀的混合。又,不需要沿第3流路103多阶段地交替设置混合促进部105和监视部106,能够削减成本,并实现混合装置3的小型化。
又,也可以将监视部106设置在分析装置2侧和混合装置3侧中的任一侧。当将监视部106设置在分析装置2侧时,不经过接口部17而将监视结果数据输入到控制部28中。此外也可以将混合控制部107、混合促进部105和监视部106设置在混合装置3侧。也可以将分析传感器16配置在分析装置2侧。

Claims (14)

1.一种微化学分析系统,通过混合不同种类的液体并发生反应,进行一种液体的化学分析,该微化学分析系统的特征在于,备有:
使第1液体和第2液体合流并送出的流路;
混合罐,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积,且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液;
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元;和
检测从上述混合罐流出的上述第1液体和上述第2液体的反应结果的分析传感器,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,如果上述混合罐内的色调的不均匀性的大小小于预定的大小则停止赋予搅拌力,如果上述混合罐内的色调的不均匀性的大小大于等于预定的大小则继续赋予搅拌力。
2.一种微化学分析系统,通过混合不同种类的液体并发生反应,进行一种液体的化学分析,该微化学分析系统的特征在于,备有:
使第1液体和第2液体合流并送出的流路;
混合罐,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积,且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液;
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元;
检测从上述混合罐流出的上述第1液体和上述第2液体的反应结果的分析传感器,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,赋予与上述混合罐内的色调的不均匀性的大小成比例的搅拌力。
3.根据权利要求1或者2所述的微化学分析系统,其特征在于:
还具有将上述分析传感器输出的反应结果换算成表示液体的化学特性的物理量的处理单元。
4.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合罐具有球形形状。
5.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合罐具有半径方向在上述流路的延伸方向上的圆柱形状。
6.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合罐具有半径方向在与上述流路的延伸方向正交的方向上的圆柱形状。
7.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合罐具有从上述流路的一面鼓出圆弧形状的一部分的扇形形状。
8.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合促进单元包含产生振动波的压电元件。
9.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合促进单元包含与上述混合罐相接,使上述混合罐的一部分变形的调节器。
10.根据权利要求1或者2所述的微化学分析系统,其特征在于:
上述混合控制单元根据上述监视单元的监视结果,使上述混合促进单元继续或停止赋予搅拌力。
11.一种微混合装置,混合不同种类的液体,该微混合装置的特征在于,备有:
使第1液体和第2液体合流并送出的流路;
混合罐,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积,且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液;
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;和
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,如果上述混合罐内的色调的不均匀性的大小小于预定的大小则停止赋予搅拌力,如果上述混合罐内的色调的不均匀性的大小大于等于预定的大小则继续赋予搅拌力。
12.一种微混合装置,混合不同种类的液体,该微混合装置的特征在于,备有:
使第1液体和第2液体合流并送出的流路;
混合罐,插入到上述第1液体和上述第2液体的合流点或其以后的流路内,具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积,且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液,;
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;和
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,赋予与上述混合罐内的色调的不均匀性的大小成比例的搅拌力。
13.一种微化学分析装置,连接到微混合装置上,该微混合装置备有使第1液体和第2液体合流并送出的流路,插入到上述第1液体和上述第2液体的合流点或其以后的流路内、具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积、且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液的混合罐,所述微化学分析装置根据这些液体的反应结果,分析一种液体的化学特性,该微化学分析装置的特征在于,备有:
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元;和
将上述反应结果换算成表示液体的化学特性的物理量的处理单元,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,如果上述混合罐内的色调的不均匀性的大小小于预定的大小则停止赋予搅拌力,如果上述混合罐内的色调的不均匀性的大小大于等于预定的大小则继续赋予搅拌力。
14.一种微化学分析装置,连接到微混合装置上,该微混合装置备有使第1液体和第2液体合流并送出的流路,插入到上述第1液体和上述第2液体的合流点或其以后的流路内、具有从上述流路鼓出的、能够同时暂时保存上述第1液体的全部量和上述第2液体的全部量的预定容积、且在暂时保存上述第1液体的全部量和上述第2液体的全部量并将上述第1液体和上述第2液体混合之后流出混合液的混合罐,所述微化学分析装置根据这些液体的反应结果,分析一种液体的化学特性,该微化学分析装置的特征在于,备有:
与上述混合罐相接而向在上述混合罐内暂时保存的上述第1液体和上述第2液体赋予搅拌力的混合促进单元;
监视上述混合罐内的上述第1液体和上述第2液体的混合程度的监视单元;
根据上述监视单元的监视结果,在由上述混合促进单元进行搅拌的状态下,增减由上述混合促进单元产生的上述搅拌力的混合控制单元;和
将上述反应结果换算成表示液体的化学特性的物理量的处理单元,
上述监视单元包含取得上述混合罐内的投影图像的图像传感器和光源,输出上述混合罐内的投影图像作为监视结果,上述光源和上述图像传感器隔着上述混合罐对置配置,
上述混合控制单元根据上述投影图像,赋予与上述混合罐内的色调的不均匀性的大小成比例的搅拌力。
CN201310153917.0A 2006-11-29 2007-11-28 微化学分析装置、微混合装置和微化学分析系统 Expired - Fee Related CN103257244B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321306 2006-11-29
JP2006321306A JP4939910B2 (ja) 2006-11-29 2006-11-29 マイクロ化学分析システム及びマイクロ化学分析装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101928830A Division CN101231285A (zh) 2006-11-29 2007-11-28 微化学分析装置、微混合装置和微化学分析系统

Publications (2)

Publication Number Publication Date
CN103257244A CN103257244A (zh) 2013-08-21
CN103257244B true CN103257244B (zh) 2015-04-15

Family

ID=39249791

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201310153917.0A Expired - Fee Related CN103257244B (zh) 2006-11-29 2007-11-28 微化学分析装置、微混合装置和微化学分析系统
CN2013100143123A Pending CN103100341A (zh) 2006-11-29 2007-11-28 微化学分析系统
CNA2007101928830A Pending CN101231285A (zh) 2006-11-29 2007-11-28 微化学分析装置、微混合装置和微化学分析系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN2013100143123A Pending CN103100341A (zh) 2006-11-29 2007-11-28 微化学分析系统
CNA2007101928830A Pending CN101231285A (zh) 2006-11-29 2007-11-28 微化学分析装置、微混合装置和微化学分析系统

Country Status (6)

Country Link
US (1) US9327255B2 (zh)
EP (1) EP1946828B9 (zh)
JP (1) JP4939910B2 (zh)
KR (1) KR100932024B1 (zh)
CN (3) CN103257244B (zh)
DE (1) DE602007012202D1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433139B2 (ja) 2007-06-29 2014-03-05 株式会社東芝 マイクロ化学分析装置、その測定方法、及びマイクロカセット
ITUD20080126A1 (it) * 2008-05-27 2009-11-28 Alifax International S A Dispositivo di miscelazione e relativo procedimento di miscelazione
WO2010073020A1 (en) * 2008-12-24 2010-07-01 Heriot-Watt University A microfluidic system and method
US9527010B2 (en) * 2009-09-25 2016-12-27 Ge Healthcare Bio-Sciences Corp. Separation system and method
GB2481425A (en) 2010-06-23 2011-12-28 Iti Scotland Ltd Method and device for assembling polynucleic acid sequences
WO2012011090A1 (en) * 2010-07-19 2012-01-26 Analytical Developments Limited Liquid analyzer device and related method
CN103170265B (zh) * 2012-12-21 2016-04-27 江苏大学 一种压电微混合器
JP2017505920A (ja) * 2014-01-14 2017-02-23 センター ナショナル デ ラ リシェルシェ サイエンティフィック(シーエヌアールエス) 流れる汚染物質の分析のためのマイクロ流体デバイス
CN105013544B (zh) * 2014-04-24 2016-11-23 中国科学院青岛生物能源与过程研究所 一种基于亲水纤维丝诱导的微液滴融合方法
US10564171B2 (en) 2015-01-30 2020-02-18 Hewlett-Packard Development Company, L.P. Diagnostic chip
CN104655682B (zh) * 2015-03-06 2017-12-15 金陵科技学院 采样一体化的检测便携装置
CN104833565B (zh) * 2015-05-25 2018-02-06 爱威科技股份有限公司 大便搅拌控制方法及大便搅拌装置
WO2018148498A1 (en) 2017-02-09 2018-08-16 Karcher North America, Inc. Floor cleaning device with disinfection capabilities
CN109395625B (zh) * 2017-08-16 2022-03-29 北京普利生仪器有限公司 一种反应液的搅拌方法及机构、体外检测设备
JP6434114B1 (ja) * 2017-11-30 2018-12-05 シスメックス株式会社 測定方法および測定装置
CN109999934A (zh) * 2019-04-29 2019-07-12 上海观流智能科技有限公司 一种微流体检测装置
CN110150717A (zh) * 2019-05-09 2019-08-23 广州市道与道贸易有限公司 一种基于沉香的烟草制备方法及设备
CN110006735B (zh) * 2019-06-03 2019-08-30 湖南乐准智芯生物科技有限公司 一种混匀状态识别方法及系统
CN111939856B (zh) * 2020-07-02 2022-12-30 山东豪迈机械制造有限公司 一种振动反应器及板式反应器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
CN1542429A (zh) * 2003-11-06 2004-11-03 浙江大学 交叉导流式微型静态混合器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192264A (ja) * 1984-03-14 1985-09-30 Toshiba Corp 希釈・混合モニタ装置
US5008616A (en) * 1989-11-09 1991-04-16 I-Stat Corporation Fluidics head for testing chemical and ionic sensors
US6673533B1 (en) 1995-03-10 2004-01-06 Meso Scale Technologies, Llc. Multi-array multi-specific electrochemiluminescence testing
US5859708A (en) * 1997-09-02 1999-01-12 General Electric Company Sensing blend color homogeneity
JP3884834B2 (ja) * 1997-09-30 2007-02-21 株式会社日立製作所 欠陥検査方法及びその装置
JP2002522065A (ja) * 1998-08-10 2002-07-23 ジェノミック ソリューションズ インコーポレイテッド 核酸ハイブリダイズ用熱及び流体循環装置
EP1125121B1 (en) * 1998-10-28 2007-12-12 Covaris, Inc. Apparatus and methods for controlling sonic treatment
WO2001007892A1 (en) 1999-07-27 2001-02-01 Esperion Therapeutics, Inc. Method and device for measurement of cholesterol efflux
US6468761B2 (en) * 2000-01-07 2002-10-22 Caliper Technologies, Corp. Microfluidic in-line labeling method for continuous-flow protease inhibition analysis
EP1128075A3 (de) * 2000-02-24 2003-10-29 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Mikropumpe und/oder Mikromischer mit integriertem Sensor und Verfahren zu dessen Herstellung
JP3345641B2 (ja) 2000-03-10 2002-11-18 学校法人立命館 マイクロ分析チップ、及びその製造方法
US6902313B2 (en) * 2000-08-10 2005-06-07 University Of California Micro chaotic mixer
JP3704035B2 (ja) * 2000-08-31 2005-10-05 株式会社日立製作所 自動分析装置
US6692708B2 (en) * 2001-04-05 2004-02-17 Symyx Technologies, Inc. Parallel reactor for sampling and conducting in situ flow-through reactions and a method of using same
DE10117772C2 (de) * 2001-04-09 2003-04-03 Advalytix Ag Mischvorrichtung und Mischverfahren für die Durchmischung kleiner Flüssigkeitsmengen
JP3746207B2 (ja) * 2001-05-15 2006-02-15 株式会社日立製作所 シート型マイクロリアクタ及びモバイル型化学分析装置
JP3300704B2 (ja) * 2001-09-25 2002-07-08 株式会社東芝 自動分析装置および方法
US6939032B2 (en) * 2001-10-25 2005-09-06 Erie Scientific Company Cover slip mixing apparatus
JP3605102B2 (ja) 2002-07-18 2004-12-22 キヤノン株式会社 液体混合装置
JP2004184315A (ja) 2002-12-05 2004-07-02 Fuji Electric Systems Co Ltd マイクロチャンネルチップ
WO2004081741A2 (en) 2003-03-10 2004-09-23 The Regents Of The University Of Michigan Integrated microfluidic control employing programmable tactile actuators
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
JP2005164549A (ja) * 2003-12-05 2005-06-23 Canon Inc 撹拌素子および撹拌方法
JP2005224746A (ja) * 2004-02-16 2005-08-25 Sumitomo Bakelite Co Ltd 微小反応デバイス及び反応方法
JP2006153785A (ja) * 2004-12-01 2006-06-15 Hitachi Ltd 溶液攪拌装置及び分析システム
JP4699779B2 (ja) * 2005-03-01 2011-06-15 アイダエンジニアリング株式会社 マイクロチップ
JP2006266974A (ja) * 2005-03-25 2006-10-05 Funai Electric Co Ltd 液状検体の検査チップおよび液状検体の希釈装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
CN1542429A (zh) * 2003-11-06 2004-11-03 浙江大学 交叉导流式微型静态混合器

Also Published As

Publication number Publication date
EP1946828B1 (en) 2011-01-26
US9327255B2 (en) 2016-05-03
US20080124245A1 (en) 2008-05-29
EP1946828A1 (en) 2008-07-23
CN103257244A (zh) 2013-08-21
JP2008134174A (ja) 2008-06-12
JP4939910B2 (ja) 2012-05-30
DE602007012202D1 (de) 2011-03-10
KR20080048921A (ko) 2008-06-03
CN101231285A (zh) 2008-07-30
CN103100341A (zh) 2013-05-15
EP1946828B9 (en) 2011-05-18
KR100932024B1 (ko) 2009-12-15

Similar Documents

Publication Publication Date Title
CN103257244B (zh) 微化学分析装置、微混合装置和微化学分析系统
JP5433139B2 (ja) マイクロ化学分析装置、その測定方法、及びマイクロカセット
DE10111457B4 (de) Diagnoseeinrichtung
US7163660B2 (en) Arrangement for taking up liquid analytes
US20210293740A1 (en) Devices, systems, and methods for performing optical and electrochemical assays
US20220113246A1 (en) Devices, systems, and methods for performing optical assays
JP2005172828A (ja) 試料採取装置および試料液を検査するためのシステム
US20140334979A1 (en) Biosensor and Measurement Apparatus for Same
CN110869746A (zh) 利用通用电路系统执行光学和电化学测定的技术
JP6718528B2 (ja) 再使用可能なバイオセンサカートリッジを備える携帯型ハンドヘルドデバイス
US20020127705A1 (en) Method and arrangement for taking up a first medium, which is present in a first phase, into a capillary device
US20170333904A1 (en) Sensor system and method for disease detection
US20090041623A1 (en) Fluid analyzing apparatus
CN111366714A (zh) 一种血栓弹力测量装置及血栓弹力图获取方法
US6950762B2 (en) Device for examining liquids
JP2012068267A (ja) マイクロ化学分析システム及びマイクロ化学分析装置
JP5271440B2 (ja) 被検試料採取器具
CN110320353B (zh) 一种应用于高原环境的荧光免疫分析仪及样本检测方法
CN210347659U (zh) 一种应用于高原环境的气、液压力控制组件
NZ752677A (en) Analysis system and method for testing a sample
NZ752677B2 (en) Analysis system and method for testing a sample

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160714

Address after: Japan Tochigi

Patentee after: Toshiba Medical System Co., Ltd.

Address before: Tokyo, Japan, Japan

Patentee before: Toshiba Corp

Patentee before: Toshiba Medical System Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415

Termination date: 20191128

CF01 Termination of patent right due to non-payment of annual fee