CN103252206A - 一种花状氧化钨水合物吸附剂 - Google Patents

一种花状氧化钨水合物吸附剂 Download PDF

Info

Publication number
CN103252206A
CN103252206A CN2013101885366A CN201310188536A CN103252206A CN 103252206 A CN103252206 A CN 103252206A CN 2013101885366 A CN2013101885366 A CN 2013101885366A CN 201310188536 A CN201310188536 A CN 201310188536A CN 103252206 A CN103252206 A CN 103252206A
Authority
CN
China
Prior art keywords
acid
flowerlike
oxide hydrate
adsorbent
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101885366A
Other languages
English (en)
Inventor
王金淑
刘柏雄
吴俊书
李洪义
李志飞
周美玲
左铁镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2013101885366A priority Critical patent/CN103252206A/zh
Publication of CN103252206A publication Critical patent/CN103252206A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种花状氧化钨水合物吸附剂,属于无机材料的制造技术领域。该吸附剂以.045‐0.10M钨酸钠、钨酸钾的至少一种为钨源,盐酸、硝酸、硫酸中的至少一种提供质子(酸当量浓度为0.058‐0.23M),在50‐95℃下进行离子交换,反应1‐12h得到沉淀,过滤、洗涤后得到。该方法所需设备简单、工艺流程短、制备效率高,所选钨源价格低廉,制造成本低,所制备的分级花状WO3.H2O比表面积大,对有机染料和重金属离子的吸附能力强,饱和吸附量大,具有良好的工业应用前景。

Description

一种花状氧化钨水合物吸附剂
技术领域
本发明属于无机材料的制造技术领域,尤其涉及一种花状WO3.H2O吸附剂高效吸附剂。 
背景技术
随着工业的发展,水污染日趋严峻,其中有机染料及重金属离子超标,严重影响人们的身体健康。目前对于水中有机染料及重金属离子污染物的处理包括化学沉淀法、化学氧化法、膜分离法、吸附法等,其中由于吸附法操作简单、处理效率高、处理费用低等优点而广泛用于含有有机染料及重金属离子的废水处理。 
众所周知,决定材料吸附性能的因素比表面积大小、表面基团的种类及数量。由于WO3.H2O表面带有W=O, O-H等基团,从而带有一定量的负电荷,对于阳离子具有良好的吸附能力。本发明通过离子交换法制备分级花状WO3.H2O,所制备的WO3.H2O具有较大比表面积,同时表面带有W=O, O-H等基团,因此具有良好的吸附性能。 
发明内容
本发明提供一种分级花状WO3.H2O高效吸附剂,所需设备简单、工艺流程短、制备效率高,所选钨源价格低廉,制造成本低,所制备的WO3.H2O比表面积大,对有机染料和重金属离子的吸附能力强,饱和吸附量大,同时由纳米片组装成的大尺寸分级结构有利于吸附后分离,因此具有良好的工业应用前景。 
一种花状氧化钨水合物吸附剂,其特征在于,结构式为WO3.H2O,该吸附剂以可溶性钨盐为钨源,酸提供质子,所述的钨盐溶液浓度为0.045-0.10 M, 酸的当量浓度为0.058-0.23 M, 在50-95 ℃温度下进行离子交换,反应1-12 h 得到沉淀,过滤、洗涤后得到。 
所述的钨盐为钨酸钠、钨酸钾的至少一种。 
所述的酸为盐酸、硝酸、硫酸中的至少一种。 
所述的钨盐为钨酸钠、钨酸钾的至少一种。目前大部分文献采用醇钨、钨的卤素盐制备氧化钨及其水合物,但由于原料成本非常昂贵,从而限制其大规模应用。本发明所使用的钨盐为钨酸钠、钨酸钾中的至少一种,这些钨盐相对比较廉价,从而大大降低了制备吸附剂的成本。 
所述的酸为盐酸、硝酸、硫酸中的至少一种。本发明采用强酸做为质子提供者,这有利于酸的利用率与吸附剂沉淀的长生,从而降低吸附剂的成本。若使用弱酸,则酸的使用量大大增加,有时甚至无法生成WO3.H2O沉淀。 
所述的钨盐溶液浓度为0.045-0.10 M, 酸的当量浓度为0.058-0.23 M, 反应温度为50-95 ℃, 反应时间为1-12 h。钨盐溶液浓度低于0.045 M,所制备的产物不纯,但当其浓度高于0.10 M时,产品结晶性不好。酸的当量浓度低于0.058 M时,生成沉淀速度较慢,但当酸的当量浓度高于0.23 M时,生成沉淀速度太快,不利于形貌控制。反应温度低于50 ℃,所制备的产物结晶性不好,当温度高于95 ℃,接近水的沸点,同时能耗较高。反应时间低于1 h,沉淀不完全,但高于12 h,大部分水已经挥发,同时能耗较高。 
本发明所制备的分级花状WO3.H2O吸附剂具有表面积大(18-26 m2/g),对于铅离子、亚甲基蓝具有很好的吸附效果,铅离子的饱和吸附量为315mg/g,亚甲基蓝离子的饱和吸附量为118 mg/g 。 
附图说明
图1 分级花状WO3.H2O的XRD分析结果 
图2 a分级花状WO3.H2O放大倍数为5000倍的SEM照片 
图2 b分级花状WO3.H2O放大倍数为20000倍的SEM照片 
图3 a分级花状WO3.H2O的Pb2+等温吸附曲线 
图3 b分级花状WO3.H2O的MB等温吸附曲线 
具体实施方式
下面结合实施例,对本发明作进一步说明。 
该发明所采用的两种盐种类及酸的种类对实验结果影响不大,所以实施例只以钨酸钠与盐酸,钨酸钾与硝酸,钨酸钠与硫酸为例进一步说明。 
实施例1 
本实施例以钨酸钠与盐酸为原料,具体参数如下,采用钨酸钠浓度为0.045,0.073,0.10,盐酸浓度选取0.058,0.14,0.23 M,反应温度选取50,73,95 ℃,反应时间为1,7,12 h。测试各工艺正交实验所得样品对亚甲基蓝及铅离子的饱和吸附量,如表1所示。 
表1  分级花状WO3.H2O对亚甲基蓝及铅离子的饱和吸附量 
Figure DEST_PATH_GDA0000339035061
实施例2 
本实施例以钨酸钾与硝酸为原料,具体参数如下,采用钨酸钾浓度为0.045,0.073,0.10,硝酸浓度选取0.058,0.14,0.23 M,反应温度选取50,73,95 ℃,反应时间为1,7,12 h。测试各工艺正交实验所得样品对亚甲基蓝及铅离子的饱和吸附量,如表2所示。 
表2  分级花状WO3.H2O对亚甲基蓝及铅离子的饱和吸附量 
Figure DEST_PATH_GDA0000339035062
实施例3 
本实施例以钨酸钠与硫酸为原料,具体参数如下,采用钨酸钠浓度为0.045,0.073,0.10,硫酸浓度选取0.058,0.14,0.23 M,反应温度选取50,73,95 ℃,反应时间为1,7,12 h。测试各工艺正交实验所得样品对亚甲基蓝及铅离子的饱和吸附量,如表3所示。 
表3  分级花状WO3.H2O对亚甲基蓝及铅离子的饱和吸附量 
Figure DEST_PATH_GDA0000339035065

Claims (3)

1.一种花状氧化钨水合物吸附剂,其特征在于,结构式为WO3.H2O,该吸附剂以可溶性钨盐为钨源,酸提供质子,所述的钨盐溶液浓度为0.045-0.10M,酸的当量浓度为0.058-0.23M,在50-95℃温度下进行离子交换,反应1-12h得到沉淀,过滤、洗涤后得到。
2.根据权利要求1所述的一种花状氧化钨水合物吸附剂,其特征在于:所述的钨盐为钨酸钠、钨酸钾的至少一种。
3.根据权利要求1一种花状氧化钨水合物吸附剂,,其特征在于:所述的酸为盐酸、硝酸、硫酸中的至少一种。
CN2013101885366A 2013-05-19 2013-05-19 一种花状氧化钨水合物吸附剂 Pending CN103252206A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101885366A CN103252206A (zh) 2013-05-19 2013-05-19 一种花状氧化钨水合物吸附剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101885366A CN103252206A (zh) 2013-05-19 2013-05-19 一种花状氧化钨水合物吸附剂

Publications (1)

Publication Number Publication Date
CN103252206A true CN103252206A (zh) 2013-08-21

Family

ID=48956617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101885366A Pending CN103252206A (zh) 2013-05-19 2013-05-19 一种花状氧化钨水合物吸附剂

Country Status (1)

Country Link
CN (1) CN103252206A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271421A (zh) * 2015-11-02 2016-01-27 哈尔滨工业大学 一种钨基纳米球粒子粉体的制备方法
CN105498677A (zh) * 2014-09-22 2016-04-20 五邑大学 一种染料选择性吸附剂的制备方法及应用
CN109225201A (zh) * 2018-08-21 2019-01-18 北京工业大学 一种微纳米氧化钨的制备方法及应用
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548902A (zh) * 2009-07-31 2012-07-04 艾尼股份公司 改性氧化钨及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548902A (zh) * 2009-07-31 2012-07-04 艾尼股份公司 改性氧化钨及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIARUI HUANG等: "Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties", 《JOURNAL OF MATERIALS CHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498677A (zh) * 2014-09-22 2016-04-20 五邑大学 一种染料选择性吸附剂的制备方法及应用
CN105271421A (zh) * 2015-11-02 2016-01-27 哈尔滨工业大学 一种钨基纳米球粒子粉体的制备方法
CN109225201A (zh) * 2018-08-21 2019-01-18 北京工业大学 一种微纳米氧化钨的制备方法及应用
CN109225201B (zh) * 2018-08-21 2021-07-30 北京工业大学 一种微纳米氧化钨的制备方法及应用
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法
CN109364871B (zh) * 2018-11-05 2021-08-03 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法

Similar Documents

Publication Publication Date Title
Paranthaman et al. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents
Li et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources
Zuo et al. Novel composite electrodes for selective removal of sulfate by the capacitive deionization process
Yang et al. Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries
Zhao et al. A hybrid process of coprecipitation-induced crystallization-capacitive deionization-ion exchange process for heavy metals removal from hypersaline ternary precursor wastewater
Wang et al. Ternary NiFeMn layered metal oxide (LDO) compounds for capacitive deionization defluoridation: The unique role of Mn
Peng et al. Cadmium removal from aqueous solution by a deionization supercapacitor with a birnessite electrode
CN103578593B (zh) 一种利用石墨烯负载纳米零价铁复合材料去除放射性钴的方法
Peng et al. Adsorption process of vanadium (V) with melamine
Joo et al. Application of a flow-type electrochemical lithium recovery system with λ-MnO2/LiMn2O4: experiment and simulation
CN108794661A (zh) 一种偕胺肟化聚丙烯腈及其制备方法和应用
Wang et al. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology
CN103252206A (zh) 一种花状氧化钨水合物吸附剂
Gao et al. Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm
Xu et al. Comparison between sinusoidal AC coagulation and conventional DC coagulation in removing Cu2+ from printed circuit board wastewater
Yu et al. Ocean mining: a fluidic electrochemical route for lithium extraction from seawater
CN102744087B (zh) 一种片状纳米氯氧化铋薄膜光催化剂的电化学制备方法
Xie et al. Fabricating a flow-through hybrid capacitive deionization cell for selective recovery of lithium ions
Calvo Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation
Yuan et al. Thermo-osmosis-coupled thermally regenerative electrochemical cycle for efficient lithium extraction
Zhang et al. Tunnel manganese oxides prepared using recovered LiMn2O4 from spent lithium-ion batteries: Co adsorption behavior and mechanism
Siekierka et al. Electro-driven materials and processes for lithium recovery—A review
Mir et al. Thermodynamic modeling of a combined photo-electrodialysis-chloralkali system for sustainable desalination
CN104437345A (zh) 一种多孔四氧化三铁吸附材料的溶剂热制备方法
Wang et al. Preparation of the crosslinked GO/PAA aerogel and its adsorption properties for Pb (II) ions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130821