CN103249454A - Leadless cardiac pacemaker with anti-nscrewing feature - Google Patents

Leadless cardiac pacemaker with anti-nscrewing feature Download PDF

Info

Publication number
CN103249454A
CN103249454A CN 201180058931 CN201180058931A CN103249454A CN 103249454 A CN103249454 A CN 103249454A CN 201180058931 CN201180058931 CN 201180058931 CN 201180058931 A CN201180058931 A CN 201180058931A CN 103249454 A CN103249454 A CN 103249454A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
leadless
biological
anti
heart
housing
Prior art date
Application number
CN 201180058931
Other languages
Chinese (zh)
Inventor
A.凯尔卡汉
E.瓦拉迪
K.J.卡罗尔
P.帕斯帕
Original Assignee
内诺斯蒂姆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N1/0573Anchoring means; Means for fixing the head inside the heart chacterised by means penetrating the heart tissue, e.g. helix needle or hook
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators

Abstract

A leadless cardiac pacemaker comprises a housing, a plurality of electrodes coupled to an outer surface of the housing, and a pulse delivery system hermetically contained within the housing and electrically coupled to the electrode plurality, the pulse delivery system configured for sourcing energy internal to the housing, generating and delivering electrical pulses to the electrode plurality. The pacemaker further comprises an anti-unscrewing feature disposed on either a fixation device of the pacemaker or on the housing itself. The anti-unscrewing feature can be configured to prevent the fixation device from disengaging the wall of the heart.

Description

带有防旋出构造的无引线心脏起搏器 With an anti-rotation structure of a leadless cardiac pacemakers

技术领域 FIELD

[0001] 本公开涉及无引线心脏起搏器,并且更具体地涉及将无引线心脏起搏器附着到心脏内的构造和方法。 [0001] The present disclosure relates to a leadless cardiac pacemakers, and more particularly relates to a leadless pacemaker attached to configurations and methods within the heart. 更具体地,本公开涉及用于阻止无引线心脏起搏器本身从组织旋出的构造和方法。 More particularly, the present disclosure relates to configurations and methods for preventing cardiac pacemaker leadless unscrewed from the tissue itself.

背景技术 Background technique

[0002] 当心脏本身的天生起搏器和/或传导系统未能以符合患者健康的速率和间隔提供同步的心房和心室收缩时,人工起搏器的心脏起搏对心脏提供电激励。 [0002] When the excitation natural pacemaker of the heart itself and / or conduction system fails to meet the patient's health and rate interval provides simultaneous atrial and ventricular contractions, artificial pacemaker to provide electrical cardiac pacing of the heart. 这样的防心动起搏过缓减轻了成百上千患者的症状并且甚至提供了生命支持。 Such anti-cardiac pacing too slow to alleviate the symptoms of hundreds of patients and even provides life support. 心脏起搏还可以提供电过激激励,以抑制或者转变快速性心律失常,从而再次提供了症状减轻并且阻止或结束能够引起心脏性猝死的心律失常。 Cardiac pacing may also provide electrical excitation radical, or converted to inhibit tachyarrhythmia, thereby providing again to alleviate the symptoms or prevent the ends and can cause sudden cardiac arrhythmias.

[0003] 由目前可用的或传统的起搏器进行的心脏起搏通常由皮下地或者肌肉下地植入的脉冲发生器在患者胸部区域中或附近执行。 [0003] cardiac pacing by the currently available or conventional pacemakers usually performed near or from subcutaneous or intramuscular removably implanted pulse generator in the chest region of the patient. 脉冲发生器参数通常由体外的程序化装置来询问并修改,这经由带有位于体内的一个电感和位于体外的另一电感的松散联接的互感器实现,或者经由带有位于体内的一个天线和位于体外的另一天线的电磁幅射实现。 Pulse generator parameters typically programmed by the interrogation means and in vitro modifications, which achieved via a loose coupling with an inductor and the other located in the body of the inductor located outside of the transformer, or via an antenna located in the body and having electromagnetic radiation to achieve a further antenna is located in vitro. 该发生器通常连接到一个或者多个植入的引线的近端,该引线的远端包含一个或者多个电极,该一个或者多个电极定位在心脏腔室的内壁或外壁附近。 The generators are typically connected to one or a plurality of the proximal end of the lead implanted, the distal end of the lead comprises one or more electrodes, the one or more electrodes positioned near the inner or outer wall of the heart chamber. 引线具有用于将脉冲发生器连接到心脏中的电极的被绝缘的一个或多个电导体。 Leads having one or more electrical conductors insulated for the pulse generator connected to the electrodes of the heart. 这种电极引线典型地具有50至70厘米的长度。 Such electrode leads typically have a length of 50-70 cm.

[0004] 虽然每年植入十万以上的常规心脏起搏系统,但仍存在众所周知的各种困难,将阐述其中的若干困难。 [0004] Although the annual implanted in over 100,000 conventional cardiac pacing system, but there are still well-known difficulties, we will address some of these difficulties. 例如,当位于皮下时,脉冲发生器在皮肤中呈现凸出部分,使得患者难看、不愉快或者使愤怒,并且患者会下意识地或者强迫性地操作或“捻弄”该凸出部分。 For example, when in the skin, in the skin presented pulse generator projecting portion, such that the patient unsightly, unpleasant or provoke, and the patient will be forced or unconsciously operated or "twiddling" the projecting portion. 即使未持续操作,皮下的脉冲发生器能够在引导线处呈现出腐蚀、压挤、感染以及断开、绝缘损坏或者导体破损。 Even if the operation does not continue, the pulse generator is capable of subcutaneous guide line showing etching, pressing, and disconnecting infection, damage to the insulation or conductor breakage. 虽然,肌肉下或者腹部布置能够解决一些关注的问题,但这种布置涉及用于植入和调整的更困难的外科程序,这会延长患者的痊愈。 Although, under the abdominal muscle or arrangement can solve some of the concerns, but this arrangement involves a surgical procedure for implantation and adjustment more difficult, which will prolong the recovery.

[0005] 不管是胸部的还是腹部的常规脉冲发生器均具有用于与传送信号到心脏以及从心脏接收信号的电极引线相连或断开的接口。 [0005] Regardless of the chest or abdomen of a conventional pulse generator has to transmit signals to the heart, and an interface connected to or disconnected from a signal received heart electrode lead. 通常,至少一个凸形连接器模制件(maleconnector molding)具有位于电极引线的近端处的至少一个端子引脚。 Typically, at least one male connector molding (maleconnector molding) having at least one terminal pin at the proximal end of the electrode lead. 该凸形连接器匹配脉冲发生器处的相应凹形连接器模制件以及连接器模制件内的端子部分。 The corresponding female connector mating the male connector and a terminal portion molding within the connector molding at the pulse generator. 通常地,调节螺钉被旋拧到每一电极引线的至少一个端子部分中,以在电气和机械方面固定连接。 Generally, at least one terminal portion adjusting screw is screwed into each of the electrode lead in a fixed electrical and mechanical connection. 通常还提供一个或者多个O形环,以帮助维持连接器模制件之间的电隔离。 Also typically provide one or more O-rings, to assist in maintaining electrical isolation between the connector molding. 通常包括调节螺钉帽或带狭槽的盖,以提供调节螺钉的电绝缘。 Generally includes adjustment cap screw cap or slotted to provide electrical insulation of adjustment screw. 该简要说明的在连接器和引线之间的复杂连接提供了发生故障的诸多机会。 Complex connection between the connector and the lead of the brief description provides many opportunities for failure.

[0006] 常规方案中的其它有问题方面涉及脉冲发生器和起搏引线的分开植入。 [0006] Other conventional schemes have problems relates to a pulse generator and pacing leads implanted separately. 再举一例,起搏引线具体地能够成为感染和病状的场所。 As another example, the pacing leads can become infected and in particular pathologies place. 如文中相关申请中所描述的,与常规起搏器关联的许多问题通过研发自给式和自可持续的(self-contained andself-sustainable)起搏器或者所谓的无引线起搏器来解决。 As described in the related applications described, many of the problems associated with conventional pacemakers be resolved through self-development and self-sustainable (self-contained andself-sustainable) pacemaker or so-called leadless pacemaker.

[0007]自给式或者无弓I线的起搏器或者其它的生物激励器通常通过活性接合机构,诸如旋拧到心肌层中的螺钉或者螺旋状构件,固定到心脏内植入部位。 [0007] I bow or no self-line pacemaker or other biological activity typically by engaging the actuator mechanism, such as screwed into the myocardium or helical screw member fixed to the implantation site in the heart.

[0008] 无引线生物激励器从植入部位的脱离可能性将表现出即刻严重的情况,例如从右心室丢失的起搏器可经由肺动脉瓣退出心脏并且在肺中栓塞。 [0008] Biological Stimulators leadless possibility of departing from the implantation site will exhibit immediate severe cases, loss of the right ventricle, for example, exit the heart pacemaker via pulmonary embolism and in the lung.

发明内容 SUMMARY

[0009] 提供了一种无引线生物激励器,包括:壳体,所述壳体被定尺寸且构造成植入在患者的心脏内;主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出构造,所述防旋出构造布置在所述主固定装置上,并且构造成阻止所述主固定装置脱离心脏的壁。 [0009] provided a leadless biological actuator, comprising: a housing, said housing being sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and configured to attach to the biological stimulator of the heart wall; and the anti-rotation structure, illustrating the anti-rotation structure disposed on the main fastening device, and configured to prevent the fixing means from the main wall of the heart.

[0010] 在一些实施方式中,主固定装置是固定螺旋线。 [0010] In some embodiments, the primary fixation means is a fixation helix.

[0011] 在其它实施方式中,防旋出构造是至少一个倒刺。 [0011] In other embodiments, the anti-rotation structure is at least one barb. 在一些实施方式中,所述至少一个倒刺一般背离固定装置的远端指向近端方向。 In some embodiments, the at least one barb generally facing away from the distal end pointing in the proximal direction of the fixing device.

[0012] 在一些实施方式中,将固定装置插入到心脏的壁中需要的第一转矩小于将固定装置从心脏的壁移去所需的第二转矩。 [0012] In some embodiments, the fixing device is inserted into the heart wall in a first torque required torque is less than the second fixing means from the wall of the heart was removed required.

[0013] 在一些实施方式中,防旋出构造是至少一个圆形构造。 [0013] In some embodiments, the anti-rotation structure is at least one circular configuration. 在其它实施方式中,防旋出构造是至少一个通孔。 In other embodiments, the anti-rotation structure is at least one through-hole. 在另外的实施方式中,防旋出构造是至少一个凹陷。 In further embodiments, the anti-rotation structure is at least one recess.

[0014] 提供了一种无引线生物激励器,包括:壳体,所述壳体被定尺寸且构造成植入在患者的心脏内;主固定螺旋线,所述主固定螺旋线附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出螺旋线,所述防旋出螺旋线在所述主固定螺旋线的相反方向上绕制,所述防旋出螺旋线附接至所述壳体。 [0014] provided a leadless biological actuator, comprising: a housing, said housing being sized and configured to be implanted within a patient's heart; primary fixation helix, the main line is attached to the fixation helix the housing and configured to be attached to the wall of the biological stimulator of the heart; and the anti-rotation helix, the anti-unscrewing helix wound in the opposite direction of the main fixation helix, the anti-unscrewing helix attached to the housing.

[0015] 在一些实施方式中,主固定螺旋线是右旋螺旋线,并且防旋出螺旋线是左旋螺旋线。 [0015] In some embodiments, the primary fixation helix is ​​right-handed helix, and the anti-rotation helix is ​​a left-handed helix. 在其它实施方式中,主固定螺旋线比防旋出螺旋线更长。 In other embodiments, the primary fixation helix than the anti-rotation helix longer. 在另外的实施方式中,防旋出螺旋线定位在主固定螺旋线外侧。 In a further embodiment, the anti-rotation coil wire is positioned outside the main fixation helix.

[0016] 在一些实施方式中,主固定螺旋线是电极。 [0016] In certain embodiments, the helix is ​​fixed to the main electrode.

[0017] 在其它的实施方式中,防旋出螺旋线构造成随着主固定螺旋线附着到心脏的壁而压缩在组织上。 [0017] In other embodiments, the anti-rotation with the main spiral configured fixation helix is ​​attached to the wall of the heart and the compression on the tissue.

[0018] 根据权利要求9所述的无引线生物激励器,其中所述防旋出螺旋线构造成在所述生物激励器从心脏的壁旋出时接合心脏的壁。 [0018] The bio leadless stimulator according to claim 9, wherein said anti-unscrewing spiral configured to engage the wall of the heart when the biological stimulator unscrewed from the wall of the heart.

[0019] 一种无引线生物激励器,包括:壳体,所述壳体被定尺寸且构造成植入在患者的心脏内;主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出构造,所述防旋出构造布置在所述壳体上,并且构造成阻止所述主固定装置脱离心脏的壁。 [0019] A leadless biological actuator, comprising: a housing, said housing being sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and an actuator configured to be attached to the wall of the biological heart; and the anti-rotation structure, illustrating the anti-rotation structure disposed on the housing, and configured to prevent the wall of the heart from the primary fastening means.

[0020] 在一些实施方式中,主固定装置包括固定螺旋线。 [0020] In some embodiments, the securing means includes a fixed main helix.

[0021] 在一些实施方式中,防旋出构造包括多个齿、倒刺或者其它锐化构造。 [0021] In some embodiments, the anti-rotation configuration of the plurality of teeth, barbs, or other configurations including sharpening. 在许多实施方式中,所述齿、倒刺或者其它锐化构造布置在壳体的远端表面上。 In many embodiments, the teeth, barbs or other sharpening configurations disposed on the distal end surface of the housing. 在一些实施方式中,所述齿、倒刺或者其它锐化构造布置在壳体的锥形表面上。 In some embodiments, the teeth, barbs or other sharpening configurations disposed on the tapered surface of the housing. 在其它的实施方式中,所述齿、倒刺或者其它锐化构造非对称地布置,以提供仅在主固定装置的旋出方向上的阻力。 In other embodiments, the teeth, barbs or other sharpening arranged asymmetrically configured to provide resistance only in the unscrewing direction of the main fixing device. [0022] 在一个实施方式中,将固定装置插入到心脏的壁中需要的第一转矩小于将固定装置从心脏的壁移去所需的第二转矩。 [0022] In one embodiment, the fixing device is inserted into the heart wall is less than the torque required for the first fixing means is removed from the second torque required wall of the heart.

[0023] 在一些实施方式中,防旋出构造是楔子。 [0023] In some embodiments, the anti-rotation structure is a wedge. 在一个实施方式中,所述楔子定位在壳体上在固定装置下方。 In one embodiment, the wedge is positioned on the housing below the fixing means. 在其它实施方式中,楔子指向固定装置并且构造成将心脏组织抓取在楔子和固定装置之间,以防止固定装置从心脏的壁的意外脱离。 In other embodiments, the wedge pointing fixing means and configured to cardiac tissue captured between the wedges and the fixing means, fixing means to prevent accidental detachment from the wall of the heart.

[0024] 在一些实施方式中,防旋出构造是至少一个通孔。 [0024] In some embodiments, the anti-rotation structure is at least one through-hole. 在其它实施方式中,防旋出构造是至少一个凹陷。 In other embodiments, the anti-rotation structure is at least one recess.

[0025] 提供了一种无引线生物激励器,包括:壳体,所述壳体被定尺寸且构造成植入在患者的心脏内;主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和至少一个通孔,所述至少一个通孔布置在所述壳体中,并且构造成促使组织向内生长到所述通孔中以阻止所述主固定装置脱离心脏的壁。 [0025] provided a leadless biological actuator, comprising: a housing, said housing being sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and configured to attach to the wall of the biological stimulator of the heart; and at least one through hole, the at least one through hole disposed in the housing and configured to promote tissue ingrowth into the through hole to preventing said master device from the fixing wall of the heart.

[0026] 在一些实施方式中,所述至少一个通孔水平地延伸到壳体中。 [0026] In some embodiments, the one through hole extends horizontally into the housing at least. 在其它实施方式中,所述至少一个通孔沿着壳体的纵向轴线延伸。 In other embodiments, the through hole extending along a longitudinal axis of the housing at least. 在一些实施方式中,所述至少一个通孔具有近似0.005"到0.04"的直径。 In some embodiments, the at least one through-hole having a diameter of "0.04" is approximately 0.005. 在其它实施方式中,所述至少一个通孔部分地延伸过壳体的直径。 In other embodiments, the at least one through hole extending partially through the diameter of the housing. 在另外实施方式中,所述至少一个通孔完全地延伸过壳体的直径。 In further embodiments, the one through hole extending completely through at least the diameter of the housing. 在一些实施方式中,所述至少一个通孔被填充生物可吸收材料。 In some embodiments, the at least one through-hole is filled with a bioresorbable material.

[0027] 提供了一种阻止无引线生物激励器从患者的心脏意外脱离的方法,包括:将转矩在第一方向上施加到无引线生物激励器,以用主固定装置将无引线生物激励器附着到心脏组织;用防旋出装置将转矩在第二方向上施加到所述组织,以阻止所述无引线生物激励器从组织分离。 [0027] provided a method of preventing biological leadless cardiac events actuator disengaged from a patient, comprising: applying a torque in the first direction to the leadless Biological Stimulators, to a fixing device main leadless biologically inspired is attached to the heart tissue; with an anti-rotation means in a second direction torque is applied to the tissue, to prevent the leadless separated from the biological tissue stimulator.

[0028] 在一些实施方式中,在第二方向上的转矩大于在第一方向上的转矩。 [0028] In some embodiments, the torque in the second direction is greater than the torque in the first direction.

[0029] 提供了一种阻止无引线生物激励器从患者脱离的方法,包括:将无引线生物激励器植入到患者的心脏组织中;用生物可吸收的防旋出构造阻止无引线生物激励器从心脏组织脱离;以及允许所述生物可吸收的防旋出构造被患者在3个月以内吸收。 [0029] provided a leadless Biological Stimulators prevented from departing from a patient, comprising: a leadless stimulator implanted biological heart tissue of a patient; configuration with an anti-rotation blocking bioabsorbable leadless biologically inspired is disengaged from the heart tissue; and the anti-rotation configuration allows the bioresorbable absorbed by the patient within 3 months.

[0030] 在一些实施方式中,防旋出构造是缝合。 [0030] In some embodiments, the anti-rotation structure is a suture. 在另外的实施方式中,所述缝合是生物可吸收的。 In further embodiments, the suture is bioabsorbable.

附图说明 BRIEF DESCRIPTION

[0031] 在下面的权利要求书中具体地阐述了本发明的新颖特征。 [0031] forth in the following claims are set forth particularly novel features of the invention. 参考下面的阐述了示意性实施方式的详细描述和附图将获得对于本发明的特征和优点的更好理解,其中示意性实施方式利用了本发明的原理,在图中: The following describes the reference and obtain a better understanding of the features and advantages of the present invention are described in detail with the accompanying drawings and exemplary embodiments, in which the illustrative embodiments of the present invention utilizes the principle, in the drawings:

[0032] 图1示出了无引线心脏起搏器或者生物激励器的一个实施方式。 [0032] FIG. 1 shows a cardiac pacemaker or leadless Biological Stimulators one embodiment.

[0033] 图2a_2f示出了无引线心脏起搏器的布置在固定装置上的防旋出构造的实施方式。 [0033] FIG 2a_2f shows a leadless cardiac pacemaker arranged on an anti-rotation fixing device of the embodiment constructed.

[0034] 图3a_3c示出了无引线心脏起搏器上的防旋出螺旋线的各种实施方式。 [0034] FIG 3a_3c illustrate various embodiments of the anti-unscrewing helix on the leadless pacemaker.

[0035] 图4a_4f示出了无引线心脏起搏器的布置在壳体上的防旋出构造的实施方式。 [0035] FIG 4a_4f shows a leadless pacemaker housing is arranged on an anti-rotation structure of the embodiment.

[0036] 图5a_5p示出了具有尖端组件和防旋出构造的无引线心脏起搏器的各种实施方式。 [0036] FIG 5a_5p illustrate various embodiments of a tip assembly having an anti-rotation structure and leadless cardiac pacemaker.

[0037] 图6a_6e示出了整合在无引线心脏起搏器中的通孔或者部分通孔的各种实施方式。 [0037] FIG 6a_6e illustrate various embodiments of leadless integrated cardiac pacemaker or a through hole portion of the through-hole.

[0038] 图7a_7b示出了具有防旋出构造的无引线心脏起搏器的实施方式,所述防旋出构造包括缝合。 [0038] FIG 7a_7b illustrates an embodiment having a configuration preventing rotation of the leadless cardiac pacemaker, showing the anti-rotation structure includes a suture.

具体实施方式 Detailed ways

[0039] 无引线心脏起搏器能够通过传导通信进行通信,表现与常规起搏系统的明显不同。 [0039] leadless cardiac pacemaker capable of significantly different communication, performance of a conventional pacing system with communication by conduction. 例如,示意性的心脏起搏系统能够执行心脏起搏,其具有常规心脏起搏器的许多优点,同时通过一个或者若干个改进延伸了性能、功能性和操作特性。 For example, exemplary cardiac pacing system capable of performing cardiac pacing, it has a number of advantages over conventional pacemaker, through one or several extended improved performance, functionality, and operation characteristics.

[0040] 在心脏起搏系统的一些实施方式中,以无位于胸部区域或者腹部中的脉冲发生器、无从脉冲发生器分开的电极引线、无通信线圈或天线并且无关于用于传输通信的电池电力的额外需求的方式提供心脏起搏。 [0040] In some embodiments, the cardiac pacing system, located in a non-chest or abdomen region of the pulse generator, the pulse generator electrode lead impossible to separate, non-communication coil or antenna for transmitting and no communication on the battery additional demand of electricity way to provide cardiac pacing.

[0041] 描述了包括一个或者多个无引线心脏起搏器或者生物激励器的系统的各种实施方式。 [0041] is described comprising one or more leadless cardiac pacemaker or biological actuator system according to various embodiments. 构造成实现这些特性的心脏起搏系统的实施方式包括这样的无引线心脏起搏器,其大致包封在适于布置在或者附接至心脏腔室的内侧或外侧的密封壳体中。 Embodiment cardiac pacing system configured to achieve these properties include such leadless cardiac pacemaker, which is generally adapted to be arranged in the encapsulated in or attached to the seal housing inside or outside the heart chamber. 该起搏器能够具有位于壳体内、壳体上或者壳体附近的两个或者更多个电极,用于将起搏脉冲递送到心脏腔室的肌肉并且可选地用于感测肌肉的电活动,并且用于与身体内侧或外侧的至少一个其它装置双向通信。 The pacemaker can be located within the housing having electrical, or two or more electrodes on the housing near the housing, for delivering pacing pulses to the heart chamber muscle and optionally for sensing muscle activity, and for bidirectional communication with the inside or outside of the body of at least one other device. 壳体能够包含主电池,用以提供用于起搏、感测和通信例如双向通信的电力。 A main housing can comprise a battery to provide for pacing, sensing and communication such as the power of two-way communication. 可选地,壳体能够包含用于从电极感测心脏活动的电路。 Alternatively, the housing can comprise circuitry for sensing cardiac activity of the electrode. 壳体包含用于经由电极从至少一个其它装置接收信息的电路,并且包含用于产生经由电极递送的起搏脉冲的电路。 Via an electrode housing comprising means for means for receiving from at least one other circuit information, and includes a circuit for generating pacing pulses are delivered through the electrodes. 壳体能够可选地包含用于将信息经过电极传输到至少一个其它装置的电路,并且能够可选地包含用于监测装置工作状态的电路。 Housing can optionally contain the information transmitted through the electrode to the at least one circuit for other devices, and can optionally contain a circuit means for monitoring the operating state. 壳体包含用于以预定方式控制这些操作的电路。 A housing comprising a control circuit in a predetermined manner for these operations.

[0042] 在一些实施方式中,心脏起搏器能够适于植入到人体的组织中。 [0042] In some embodiments, the implanted pacemaker can be adapted to the body tissue. 在具体实施方式中,无引线心脏起搏器能够适于使用位于起搏器的壳体上或内的两个或者更多个电极而植入到心脏组织附近在心脏腔室的内壁或者外壁上,用于在从体内的至少一个其它装置接收到触发信号时起搏心脏腔室。 In a specific embodiment, a leadless cardiac pacemaker can be two or more electrodes adapted for use on or positioned within the housing pacemaker implanted near the inner wall or the outer wall of the heart tissue in the heart chamber for pacing a heart chamber when at least one other device receives the trigger signal from the body.

[0043]自给式或者无引线的起搏器或者其它的生物激励器通常通过活性接合机构,诸如旋拧到心肌层中的螺钉或者螺旋状构件,而固定到心脏内植入部位。 [0043] or no self-contained pacemaker lead, or other biological activity typically by engaging the actuator means, such as screwing into the myocardium of a screw or helical member is fixed to the implantation site in the heart. 这种无引线生物激励器的示例在以下公布中记载,以下公布的公开通过参考合并于此:(I)在2006年10月13日提交的标题为“结合可植入复律除颤器使用的无引线心脏起搏器系统(Leadless Cardiac Pacemaker System for Usage in Combination with an ImplantableCardioverter-Def ibri I lator)的第11/549,599 号并在2007 年4 月19 日公布为US2007/0088394A1的美国申请;(2)在2006年10月13日提交的标题为“无引线心脏起搏器(Leadless Cardiac Pacemaker)” 的第11/549,581 号并在2007 年4 月19 日公布为US2007/0088396A1的美国申请;(3)在2006年10月13日提交的标题为“具有传导通信的无引线心脏起搏器系统(Leadless Cardiac Pacemaker System with ConductiveCommunication)” 的第11/549,591 号并在2007 年4 月19 日公布为US2007/0088397A1的美国申请;(4)在2006年10月13日提交的标题为“由传导通信触发的无引线心脏起搏器(Leadless Cardiac Pacemaker Triggered by Such biological sample leadless stimulator is described in the following publication, published in the following disclosure is incorporated herein by reference: (I) in the title Oct. 13, 2006 entitled "binding implantable cardioverter defibrillators use leadless cardiac pacemaker systems (leadless cardiac pacemaker system for Usage in Combination with an ImplantableCardioverter-Def ibri I lator) of No. 11 / 549,599 and published in the April 19, 2007 to US2007 / 0088394A1 US application ; (2) and published in the April 19, 2007 No. 11 / 549,581 titled October 13, 2006, entitled "leadless cardiac pacemaker (leadless cardiac pacemaker)" as US2007 / 0088396A1 of US application; (3) the title October 13, 2006, entitled "leadless cardiac pacemaker systems (leadless cardiac pacemaker system with ConductiveCommunication) having a conductive communication" No. 11 / 549,591 and in 2007 published April 19 in US application US2007 / 0088397A1; and (4) in the title October 13, 2006, entitled "triggered by conducting communication leadless cardiac pacemaker (leadless cardiac pacemaker triggered by Conductive Communication),,的第11/549,596号并在2007年4月19日公布为US2007/0088398A1的美国申请;(5)在2006年10月13日提交的标题为“速率响应性无引线心脏起搏器(Rate Responsive LeadlessCardiac Pacemaker)”的第11/549,603 号并在2007 年4 月19 日公布为US2007/0088400A1的美国申请;(6)在2006年10月13日提交的标题为“用于生物激励器系统的程序器(Programmer for Biostimulator System),,的第11/549,605 号并在2007 年4 月19 日公布为US2007/0088405A1的美国申请;(7)在2006年10月13日提交的标题为“用于可植入生物激励器的输送系统(Delivery System for Implantable Biostimulator)” 的第11/549,574号并在2007年4月19日公布为US2007/0088418A1的美国申请;和(8)在2006年10月13日提交的标题为“无引线心脏起搏器和系统(Leadless Cardiac Pacemaker andSystem)” 的第PCT/US2006/040564 号并在2007 年4 月26 日公布为W007047681A2 的国际申请。 No. 11 / 549,596 Conductive Communication) ,, and published in the April 19, 2007 US application US2007 / 0088398A1; and (5) in the title October 13, 2006, entitled "rate-responsive leadless pacemaker (Rate Responsive LeadlessCardiac pacemaker) "No. 11 / 549,603 and published in the April 19, 2007 US application US2007 / 0088400A1; and (6) in the title October 13, 2006 as filed No. 11 / 549,605 "program for biological actuator system (Programmer for Biostimulator system) ,, and published in the April 19, 2007 US application US2007 / 0088405A1; and (7) in October 2006 filed may 13, the title is "for an implantable biological exciter delivery system (delivery system for implantable Biostimulator)" No. 11 / 549,574 and published in the April 19, 2007 to US2007 / 0088418A1 United States application; and (8) and published in the April 26, 2007 No. PCT / US2006 / 040564 titled October 13, 2006, entitled "leadless cardiac pacemakers and systems (leadless cardiac pacemaker andSystem)" of as W007047681A2 international application.

[0044] 图1示出了无引线心脏起搏器或者无引线生物激励器100。 [0044] FIG. 1 shows a leadless cardiac pacemaker lead or no biological actuator 100. 生物激励器能够包括密封壳体102,密封壳体102上布置有电极104和106。 Biological Stimulators can include a sealed housing 102, electrodes 104 and 106 are arranged on the seal housing 102. 如所不的,电极106能够布置在固定装置105上或者整合在固定装置105内,并且电极104能够布置在壳体102上。 As not, the electrode 106 can be arranged on the fixing device 105 or integrated in the fixing device 105, and the electrode 104 can be disposed on the housing 102. 固定装置105能够是固定螺旋线或者适于将壳体附接至组织诸如心脏组织的其它柔性或刚性结构。 Fixing means 105 can be fixed or helix housing adapted to be attached to the other flexible or rigid structure, such as tissue in the heart tissue. 在其它实施方式中,电极106可以以各种形式和大小独立于固定装置。 In other embodiments, the electrode 106 may be in various forms and sizes independent of the fixing means. 壳体还能够包括位于壳体内的电子隔室110,电子隔室110包含操作生物激励器所需的电子部件。 An electronic housing can also include a compartment located within the housing 110, the electronic compartment 110 containing the electronic components required to operate the actuator organisms. 密封壳体能够适于植入在人的心脏上或人的心脏中,并且能够例如是筒状、长方形、球形或者任意其它适当形状。 Sealing the housing can be adapted to be implanted in the human heart or human heart, and can be, for example, cylindrical, rectangular, spherical, or any other suitable shape.

[0045] 壳体能够包括导电的、生物相容的、惰性的以及阳极化的安全材料,诸如钛、316L不锈钢或者其它类似材料。 [0045] The housing can comprise a conductive, biocompatible, inert material and an anode of security, such as titanium, 316L stainless steel or other similar material. 壳体能够进一步包括布置在导电材料上以将电极104和106分开的绝缘体。 It can further include a housing disposed on the conductive material to the electrodes 104 and 106 separate insulator. 绝缘体能够是壳体在电极之间的部分上的绝缘涂层,并且能够包括诸如娃酮、聚氨基、聚对二甲苯的材料,或者是可植入医疗装置通常使用的另一生物相容的电绝缘体。 An insulating housing can be an insulator coating on a portion between the electrodes, and can include ketones such as baby, polyamino, poly-para-xylylene material, or another implantable biomedical devices typically use compatible electrical insulator. 在图1的实施方式中,单个绝缘体108沿着壳体的在电极104和106之间的部分布置。 In the embodiment of FIG. 1, the single insulator 108 disposed along a portion of the housing between the electrodes 104 and 106. 在一些实施方式中,壳体本身能够包括绝缘体来代替导体,诸如矾土陶瓷或者其它类似材料,并且电极能够布置在壳体上。 In some embodiments, the housing itself can be used instead of an insulator comprising a conductor, such as alumina ceramic, or other similar material, and the electrodes can be disposed on the housing.

[0046] 如图1所示,生物激励器能够进一步包括头部组件112,以将电极104与电极106隔离。 [0046] As shown in FIG. 1, the actuator can further include a biological head assembly 112 to the electrode 104 and electrode 106 isolated. 头部组件112能够由·Tecothane (路博润)或者另一生物相容性塑料制成,并且能够包含陶瓷-金属馈入件(feedthrough)、玻璃-金属馈入件或者本领域已知的其它适当馈入绝缘体。 The head assembly 112 can be made · Tecothane (Lubrizol) or another biocompatible plastic, and can contain a ceramic - other metal known in the art or feedthroughs - metal feedthroughs (feedthroughs), Glass appropriate feeding insulator.

[0047] 电极104和106能够包括起搏/感测电极或者返回电极。 [0047] The electrodes 104 and 106 can include a pace / sense electrode or a return electrode. 低偏振化涂层能够施加到电极,例如,诸如钼、钼-铱、铱、铱氧化物、钛氮化物、碳或者通常用以降低偏振效应的其它材料。 Low polarization coating can be applied to the electrodes, e.g., such as molybdenum, molybdenum - iridium, iridium, iridium oxide, titanium nitride, carbon, or other materials typically used to decrease polarization effects. 在图1中,电极106能够是起搏/感测电极,并且电极104能够是返回电极。 In Figure 1, the electrode 106 can be a pace / sense electrodes, and the electrode 104 can be a return electrode. 电极104能够是导电壳体102的不包括绝缘体108的部分。 Electrode 104 can be a conductive housing 108 does not include the portion of the insulator 102.

[0048] 多种技术和结构能够用于将壳体102附接至心脏的内壁或外壁。 [0048] A variety of techniques and configurations can be used to attach housing 102 to the inner or outer wall of the heart. 螺旋状固定装置105能够使得装置通过导向导管以心内或心外方式插入装置。 Helical fixation device 105 enables device intracardiac or epicardial device inserted through the guide catheter. 可产生转矩的导管能够用于旋转壳体并且将固定装置压入于心脏组织中,由此将固定装置(以及另外图1中的电极106)附着成接触可激励组织。 Can generate a torque for rotating the catheter can be fixed to the housing means and pressed into the heart tissue, whereby the (additional electrodes 1 and FIG. 106) fastening means attached to contact excitable tissue. 电极104能够用作感测和起搏的无关电极。 Electrode 104 can be used as the indifferent electrode for sensing and pacing. 如在常规起搏电极-引线中已知的,固定装置可以被局部地或者全部地涂覆以电绝缘,并且类固醇洗脱基体可以被包括在装置上或装置附近,以使纤维化作用最小化。 As in conventional pacing electrodes - may be partially or completely coated with an electrically insulating lead known in the fixture, and a steroid eluting substrate may be included on the device or devices nearby, so minimize fibrosis . [0049] 在生物激励器上能够包括各种防旋出构造,以提供这样的特征:将生物激励器从组织旋出所需的转矩大于在无这种特征情况下旋出生物激励器所需的转矩。 [0049] in Biological Stimulators can include a variety of anti-rotation structure, to provide such features: the rotary actuator from the biological tissue the required torque is greater than in the absence of such a situation characterized by unscrewing Biological Stimulators required torque. 在一些实施方式中,将生物激励器从组织旋出所需的转矩大于将生物激励器进一步旋拧、接合或者再接合到组织中所需的转矩。 In some embodiments, the biological tissue stimulator from unscrewing torque is greater than the desired biologically inspired further screwed, bonded or joined to the desired tissue and then the torque. 当防旋出构造提供了该功能时,降低了生物激励器本身从组织不慎旋出或者脱离的机会。 When an anti-rotation configuration provides the function, it reduces the chance of Biological Stimulators unscrewed from the tissue itself or inadvertently detached. 应指出,由于组织的穿刺或刺破以及螺旋状空腔的形成,最初将生物激励器插入到组织中所需的转矩较大。 It should be noted, due to the puncture or pierce tissue, and the spiral cavity is formed, the biologically inspired initially inserted into the large torque in the desired tissue. 由此,在一些实施方式中,防旋出构造仅需要提供:将生物激励器从组织旋出所需的转矩大于在生物激励器已被植入组织中之后(即在组织已被刺破之后)将生物激励器从组织旋出所需的转矩。 Thus, in some embodiments, the anti-rotation only necessary to provide a configuration: After the biological tissue stimulator unscrewed from the required torque is larger than the actuator has been implanted biological tissue (i.e. tissue has been punctured after) the biological stimulators unscrewing torque required from the tissue.

[0050] 现在参考图2a,无引线生物激励器200包括防旋出构造,防旋出构造布置在固定装置上并且构造成阻止生物激励器从组织分离。 [0050] Referring now to Figure 2a, a leadless stimulator 200 includes an anti-bio-spin out configuration, the anti-rotation structure disposed on the fixture and is configured to prevent separation of the actuator from the biological tissue. 生物激励器200能够类似于图1中的生物激励器100,由此壳体202、固定装置205、电极206、绝缘体208和头部组件212能够分别对应于上述的壳体102、固定装置105、电极106、绝缘体108和头部组件112。 Biological actuator 200 can be of a similar biological actuator 100, whereby the housing 202, fixing device 205, electrode 206, the insulator 208 and head assembly 212 can correspond to the respective housing 102, fastening means 105, electrode 106, the insulator 108 and head assembly 112.

[0051] 在图2a中,防旋出构造能够包括布置在固定装置205上的至少一个倒刺214。 [0051] In Figure 2a, showing the anti-rotation configuration can include a fastening device 205 disposed on at least one barb 214. 任意量的倒刺能够沿着螺旋线的长度定位。 Any amount of the barbs can be positioned along the length of the helix. 图2b示出了图2a中的倒刺214的近距图。 Figure 2b shows a close-up in FIG. 2a barbs 214 of FIG. 参考图2b,当固定装置在方向d上插入到组织中时,倒刺214能够在相反方向上指向,以接合组织并且阻止固定装置从组织分离。 Referring to Figure 2b, when the fixing device is inserted into tissue in a direction d, the barbs 214 can be directed in the opposite direction, to engage the tissue and preventing the fixing means is separated from the tissue. 更具体地,倒刺能够背离固定装置的远端在近端方向上指向。 More specifically, a barb can be directed away from the distal end of the fixing means in the proximal direction. 在各种实施方式中,角度α和β能够依据具体应用的转矩需求来调整。 In various embodiments, the angles α and β can be adjusted according to the torque requirements of a particular application. 例如,角度α和β能够被调整,从而从组织旋出装置所需的转矩大于再旋入或接合到先前穿刺的组织中所需的转矩。 For example, angles α and β can be adjusted so that tissue from the screw torque is greater than the desired apparatus and then screwed or engaged to the desired torque in the previous puncturing tissue. 在一些实施方式中,α能够在从135°到180°的范围内变化,而β能够在从30°到135°的范围内变化。 In some embodiments, [alpha] can be varied within a range from 135 ° to 180 °, and β can be varied within a range from 30 ° to 135 ° with. 此外,固定装置上的倒刺的尺寸、数量和/或间隔能够增大或减小,以适应期望的转矩要求。 Further, the size of the barbs on the fixing means, the number and / or spacing can be increased or decreased to accommodate a desired torque request. 在一些实施方式中,倒刺仅从固定装置向外延伸一小段距离,以允许固定装置旋入到组织中并接合组织,而不会对组织造成过大损伤或损坏。 In some embodiments, the barbs securing means extending outwardly from only a short distance to allow the securing means and screwed into the tissue engage tissue without causing excessive tissue would damage or injury. 例如,倒刺可以从固定装置向外延伸5mm以下,或者甚至Imm以下。 For example, barbs may extend outwardly from the fixing means below 5mm, or even less Imm. 在图2a_2b的实施方式中,倒刺示出为在固定装置的两侧上,但在其它实施方式中,倒刺能够布置在固定装置的仅单个侧上。 In the embodiment of FIG. 2a_2b embodiment, the barbs as shown on both sides of the fixing device, in other embodiments, the barbs can be arranged on only a single side of the fixing device. 在其它实施方式中,倒刺能够沿径向偏移,以减小在沿着固定装置的任意给定点处的横截面轮廓。 In other embodiments, the barbs can be radially offset to reduce the cross-sectional profile at any given point along the fixture.

[0052] 在图2c_2e中示出了布置在固定装置上或内的防旋出构造的各种其它实施方式。 [0052] In FIG 2c_2e shows a fastening device arranged on or in an anti-rotation structure of various other embodiments. 在图2c中,防旋出构造包括布置在固定装置205上的至少一个圆形构造216。 In Figure 2c, the anti-rotation structure includes at least one circular configuration is disposed on the fixture 205 216. 该圆形构造能够在固定装置插入时接合组织并且对固定装置提供另外的阻力,以阻止固定装置从组织脱离。 The circular configuration to engage tissue when the fixture is inserted and provides additional resistance to the fixing means, fixing means to prevent the detachment from the tissue. 在一些实施方式中,所述圆形构造的尺寸能够在近似0.003"到0.030"的直径范围内变化。 In some embodiments, the size of the circular configuration can be approximately 0.003 "to 0.030" changes in the diameter range.

[0053] 参考图2d,防旋出构造能够包括位于固定装置205中的至少一个切口或孔218。 [0053] Referring to FIG 2d, the anti-rotation structure includes a fixture 205 can be at least one slit or hole 218. 切口218构造成且定尺寸为允许组织向内生长到固定装置中,以阻止固定装置从组织脱离。 Cutout 218 configured and dimensioned to permit tissue ingrowth into the fixing device to prevent detachment from the tissue fixation device. 在一些实施方式中,切口218 —直延伸通过固定元件205。 In some embodiments, the cutout 218-- extends straight through the fixing member 205. 在其它实施方式中,切口能够是固定元件中的凹陷或者凹坑。 In other embodiments, the fixing element can be a cutout recess or dimple. 在一些实施方式中,切口的尺寸或者直径能够在从近似 In some embodiments, the diameter or size of the incision can be approximated from

0.001〃到0.010〃的直径范围内变化。 Changes in the diameter range 0.001〃 to 0.010〃.

[0054] 现在参考图2e,防旋出构造能够包括布置在固定装置的表面上的粉末或者珠子220。 [0054] Referring now to Figure 2e, the anti-rotation structure disposed on a surface can include a fixing device 220 beads or powder. 在一些实施方式中,所述粉末或者珠子能够烧结到固定装置上,以增大固定装置的表面面积并且提供额外的磨擦以阻止固定装置脱离组织。 In some embodiments, the powder can be sintered or beads to the fixing means, fixing means to increase the surface area and provide additional friction to prevent the tissue from the fastening means. [0055] 图2f示出了另一实施方式,其中包括倒刺214的防旋出构造与凹口(scallops)215 (或者其它切口构造)组合,以促进组织向内生长并且提供磨擦而阻止防旋转。 [0055] Figure 2f shows a further embodiment in which barbs 214 comprising an anti-rotation structure and the recess (scallops) 215 (or other notch configurations) in combination, to promote tissue ingrowth and provide anti-friction and blocking rotation.

[0056] 在上述的一些实施方式中,一个或多个防旋出构造被印制、切割、焊接到、蚀刻到或者以其它方式附接至或者布置在固定装置上。 [0056] In some of the above embodiments, one or more of an anti-rotation structure is printed, cut, welded to, or attached to the etched into or disposed on the fastening means in other ways. 在一个实施方式中,固定装置能够被绕制金属线,并且一个或多个防旋出构造能够通过附加过程被添加到固定装置中。 In one embodiment, the fastening device can be wound metal wire, and one or more anti-rotation can be added to the configuration of the fixing device through an additional process. 在另一实施方式中,固定装置能够从管以除去方式切割成,并且一个或多个防旋出构造能够在同一过程中形成。 In another embodiment, the fixing means can be removed from the tube cut manner, and one or more of an anti-rotation structure can be formed in the same process.

[0057] 图3a_3c示出了构造成阻止生物激励器从组织分离的防旋出构造的附加实施方式。 [0057] FIG 3a_3c illustrates additional embodiments configured to prevent the biological tissue stimulator separated from the anti-rotation structure. 与上述在图2a_2e中的实施方式相反,其中固定装置或者固定螺旋线本身包括防旋出构造,图3a_3b中的实施方式包括从固定装置分开的防旋出构造。 In the above embodiment of FIG 2a_2e contrast, or wherein the fixing means comprises a fixation helix itself an anti-rotation structure, the embodiment of FIG. 3a_3b includes separate from the anti-rotation fixing means configuration. 在图3a中,生物激励器300能够包括本文所述的生物激励器中的任一种,由此壳体302、固定装置305和头部组件312能够分别相应于图1中的壳体102、固定装置105和头部组件112。 In FIG 3a, the actuator 300 can include bio-one biological any actuator described herein, whereby the housing 302, head fixing means 305 and assembly 312 can correspond to the housing 102 in FIG. 1, respectively, fixing means 105 and head assembly 112.

[0058] 参考图3a中的生物激励器300的俯视图,能够看到固定装置305在顺时针方向上被绕制,因而断定,通过在顺时针上将生物激励器和固定螺旋线缠绕到组织中,生物激励器300能够附接至组织。 [0058] Referring to FIG 3a is a top Biological Stimulators FIG 300, it is possible to see the fastening means 305 is wound in the clockwise direction, it follows that, by the biological wound clockwise on the actuator and the fixation helix into the tissue biological actuator 300 can be attached to tissue. 生物激励器300能够进一步包括防旋出构造,该防旋出构造包括防旋出螺旋线322。 Biological actuator 300 can further include an anti-rotation structure, showing the anti-rotation structure includes an anti-rotation helix 322. 在一些实施方式中,防旋出螺旋线能够定位在固定装置305外侧,并且在固定装置的相反方向上绕制(即,在图3a中的逆时针方向上绕制)。 In some embodiments, the anti-rotation helix can be positioned outside the fixing device 305, and in the opposite direction of winding the fixing device (i.e., wound in the counterclockwise direction in FIG. 3a). 由此,如果固定螺旋线是右旋螺旋线,则防旋出螺旋线是左旋螺旋线,反之亦然。 Thus, if the fixation helix is ​​right-handed helix, then the anti-rotation helix left-handed helix, and vice versa. 将防旋出螺旋线定位在固定装置外侧会导致与防旋出螺旋线关联的任何组织刺激背离固定装置(并且背离活性起搏电极(如果其布置在固定螺旋线上))而发生。 The anti-rotation coil wire is positioned outside the fixing means cause any tissue away from the fixing means associated with the anti-rotation helix stimulation (pacing electrode and away from the active (if it is arranged in a fixed helix)) occurs. 然而,在其它实施方式中,防旋出螺旋线能够定位在主固定装置内侧。 However, in other embodiments, the anti-rotation helix can be positioned inside the main fixing device.

[0059] 防旋出螺旋线能够是单螺旋线、双螺旋线、三螺旋线等等。 [0059] Anti-unscrewing helix can be a single spiral, double helix, triple helix lines and the like. 在一些实施方式中,参考图3b,防旋出构造能够包括多个防旋出螺旋线324,以对整个固定系统提供提高的稳定性。 In some embodiments, with reference to Figure 3b, the anti-rotation structure can comprise a plurality of anti-rotation helix 324 in order to provide increased stability of the whole fixation system. 在其它实施方式中,防旋出螺旋线322或者螺旋线324能够包括倒刺或者其它防旋出构造,诸如以上在图2a_2e中所述的那些。 In other embodiments, the anti-rotation helix or helix 322 can include barbs 324 or other configuration of an anti-rotation, such as those described above in FIG 2a_2e. 在该例子中,倒刺将仅在防旋出螺旋线以如固定装置或者螺旋线相同的方向上绕制时使用。 , The barbs will be used only when the anti-rotation helix wound on the same order as the fixing means or spiral direction in this example. 在固定装置的相反方向上缠绕防旋出螺旋线能够阻止生物激励器从组织脱离,因为生物激励器的任何逆旋转将导致一个或多个防旋出螺旋线接合组织。 Fixing means in the opposite direction of the spiral wound anti-rotation can be prevented from disengaging from the excited biological tissue, because any reverse rotation of the bio actuator will result in one or more of an anti-rotation helix engage tissue. 在一些实施方式中,一个或多个防旋出螺旋线还能够用于感测或者用于诱发响应。 In some embodiments, one or more anti-unscrewing helix can also be used for sensing, or ER.

[0060] 图3c示出了图3a的生物激励器300的侧视图。 [0060] Figure 3c shows the actuator of FIG. 3a is a side view of the biological 300. 从图3c能够看出,固定装置305比防旋出螺旋线更长,并且从生物激励器的远端比防旋出螺旋线322延伸得更远。 Can be seen to Figure 3c, the fixing device 305 is longer than the anti-rotation helix, and the ratio of the anti-rotation helix 322 extends further from the distal end of Biological Stimulators. 这允许固定装置首先在插入期间接合组织,而防旋出螺旋线并不延伸到组织中。 This allows the first fastening means engage the tissue during the insertion, and the anti-rotation does not extend the helix into the tissue. 此外,在装置固定到组织中之前,能够阻止防旋出螺旋线与映像或电气测量干涉。 Further, before the device is fixed into the tissue, can be prevented and the anti-rotation helix image or an electrical measuring interferometer. 在一些实施方式中,固定螺旋线能够完全地接合到组织中,然后生物激励器能够逆向转动以使防旋出螺旋线同样接合组织。 In some embodiments, the fixation helix can be completely engaged to the tissue, and is capable of biologically inspired reverse rotation so that the same anti-unscrewing helix engage tissue. 在一些实施方式中,防旋出螺旋线能够以与弹簧相同的方式压缩,允许防旋出螺旋线在固定螺旋线插入到组织中时压缩在组织上。 In some embodiments, the anti-rotation and the spiral spring can be compressed in the same manner, allowing the anti-rotation helix when the fixation helix is ​​inserted into the tissue in a tissue compression. 在该实施方式中,由与组织接合的防旋出螺旋线导致的任何伤痕组织将定位成背离主固定装置或者固定螺旋线。 In this embodiment, any of the anti-rotation by the scar tissue and the tissue engaging helical wire leads will be positioned away from the main supporting device or the fixation helix. 当固定螺旋线包括电极时,防旋出螺旋线引起的任何伤痕组织被有利地定位成背离电极。 When the fixed electrode comprises a spiral, any anti-rotation helix due to scar tissue is advantageously positioned to be away from the electrode. 照此,防旋出螺旋线并不是辅助固定元件,相反,仅将在生物激励器从组织旋出或松脱时接合组织。 As such, the anti-rotation helix auxiliary fixing member is not contrary, only the excitation in the biological tissue from the tissue engaging unscrewed or loosened. 在图3c中,防旋出螺旋线示出为是固定装置的高度的近似50%。 In Figure 3c, the anti-rotation helix shown to be approximately 50% of the height of the fixture. 在其它实施方式中,防旋出螺旋线能够是相对于固定装置的任何尺寸,然而,其通常是固定装置的高度的25-50%。 In other embodiments, the anti-rotation helix can be of any size relative to the fixing means, however, it is usually 25-50% of the height of the fixture.

[0061] 图4a_4b示出了从固定装置或者螺旋线分开的防旋出构造的其它实施方式。 [0061] FIG 4a_4b show other embodiments or separate from the fixing means preventing unscrewing helix configuration. 例如,在图4a中,包括壳体402、固定装置405、绝缘体408和头部组件412的生物激励器能够进一步包括布置在头部组件的顶面或最远面上的齿426。 For example, in Figure 4a, it comprises a housing 402, fixing device 405, the insulator 408 and head assembly 412 Biological Stimulators can further include teeth 426 disposed on the top surface of the head assembly or surface furthest. 在一些实施方式中,所述齿能够非对称地布置,以对固定装置提供仅在旋出方向上的抓取和/或阻力。 In some embodiments, the teeth can be disposed asymmetrically, to provide only the gripping and / or resistance in the unscrewing direction of the fastening device. 在图4b中,头部组件412能够包括锥形表面428,并且齿426能够沿着头部组件的顶面或最远面和锥形表面两者布置,以增大防旋出表面面积。 In FIG. 4b, the head assembly 412 can include a tapered surface 428 and the teeth 426 can be arranged along both the top surface of the head assembly and the tapered surface or surface furthest to increase the anti-rotation surface area.

[0062] 图4c示出了生物激励器的再一实施方式,包括从固定装置分开的防旋出构造。 [0062] FIG 4c illustrates a bio actuator further embodiment, comprises a fixed anti-rotation means separate from the structure. 图4c是生物激励器400的远端部分的近距图,示出了头部组件412和固定装置405。 Figure 4c is a close-up view of the distal biological actuator portion 400, head assembly 412 is shown and the fixing means 405. 在该实施方式中,防旋出构造能够包括定位在头部组件上的楔子或者楔形物429,紧靠近固定装置405与头部组件的接合位置。 In this embodiment, the configuration can include an anti-rotation positioned on the head assembly wedge or wedges 429, immediately adjacent to the position fixing means engaged with the head assembly 405. 在图4c中,楔子类似于三角形或者倒刺,但能够使用其它形状和设计。 In 4c, the triangular or wedge barbs similar, but can be other shapes and designs. 当生物激励器通过固定装置或者固定螺旋线405完全地附着到组织时,组织能够在固定装置和楔子之间变成楔形。 When actuator 405 is fully biologically adhere to the tissue or by a fixing means fixing helix, it can be organized into a wedge between the fixing means and the wedge. 当楔子包括指向固定装置的尖锐边缘时,如图4c所示,在楔子和固定装置之间抓取的或者楔入的组织能够导致生物激励器抵抗从组织的旋出和不慎脱离。 When the wedge comprises sharp edges pointing device when stationary, as shown in FIG fixing means between the wedge and the wedge gripping or tissue can result from the resistance of biological tissue stimulator, and unscrewing accidentally disengaged 4c. 在图4c中,楔子示出为定位在固定装置下方。 In 4c, the wedge is shown positioned below the fixing device. 但是,在其它实施方式中,一个或多个楔子能够定位在固定装置的内侧和/或外侧表面上。 However, in other embodiments, the one or more wedges can be positioned on the inside and / or outside surface of the fixing means. 例如,全部三个位置能够独立地或者组合地使用。 For example, all three positions can be used independently or in combination. 图4f示出了生物激励器的又一实施方式,具有定位在固定装置405下方的楔子或者楔形物429。 Figure 4f shows yet another embodiment of biological actuator having fixing means 405 positioned below the wedge or wedges 429.

[0063] 在图4a_4c中,齿示出为竖直向上地指向或者垂直于生物激励器。 [0063] In FIG 4a_4c, shown as a tooth directed vertically upwards or vertically in a biological actuator. 但是,在其它实施方式中,齿能够相对于一侧成角度,以提高在装置旋出情况下齿接合组织的能力。 However, in other embodiments, the teeth are angled with respect to one side, to increase the capacity in the case where the teeth engage the unscrewing device of the tissue. 例如,如果生物激励器在顺时针方向上接合到组织中,则齿可以在生物激励器上在相反方向上成角度,以在生物激励器在逆时针方向上不慎旋转时将附加力施加在组织上。 For example, if the biological actuator in the clockwise direction to engage tissue, the teeth may be angled in the opposite direction on the bio actuator to accidentally rotated in the counterclockwise when the biological stimulator applying additional force tissue. 图4d示出了生物激励器的一个实施方式,具有在与固定装置405插入/接合到组织中的方向相反的旋出方向上施力的齿426。 Figure 4d illustrates an embodiment of a bio-actuator, having a fixing means 405 is inserted / engaged into the opposite direction, the tissue urging the unscrewing direction of the teeth 426.

[0064] 图4e示出了生物激励器的另一实施方式,具有在径向方向上布置在生物激励器周围的齿427,齿427构造成在与固定装置405插入/接合到组织中的方向相反的旋出方向上施力。 [0064] FIG 4e illustrates another embodiment of biological actuator having disposed in the radial direction around the tooth 427 Biological Stimulators teeth 427 configured in the direction of the tissue fastening device 405 is inserted / engaged into urging the opposite unscrewing direction.

[0065] 现在参考图5a_5k,根据一些实施方式的生物激励器500能够进一步包括防旋出构造,该防旋出构造包括从生物激励器沿径向延伸的一个或多个尖端530。 [0065] Referring now to FIG 5a_5k, the bio some embodiments the actuator 500 can further comprise an anti-rotation structure, showing the anti-rotation structure 530 includes one or more tips extending radially from the Biological Stimulators. 如前所述,生物激励器500能够包括本文所述构造中的任一种,其中包括固定装置505和头部组件512。 As described above, actuator 500 can include bio according to any one of the configurations described herein, wherein the fixing means comprises a head assembly 505 and 512.

[0066] 在图5a中,生物激励器能够包括布置在头部组件512的远端的相反侧上的两个尖端530。 [0066] In Figure 5a, Biological Stimulators can include a tip 530 on the two opposite sides of the head assembly disposed at a distal end 512. 在一些实施方式中,所述尖端能够从生物激励器向外指向,垂直于生物激励器的纵向轴线。 In some embodiments, the tip can be directed outwardly from Biological Stimulators, perpendicular to the longitudinal axis of the biological actuator. 所述尖端还能够附接在生物激励器上的任意位置处,但通常将布置在生物激励器的远端部分上,在头部组件512上或附近。 At any position of the tip can also be attached to the bio-stimulator, but typically will be disposed on a distal portion of Biological Stimulators, on or near the head assembly 512. 所述尖端能够在生物激励器植入于心脏内时对组织诸如心脏壁提供逆向旋转恢复力。 The reverse rotation of the tip is possible to provide a restoring force when the biological stimulator implanted in the heart tissue such as the heart wall. 参考图5b,生物激励器能够包括多于两个的尖端530,以增大可用以阻止固定装置从组织脱离的构造的数。 Referring to Figure 5b, Biological Stimulators tip can comprise more than two 530, in order to increase the available fixation device configured to prevent tissue from a number of detached. 尖端530通常能够包括材料,诸如硅酮或者柔软的聚氨酯或者其它的生物可吸收聚合物。 Tip 530 generally can include a material, such as soft polyurethane or silicone or other bioabsorbable polymers.

[0067] 在图5c的实施方式中,齿532能够模制在尖端530上。 [0067] In the embodiment of Figure 5c, the teeth 532 can be molded on the tip 530. 在一些实施方式中,所述齿能够模制在尖端的整个表面上,或者替代地,如图5c所示,所述齿能够仅布置在尖端的在旋出生物激励器时将接合组织的一侧上。 In some embodiments, the teeth can be molded on the entire surface of the tip, or alternatively, as shown in FIG 5C, the teeth can be arranged only at the tip will engage unscrewing a biological tissue stimulator the upper side. 因此,在图5c的例子中,如果生物激励器和固定装置在顺时针方向上旋转以接合组织,则如果装置在逆时针方向上旋转,如箭头CC所示,齿532将仅接合组织以提供逆向旋转转矩。 Thus, in the example of Figure 5c, if the biological actuator and the fixing means is rotated in the clockwise direction to engage the tissue, if the device is rotated in the counterclockwise, as shown by arrow CC, the teeth 532 engage tissue to provide only reverse rotation torque. 在一些实施方式中,所述尖端能够包括生物可吸收材料。 In some embodiments, the tip can include a bioabsorbable material.

[0068] 类似地,在图5d中,尖端530能够模制为螺旋形形状,以提供在仅一个方向上的非对称转矩。 [0068] Similarly, in Figure 5d, the tip 530 can be molded into a spiral shape to provide an asymmetrical torque in only one direction. 使用上述其中生物激励器和固定装置在顺时针方向上旋转以接合组织的例子,图5d中的螺旋形形状的尖端530将在组织接合期间朝向生物激励器弯曲或者压缩(例如,顺时针旋转),但是在沿逆时针方向旋转期间,将接合组织并对生物激励器提供逆向旋转转矩,如箭头CC所示。 Rotated in the clockwise direction to engage the tissue of the example, the tip 530 of the helical shape of Figure 5d toward the biological tissue stimulator during bending or compression bonded (e.g., clockwise rotation) where the above-mentioned fixing means and Biological Stimulators , but during the counter-clockwise direction, and the biological tissue engaging exciter provides a reverse rotational torque, as shown by arrow CC.

[0069] 在以上的图5a_5d中,尖端示出为从生物激励器在垂直于生物激励器的纵向轴线的方向上向外延伸。 [0069] In the above FIG 5a_5d, the tip is shown extending outwardly from Biological Stimulators perpendicular to the longitudinal axis of the biological actuator. 然而,现在参考图5e,能够看到所述尖端还能够从生物激励器在径向和近端方向上延伸。 However, referring now to FIG 5E, the tip can be seen from the biometric can be further extended in the radial actuator and the proximal direction. 通过使尖端竖直地成角度,它们能够提供竖向牵引,以有助于防旋出以及有助于生物激励器固定到组织。 By vertically angled tip, which can provide vertical traction to help prevent and to facilitate unscrewing actuator secured to the biological tissue. 这能够在一些心脏情况下是特别有用的,诸如在生物激励器布置在心室内时。 This can be particularly useful in some cases the heart, such as biologically inspired arrangement in mind when indoors.

[0070] 图5f_5h示出了另外的实施方式,包括一个或多个尖端530,以提供对生物激励器的防旋出构造。 [0070] FIG 5f_5h shows a further embodiment, the tip 530 comprises one or more, to provide anti-rotation of Biological Stimulators a configuration. 在图5f中,尖端在生物激励器插入到身体中期间能够折叠靠着头部组件512。 In Figure 5f, the tip is inserted into the biological excitation period can be folded against the body 512 of the head assembly. 在一些实施方式中,例如,尖端能够通过引入器或者导管被保持在头部组件上的适当位置中。 In some embodiments, for example, the tip can be held in place on the head assembly through the introducer or catheter. 当生物激励器退出引入器或者导管时,尖端能够向外弹出,以呈现它们的防旋出形状(例如,如图5a或者5e所示)。 Biological Stimulators exit when the introducer or catheter tip can be spring outwardly to assume the shape of the anti-rotation thereof (e.g., as shown in FIG. 5a or 5e). 尖端能够形成用于形状记忆材料,诸如镍钛诺(Nitinol),以呈现预定的防旋出形状。 The tip can be formed to a shape memory material, such as Nitinol (as Nitinol), to assume a predetermined shape of the anti-unscrewing. 在另一实施方式中,如图5g所示,尖端能够折叠到布置在头部组件512内的空腔532中。 In another embodiment, shown in FIG. 5g, tip 532 can be folded into the cavity disposed in the head assembly 512. 在再一实施方式中,如图5h所示,可熔解密封室534 (例如,甘露醇、山梨醇等等)能够在植入生物激励器期间包封固定装置505和尖端530。 In a further embodiment, shown in FIG. 5h, may be melt sealed chamber 534 (e.g., mannitol, sorbitol, etc.) can be encapsulated fixing device 505 and a tip 530 during the implantation of biological activator. 一旦生物激励器插入到身体中,则甘露醇密封室将溶解,允许尖端恢复到它们的防旋出位置。 Once the actuator is inserted into the biological body, the dissolving mannitol sealed chamber, allowing the tip to return to the position of the anti-rotation thereof.

[0071] 在图5i_5k中示出了其它的尖端布置。 [0071] In FIG 5i_5k shown another tip arrangement. 在图5i中,在植入期间,尖端530能够竖直地以及旋转地折叠在生物激励器周围。 In FIG. 5i, during implantation, the tip 530 can be vertically folded around and rotatably Biological Stimulators. 在图5j的实施方式中,位于距固定装置505的各种距离处的多个尖端能够从生物激励器向外延伸。 In the embodiment of FIG. 5j, a plurality of fixing means located at a distance at various distances tip 505 can extend outwardly from a biological activator. 在图5k中,许多短的尖端530能够布置在头部组件上。 In FIG. 5k, many short tip 530 can be arranged on the head assembly. 这些尖端能够被成形为且倾斜为提供非对称的转矩,这意味着它们能够在一个旋转方向(例如,逆时针)上对其它方向(例如,顺时针)提供更多的旋转摩擦。 The tip can be shaped to provide asymmetric and tilt torque, which means that they can provide more rotational friction other direction (e.g., clockwise) in a rotational direction (e.g., counterclockwise) on.

[0072] 在另一实施方式中,如图51-5m中所示,尖端530能够模制为独立的尖端组件538,并且经由非永久性连接诸如压缩配合或按扣配合被装配到生物激励器的头部组件512上。 [0072] In another embodiment, as shown in FIG 51-5m, tip 530 can be molded as a separate tip assembly 538 and permanently attached such as by compression fit or snap fit is fitted into the Biological Stimulators the head assembly 512. 在体内,尖端将被完全地包封在组织中。 In vivo, the tip will be completely encapsulated in the tissue. 如果尖端永久地连接到生物激励器,则该包封将使生物激励器的取出非常困难。 If the tip is permanently connected to a biological actuator, the actuator encapsulation will biological extraction extremely difficult. 但是在这个实施方式中,在取出期间,生物激励器将从尖端组件538分开并且被移除,而尖端组件将永久地留下或被弃置。 However, in this embodiment, during extraction, the biological actuator assembly 538 separately from the tip and removed, and the tip assembly will be permanently left or abandoned. 例如,在取出过程期间,拉力将被施加到生物激励器。 For example, during the extraction process, the tension to be applied to a biological activator. 一旦拉力超过规定值,则尖端组件将从生物激励器的头部组件分开。 Once the force exceeds a predetermined value, the tip head assembly separate components from biological actuator. 接着,生物激励器将被移除,并且仅残余包封的尖端组件。 Subsequently, biological activator is removed, and only the tip assembly residual encapsulated. 因此,在这一实施方式中,尖端组件到心脏组织的完全内皮化、包封和永久地固定是期望的一其将有助于生物激励器从尖端组件的完全分离,并且其将阻止尖端组件的不慎栓塞。 Thus, in this embodiment, the tip assembly to complete endothelialization of cardiac tissue, is encapsulated and permanently affixed which will contribute to a desirable biologically inspired completely separated from the tip assembly, and which prevents the tip assembly inadvertent embolization. 在这一实施方式中,尖端可以具有旨在有助于永久性心脏固定的设计构造,诸如增大的表面粗糙度、通孔、表面处理/涂层等等。 In this embodiment, the tip may have intended to facilitate design of permanent cardiac fixed structure, such as increased surface roughness, the through-hole, surface treatment / coating and the like. 在另一实施方式中,上述的任一尖端能够在生物激励器附近变窄,从而在生物激励器的取出期间,尖端能够从装置折断或者断开。 In another embodiment, any of the above can be in the vicinity of a tip Biological Stimulators narrowed, so that during the extraction of biological actuators, the tip can be broken or disconnected from the apparatus.

[0073] 图5η示出了图51-5m中所示的实施方式的变化。 [0073] FIG 5η shows a variation of the embodiment of FIG 51-5m embodiment illustrated. 在图5n中,尖端组件538能够通过一个或多个缝合540保持到无引线起搏器上。 In FIG 5n, the tip assembly 538 can be held to 540 leadless pacemaker by one or more sutures. 在一些实施方式中,所述缝合能够是生物可吸收的,以允许尖端在一个或多个缝合已被组织吸收时从生物激励器分开。 In some embodiments, the suture can be bioresorbable, to allow the tip is separated from the actuator during a biological or more suture tissue has been absorbed. 图5ο示出了植入在心脏的腔室内的无引线心脏起搏器或者生物激励器。 FIG 5ο shows a chamber of the heart in the implantation of cardiac pacemaker or leadless Biological Stimulators. 在这一实施方式中,起搏器能够包括缝合,其附着图5η中描述的尖端组件。 In this embodiment, the pacemaker can include suture, which is attached tip assembly 5η described in FIG. 图5ρ示出了单独的取回导管,用以在一个或多个缝合已被组织吸收之后将图5ο的起搏器从心脏移除。 FIG 5ρ shows a separate retrieval catheter for removing FIG 5ο pacemaker from the heart after one or more suture tissue has been absorbed. 用生物可吸收材料或者缝合附着图5η中的尖端组件538允许在一个或多个缝合已经溶解时更容易地移除起搏器。 With a suture material or bioabsorbable in the attached FIG 5η tip assembly 538 allows easier removal of the pacemaker when the one or more suture had dissolved.

[0074] 图6a_6e示出了具有用于阻止生物激励器从组织分离的防旋出构造的生物激励器的其它实施方式。 [0074] FIG 6a_6e show other embodiments having biological actuator for preventing the actuator from a biological tissue isolated anti-rotation configuration of the. 在图6a中,通孔636能够水平地延伸通过头部组件612,以促进组织向内生长到并横过生物激励器。 In Figure 6a, the through-hole 636 extending horizontally through the head assembly 612, to promote tissue ingrowth into and across biological stimulators. 图6b是沿着线6b-6b的图6a的横截面图。 Figure 6b is a cross-sectional view taken along line 6b-6b of Figure 6a. 通孔636关于头部组件的尺寸的相对尺寸能够在图6b中看到。 Relative sizes of the through hole 636 on the head assembly dimensions can be seen in Figure 6b. 在一些实施方式中,通孔能够具有近似 In some embodiments, the through hole can have approximately

0.005〃到0.04〃的直径。 0.04〃 0.005〃 to the diameter. 虽然在图6a-6b中示出了单个的且圆形的通孔,但应理解在生物激励器中能够使用任意数目和形状的通孔,诸如方形、长方形、八边形等等。 Although a single circular through-hole and in FIGS. 6a-6b, it should be understood that any number and shape can be used in biological exciter through holes, such as square, rectangular, octagonal, and the like. 通孔还能够“颈减”(即,该通孔能够朝装置的中央比其在装置的外侧或者周界具有更窄的直径)。 The through-hole can also be "Save neck" (i.e., toward the center of the through hole capable device has a narrower diameter or the outside of the device than the perimeter).

[0075] 此外,通孔不必延伸通过整个组件。 [0075] Further, the through holes need not extend through the entire assembly. 参考图6c,通孔636能够在头部组件612内部分地延伸。 Referring to FIG 6c, the through-hole 636 can extend partially inside the head assembly 612. 在图6d的实施方式中,通孔在竖直方向上延伸到头部组件中,代替图6a_6c的通孔的水平方向。 In the embodiment of Figure 6d, the through hole extending in the vertical direction to the head assembly, instead of the horizontal direction of the through-hole 6a_6c FIG.

[0076] 图7a_7b分别示出了具有用于阻止生物激励器从组织分离的防旋出构造的生物激励器的又一实施方式的侧视图和俯视图。 [0076] FIG 7a_7b show a side and top view of yet another embodiment having a biological excitation for preventing the actuator from a biological tissue isolated anti-rotation configuration of the. 在图7a_7b中,生物激励器能够包括布置在生物激励器和/或固定装置705上的缝合742。 In FIG 7a_7b, the biological actuator can include a suture disposed in or on the actuator and biological / fixture 705 742. 在一些实施方式中,缝合能够是生物可吸收的。 In some embodiments, the suture can be bioresorbable. 缝合能够通过本领域已知的任何方法附着到生物激励器和/或固定装置,诸如通过机械干涉、粘合剂、焊接等等。 The method of any suture known in the art can be attached to biologically inspired and / or fixing means, such as by mechanical interference, adhesive, welding and the like. 在一些实施方式中,所述缝合的长度能够近似在1_2_以下。 In some embodiments, the length of the suture can be approximated in the following 1_2_. 在其它实施方式中,缝合能够更大。 In other embodiments, the suture can be greater. 在一些实施方式中,所述缝合能够构造成在近似30-60天之后在组织中生物吸收。 In some embodiments, the suture can be configured in approximately 30-60 days after absorption in the biological tissue. 在一些实施方式中,缝合能够构造成随着生物激励器插入到组织中而折叠靠着生物激励器或者固定装置,但所述缝合能够构造成在生物激励器和固定装置旋出时向外展开并且接合组织。 In some embodiments, the suture can be configured with the actuator inserted into the biological tissue is folded against the biological actuator or fixing means, but the suture can be configured to expand outwardly when the fixing means and Biological Stimulators unscrewed and joining tissue. 如图7b所示,在一些实施方式中,所述缝合能够应用为指向固定装置的相反方向。 7b, in some embodiments, the suture can be applied as a fixing means pointing in opposite directions. 在固定装置的相反方向上缠绕生物激励器能够阻止生物激励器从组织脱离,因为生物激励器的任何逆向旋转将导致所述缝合接合组织。 Biological Stimulators wound in the opposite direction of the fixing device can be prevented from disengaging from the excited biological tissue, because any biological reverse rotation causes the actuator to engage the tissue stapling.

[0077] 促进组织向内生长到且通过生物激励器的构造,诸如空腔和通孔,能够增强装置到组织的固定并且阻止生物激励器从组织的旋出和分离。 [0077] and to promote tissue ingrowth through the structure of Biological Stimulators, such as vias and cavities, the fixing means can be enhanced and prevents tissue unscrewed and separated from the biological tissue stimulator. 虽然本文所述的许多实施方式包括促进组织向内生长的构造,但应理解,本文所述的许多防旋出构造被构造成在植入之后且在组织有时间生长到装置中之前立即阻止生物激励器从组织意外脱离。 While many embodiments described herein includes a configuration that promotes tissue ingrowth, it is to be understood herein that said plurality of anti-rotation structure is configured to stop immediately before the biological tissue after implantation and have grown to time means exciter removed from the organization accident. 在图6e的实施方式中,通孔636与生物激励器的远端面上的孔口成角度。 In the embodiment of FIG. 6e, the distal end of the through hole 636 and the biological surface of the actuator orifice is angled.

[0078] 本文所述的通孔能够是开放的并且无任何的阻塞材料,或者替代地能够被填充快速溶解物质,诸如甘露醇,或者用缓慢的生物可吸收材料填充。 [0078] vias herein can is open and no blocking material, or alternatively can be filled rapidly dissolving materials, such as mannitol, with a slow or bioabsorbable material is filled. 在生物激励器植入之前填充通孔或者空腔的优点在于,其消除了被捕集的空气栓塞以及空腔能够用作细菌生长的病灶的风险。 Biological Stimulators before implantation or cavities filled vias advantage is that it eliminates the risk of air trapped in the cavity can be used as an embolism, and lesions of bacterial growth. [0079] 本文所述的防旋出构造旨在阻止生物激励器从组织意外旋出或者脱离。 [0079] an anti-rotation structure described herein is intended to prevent the actuator from the biological tissues or from accidental unscrewing. 这些特征在生物激励器植入之后的短时间内最为重要(例如,在植入的1-3个月内)。 The most important features in a short time after the implantation of biological actuator (e.g., within 1-3 months of implantation). 在植入后的1-3个月之后,将具有足够的时间发生内皮化,使得生物激励器由组织完全地包封。 After 1-3 months after implantation, will have sufficient time to endothelialization occurs, so completely encapsulated biologically inspired by the organization. 被完全地包封的生物激励器本身不慎从组织中旋出的机率被认为较低。 Is completely encapsulated biological actuator itself accidentally unscrewed from the tissue is considered to be low probability.

[0080] 阻止旋出的构造可以设计成在植入后的短时间段中最为有效(例如,在植入之后的第一个1-3个月内)。 [0080] configured to prevent unscrewing can be designed to be most effective in a short period after implantation (e.g., within the first 1-3 months after implantation). 因此,这些防旋出构造能够由生物可吸收材料制成。 Thus, these anti-rotation structure that can be made from a bio-absorbable material. 一旦它们不再需要阻止生物激励器的旋出,他们能够生物吸收并且消失。 Once they no longer need to prevent biological actuators spin out, they are able to absorb and biological disappear. 由此,本文所述的任何防旋出构造,包括尖端、倒刺、齿、辅助或者防旋出螺旋线以及通孔能够由生物可吸收材料制成,以在植入后的最初1-3个月时间段之后由身体吸收。 Thus, any described herein an anti-rotation structure, comprising a tip, barbs, teeth, or helix, and the auxiliary through hole can be an anti-rotation may be made of bioabsorbable material, to initially 1-3 after implantation month periods after absorption by the body.

[0081] 布置在固定装置上或内的防旋出构造的各种其它实施方式在图7a_7c中示出。 [0081] disposed on an anti-rotation fixing means constructed in various other embodiments shown in FIG 7a_7c or inside. 在图7a中,防旋出构造740能够绕制在固定装置705表面周围。 In FIG 7a, the anti-rotation structure 740 can be wound around the fixture 705 surface. 在这一实施方式中,防旋出构造740构造成阻止固定装置从组织分离。 In this embodiment, a configuration of the anti-rotation fixing means 740 configured to prevent separation from the tissue. 防旋出构造740能够包括在固定装置插入到组织中时与组织接合的金属线或其它类似材料。 An anti-rotation structure 740 can comprise a metal wire inserted into the tissue when engaged with tissue or other similar material in a fixture. 在一些实施方式中,防旋出构造能够包括生物可吸收材料。 In some embodiments, the anti-rotation structure can comprise a bioabsorbable material.

[0082] 图7b示出了包括沿着固定装置的长度的切口或者缺口742的固定装置705。 [0082] FIG. 7b shows a fixing device comprising a cutout or notch 705 along the length of the fixing device 742. 如图7b所示,切口742包括进入固定装置中的半圆形切口。 As shown in FIG. 7b into the cutout 742 includes a semicircular cutout in the fixture. 这些切口允许组织在固定装置已被插入到组织中之后向内生长。 These incisions allow tissue ingrowth after the fixture has been inserted into the tissue. 虽然图7b中未示出,但切口能够包括其它的形状,包括三角形、方形、长方形等形状的切口。 Although not shown in Figure 7b, but other shapes can include a cutout, the cutout including triangular, square, rectangular and other shapes.

[0083] 图7c示出了包括防旋出构造的固定装置的再一实施方式。 [0083] Figure 7c illustrates an anti-rotation means comprises a fixed configuration of another embodiment of the embodiment. 在图7c的实施方式中,固定装置705包括通孔744和倒刺746。 In the embodiment of Figure 7c, the fixing device 705 includes a through hole 744 and barbs 746. 通孔能够沿着固定装置的长度布置。 The through holes can be arranged along the length of the fixing means. 在图7c的实施方式中,通孔沿着固定装置的主要表面748并且沿着固定装置的狭窄边缘表面750布置。 In the embodiment of Figure 7c, the through holes 748 and 750 are arranged along the main surface of the fixing means along the narrow edge surface of the fixture. 倒刺746图示为仅沿着固定装置的远端部分布置,但在其它实施方式中,倒刺能够沿着固定装置的任意或所有部分布置。 Barb 746 is shown disposed only along the distal section of the fixture, in other embodiments, the barbs can be disposed along any or all portions of the fixture. 在一些实施方式中,倒刺能够包括生物可吸收材料,在固定装置已被插入到组织中之后(例如,植入之后的1-3个月),生物可吸收材料溶解。 After some embodiments, the barbs can include a bioabsorbable material, the fixture has been inserted into the tissue (e.g., 1-3 months after implantation), the bioabsorbable material is dissolved.

[0084] 图8a_8c示出了其中电极802从固定装置805分开的无引线心脏起搏器的实施方式。 [0084] FIG 8a_8c illustrates an embodiment wherein electrode 802 separated from the fixing apparatus 805 leadless cardiac pacemaker. 图8a和8b分别是具有从固定装置805分开的电极802的起搏器800的侧视图和俯视图。 Figures 8a and 8b are side and top plan view of an electrode 802 separate from the fixing device 805 of pacemaker 800. 在图8a中,电极安装在从起搏器的主体向外延伸的柔性臂852上。 In Figure 8a, the electrode 852 is mounted on a flexible arm extending outwardly from the body of the pacemaker. 如图8b所示,柔性臂能够从起搏器沿径向向外延伸,以在起搏器开始旋出或者要从组织脱去的情况中提供抵抗组织的另外阻力。 8b, the flexible arm can extend radially outward from the pacemaker, the pacemaker to begin or screwed off from the organization in providing additional resistance against the tissue. 所述臂能够包括另外的防旋出构造,诸如通孔、倒刺、齿等等,以进一步阻止防旋出。 The arm can include an additional anti-rotation structure, such as vias, barbs, teeth, etc., in order to further prevent anti-unscrewing. 在一些实施方式中,柔性臂仅在一个旋转方向上是柔性的(例如,将允许无引线起搏器从组织旋出的旋转方向),并且在另一旋转方向上是刚性的或者非柔性的。 In some embodiments, the flexible arm only in one rotational direction (e.g., the pacemaker will allow the leadless unscrewed from the tissue in the rotational direction) of the flexible and non-rigid or flexible in the other direction of rotation .

[0085] 图8c示出了具有被置于固定装置805内的电极802的起搏器的替代实施方式。 [0085] Figure 8c shows an alternative embodiment having a pacemaker electrode 802 is disposed in the fixture 805. 通过将固定装置805旋拧到组织中能够将起搏器附接至组织,这使得电极802接触到组织。 By the fixing means 805 screwed into the tissue can be attached to the pacemaker tissue, so that the electrode 802 which contacts the tissue. 防旋出构造854能够被添加,以阻止起搏器本身从组织不慎脱出或旋出。 An anti-rotation structure 854 can be added to prevent accidentally released from the pacemaker itself, or out of the tissue. 如所示的,防旋出构造854能够从起搏器的主体在远端方向上延伸,以随着起搏器植入而接合组织。 As shown, the anti-rotation structure 854 can extend out from the body of the pacemaker in the distal direction to engage tissue with pacemaker implantation.

[0086] 至于与本发明相关的其它细节,在本领域技术人员的水平范围内,可以采用相应材料和制造技术。 [0086] As for other details related to the present invention, within the level of skill in the present art, respective materials and manufacturing techniques may be employed. 就通常或者常规采用的其它动作而言,以上同样适用于本发明的基于方法的方面。 It is generally employed in conventional or other operation, the above applies equally to method-based aspects of the invention. 另外,应设想,所述发明性变化的任意可选构造可以独立地阐述和要求,或者与本文所述的任一或多个构造组合。 Further, it should be contemplated that any alternative configuration of the invention, changes may be set forth and claimed independently, or in combination with one or more configurations described herein any. 同样,参考单一项,包括存在多个同一项的可能性。 Similarly, a single reference, including the possibility of the presence of a plurality of same. 更具体地,如本文以及在所附权利要求中使用的,单数形式“一”、“和”、“所述”和“该”包括多个引用,除非在上下文中明显指出。 More specifically, and as used herein, the singular forms in the appended claims, "a", "and," "said" and "the" include plural references unless clearly indicated by the context. 进一步注意到,权利要求可起草为排除任何可选元件。 Further noted that the claims may be drafted to exclude any optional element. 照此,该声明旨在用作与所要求的元件的记载结合使用这种独占性术语如“只”、“仅”等等、或者使用“反面”限制的先行基础。 As such, this statement is intended to the use of such exclusive terminology as "only" and described as required binding element, "only" and the like, or antecedent basis for use of "negative" limitation. 除非本文另外限定,本文使用的全部的技术和科学术语的含义与本本发明所属领域的普通技术人员所通常理解的含义相同。 Unless otherwise defined herein, the same meaning as used herein, one of ordinary skill in the art ordinary meaning of all the books of the invention, technical and scientific terms as commonly understood. 本发明的范围不局限于主题说明,而是仅由采用的权利要求术语的普通含义限定。 Scope of the subject matter of the present invention is not limited to the description, but is only limited by the ordinary meaning of the claim terms employed claim defined.

[0087] 相关申请的交叉参考 [0087] CROSS-REFERENCE TO RELATED APPLICATIONS

[0088] 本申请根据35U.SC119 (美国法典第35条119款)要求在2010年10月13日提交的标题为“带有防旋出构造的无引线心脏起搏器(Leadless Cardiac Pacemaker withAnt1-Unscrewing Fe ature)”的61/392,886号美国临时专利申请以及在2010年12月13日提交的标题为“带有防旋出构造的无引线心脏起搏器”的61/422,618号美国临时专利申请的权益,该两个申请的全部内容通过引用合并于此。 [0088] This application claims 35U.SC119 (35 United States Code section 119) requires leadless cardiac pacemakers title October 13, 2010, entitled "with the anti-rotation structure (Leadless Cardiac Pacemaker withAnt1- unscrewing Fe ature) "No. 61 / 392,886 and US provisional Patent application in the title December 13, 2010 and entitled" no leadless cardiac pacemakers with anti-rotation structure of the "61 / 422,618 the benefit of US provisional patent application, the entire contents of both applications are incorporated herein by reference.

[0089] 合并参考 [0089] incorporated by reference

[0090] 本说明书中提及的全部的公布,包括专利和专利申请,其全部内容通过引用合并于此,如同每个单独的公布被具体地且分别地标示为通过参考来合并。 All published [0090] mentioned in this specification, including patents and patent applications, is incorporated herein in its entirety, as if each individual publication was specifically and individually indicated to be incorporated by reference by reference.

Claims (39)

  1. 1.一种无引线生物激励器,包括: 壳体,所述壳体尺寸设定为且构造成植入在患者的心脏内; 主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出构造,所述防旋出构造布置在所述主固定装置上,并且构造成阻止所述主固定装置脱离心脏的壁。 A leadless biological actuator, comprising: a housing sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and an actuator configured to be attached to the wall of the biological heart; and the anti-rotation structure, illustrating the anti-rotation structure disposed on the main fastening device, and configured to prevent the fixing means from the main wall of the heart.
  2. 2.根据权利要求1所述的无引线生物激励器,其中,所述主固定装置是固定螺旋线。 The leadless bio actuator according to claim 1, wherein said primary fixation means is a fixation helix.
  3. 3.根据权利要求1所述的无引线生物激励器,其中,所述防旋出构造是至少一个倒刺。 According to claim leadless Biological Stimulators claim 1, wherein said anti-rotation structure that is at least one barb.
  4. 4.根据权利要求3所述的无引线生物激励器,其中,所述至少一个倒刺总体背离固定装置的远端指向近端方向。 According to claim leadless Biological Stimulators claim 3, wherein the at least one barb generally facing away from the distal end pointing in the proximal direction of the fixing device.
  5. 5.根据权利要求1所述的无引线生物激励器,其中,用于将所述固定装置插入到心脏的壁中需要的第一转矩小于用于将所述固定装置从心脏的壁移去需要的第二转矩。 The leadless Biological Stimulators of claim 1, wherein said fixing means for insertion into the heart wall of the first torque is less than required for the fixing device as claimed in claim removed from the wall of the heart the second required torque.
  6. 6.根据权利要求1所述的无引线生物激励器,其中,所述防旋出构造是至少一个圆形构造。 According to claim leadless Biological Stimulators claim 1, wherein said anti-rotation structure is an at least one circular configuration.
  7. 7.根据权利要求1所述的无引线生物激励器,其中,所述防旋出构造是至少一个通孔。 The leadless bio actuator according to claim 1, wherein said anti-rotation structure is an at least one through-hole.
  8. 8.根据权利要求1所述的无引线生物激励器,其中,所述防旋出构造是至少一个凹陷。 According to claim leadless Biological Stimulators claim 1, wherein said anti-unscrewing at least one recess is constructed.
  9. 9.一种无引线生物激励器,包括: 壳体,所述壳体尺寸设定为且构造成植入在患者的心脏内; 主固定螺旋线,所述主固定螺旋线附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出螺旋线,所述防旋出螺旋线在所述主固定螺旋线的相反方向上绕制,所述防旋出螺旋线附接至所述壳体。 A leadless biological actuator, comprising: a housing sized and configured to be implanted within a patient's heart; primary fixation helix, the main fixation helix is ​​attached to the housing and configured to attach to the biological stimulator of the heart wall; and the anti-rotation helix, the anti-unscrewing helix in the opposite direction of the main fixed spiral wound, the anti-unscrewing helix attached to the housing.
  10. 10.根据权利要求9所述的无引线生物激励器,其中,所述主固定螺旋线是右旋螺旋线,并且所述防旋出螺旋线是左旋螺旋线。 According to claim leadless Biological Stimulators 9, wherein said primary fixation helix is ​​right-handed helix, and the anti-unscrewing helix is ​​a left-handed helix.
  11. 11.根据权利要求9所述的无引线生物激励器,其中,所述主固定螺旋线比所述防旋出螺旋线更长。 According to claim leadless Biological Stimulators 9, wherein said primary fixation helix than the anti-unscrewing helix longer.
  12. 12.根据权利要求9所述的无引线生物激励器,其中,所述防旋出螺旋线定位在所述主固定螺旋线外侧。 According to claim leadless Biological Stimulators 9, wherein said anti-unscrewing coil wire is positioned outside the main fixation helix.
  13. 13.根据权利要求9所述的无引线生物激励器,其中,所述主固定螺旋线是电极。 According to claim leadless Biological Stimulators 9, wherein said primary fixation helix is ​​an electrode.
  14. 14.根据权利要求9所述的无引线生物激励器,其中,所述防旋出螺旋线构造成随着所述主固定螺旋线附着到心脏的壁而压缩在组织上。 According to claim leadless Biological Stimulators 9, wherein said anti-unscrewing spiral configured as the primary fixation helix is ​​attached to the wall of the heart and the compression on the tissue.
  15. 15.根据权利要求9所述的无引线生物激励器,其中,所述防旋出螺旋线构造成在所述生物激励器从心脏的壁旋出时接合心脏的壁。 According to claim leadless Biological Stimulators 9, wherein said anti-unscrewing spiral configured to engage the wall of the heart when the biological stimulator unscrewed from the wall of the heart.
  16. 16.一种无引线生物激励器,包括: 壳体,所述壳体尺寸设定为且构造成植入在患者的心脏内; 主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和防旋出构造,所述防旋出构造布置在所述壳体上,并且构造成阻止所述主固定装置脱离心脏的壁。 16. A leadless biological actuator, comprising: a housing sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and an actuator configured to be attached to the wall of the biological heart; and the anti-rotation structure, illustrating the anti-rotation structure disposed on the housing, and configured to prevent the wall of the heart from the primary fastening means.
  17. 17.根据权利要求16所述的无引线生物激励器,其中,所述主固定装置包括固定螺旋线。 17. The leadless claim Biological Stimulators of claim 16, wherein said primary fixation means comprises a fixation helix.
  18. 18.根据权利要求16所述的无引线生物激励器,其中,所述防旋出构造包括多个齿、倒刺或者其它锐化构造。 18. The leadless claim Biological Stimulators of claim 16, wherein said anti-rotation structure includes a plurality of teeth, barbs or other sharpened configurations.
  19. 19.根据权利要求18所述的无引线生物激励器,其中,所述齿、倒刺或者其它锐化构造布置在所述壳体的远端表面上。 19. The leadless claim Biological Stimulators claim 18, wherein said teeth, barbs or other sharpening configurations disposed on a distal surface of the housing.
  20. 20.根据权利要求18所述的无引线生物激励器,其中,所述齿、倒刺或者其它锐化构造布置在所述壳体的锥形表面上。 20. The leadless bio actuator according to claim 18, wherein the upper tapered surface of the teeth, barbs or other structure disposed in the sharpening housing.
  21. 21.根据权利要求18所述的无引线生物激励器,其中,所述齿、倒刺或者其它锐化构造以非对称方式布置,以仅在所述主固定装置的旋出方向上提供阻力。 21. The leadless bio actuator according to claim 18, wherein said teeth, barbs or other sharpened configured asymmetrically arranged, to provide resistance only in the unscrewing direction of the main fixing device.
  22. 22.根据权利要求16所述的无引线生物激励器,其中,用于将所述固定装置插入到心脏的壁中需要的第一转矩小于用于将所述固定装置从心脏的壁移去需要的第二转矩。 22. The leadless Biological Stimulators of claim 16, wherein the wall of said fixing means for insertion into the heart in less than a first torque required for the fixing device as claimed in claim removed from the wall of the heart the second required torque.
  23. 23.根据权利要求16所述的无引线生物激励器,其中,所述防旋出构造是楔子。 23. The leadless claim Biological Stimulators of claim 16, wherein said anti-rotation structure is a wedge.
  24. 24.根据权利要求23所述的无引线生物激励器,其中,所述楔子定位在所述壳体上、位于所述固定装置下方。 24. The leadless bio actuator according to claim 23, wherein said wedge positioned on the housing, positioned below the fixing means.
  25. 25.根据权利要求24所述的无引线生物激励器,其中,所述楔子指向所述固定装置并且构造成将心脏组织抓取在所述楔子和所述固定装置之间,以阻止所述固定装置从心脏的壁的意外脱离。 25. The leadless bio actuator according to claim 24, wherein said fixing means directed towards the cleat and configured to cardiac tissue captured between the wedges and the fixing means to prevent the fixing It means accidentally detached from the wall of the heart.
  26. 26.根据权利要求16所述的无引线生物激励器,其中,所述防旋出构造是至少一个通孔。 26. The leadless claim Biological Stimulators of claim 16, wherein said anti-rotation structure is an at least one through-hole.
  27. 27.根据权利要求16所述的无引线生物激励器,其中,所述防旋出构造是至少一个凹陷。 27. The leadless claim Biological Stimulators of claim 16, wherein said anti-unscrewing at least one recess is constructed.
  28. 28.一种无引线生物激励器,包括: 壳体,所述壳体被定尺寸且构造成植入在患者的心脏内; 主固定装置,所述主固定装置附接至所述壳体并且构造成将生物激励器附着到心脏的壁;和至少一个通孔,所述至少一个通孔布置在所述壳体中,并且构造成促使组织向内生长到所述通孔中,以阻止所述主固定装置脱离心脏的壁。 28. A leadless biological actuator, comprising: a housing, said housing being sized and configured to be implanted within a patient's heart; master fixing means, said primary fastening means attached to the housing and the wall is configured to attach to the biological stimulator of the heart; and at least one through hole, the at least one through hole disposed in the housing and configured to promote ingrowth of tissue into the through hole to prevent the fixing means from said main wall of the heart.
  29. 29.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔水平地延伸到所述壳体中。 29. The leadless claim Biological Stimulators claim 28, wherein a through hole horizontally extending at least into the housing.
  30. 30.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔沿着壳体的纵向轴线延伸。 30. The leadless bio actuator according to claim 28, wherein the at least one through hole extending along a longitudinal axis of the housing.
  31. 31.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔具有近似0.005"至0.04〃的直径。 31. The leadless bio actuator according to claim 28, wherein said at least one through-hole having a "diameter of approximately 0.005 to 0.04〃.
  32. 32.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔部分地延伸过所述壳体的直径。 32. The leadless claim Biological Stimulators claim 28, wherein said at least one through hole extending partially through the diameter of the housing.
  33. 33.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔完全地延伸过所述壳体的直径。 33. The leadless bio actuator according to claim 28, wherein a through hole extending completely through at least the diameter of the housing.
  34. 34.根据权利要求28所述的无引线生物激励器,其中,所述至少一个通孔被填充生物可吸收材料。 34. The leadless claim Biological Stimulators of claim 28, wherein said at least one through-hole is filled with a bioresorbable material.
  35. 35.一种阻止无引线生物激励器从患者的心脏意外脱离的方法,包括: 将转矩在第一方向上施加到无引线生物激励器,以用主固定装置将无引线生物激励器附着到心脏组织; 用防旋出装置将转矩在第二方向上施加到所述组织,以阻止所述无引线生物激励器从组织分离。 35. A method disengaged from the heart to prevent accidental patient's biological leadless stimulator, comprising: applying a torque in the first direction to the leadless Biological Stimulators, to a fixing device main leadless stimulator attached to the bio cardiac tissue; with an anti-rotation means in a second direction torque is applied to the tissue, to prevent the leadless separated from the biological tissue stimulator.
  36. 36.根据权利要求35所述的方法,其中,在所述第二方向上的转矩大于在所述第一方向上的转矩。 36. The method according to claim 35, wherein the torque in the second direction is greater than the torque in the first direction.
  37. 37.一种阻止无引线生物激励器从患者脱离的方法,包括: 将无引线生物激励器植入到患者的心脏组织中; 用生物可吸收的防旋出构造阻止无引线生物激励器从心脏组织脱离;以及允许所述生物可吸收的防旋出构造被患者在3个月以内吸收。 37. A leadless Biological Stimulators prevented from departing from a patient, comprising: a leadless stimulator implanted biological heart tissue of a patient; an anti-rotation structure with bioabsorbable leadless prevented from heart Biological Stimulators from tissue; and allowing the bioabsorbable an anti-rotation structure is absorbed in patients within three months.
  38. 38.根据权利要求1所述的无引线生物激励器,其中,所述防旋出构造是缝合。 38. The leadless claim Biological Stimulators claim 1, wherein said anti-rotation structure is a suture.
  39. 39.根据权利要求38·所述的无引线生物激励器,其中,所述缝合是生物可吸收的。 39. The leadless Biological Stimulators · recited in claim 38, wherein the suture is bioabsorbable.
CN 201180058931 2010-10-13 2011-10-12 Leadless cardiac pacemaker with anti-nscrewing feature CN103249454A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US39288610 true 2010-10-13 2010-10-13
US61/392,886 2010-10-13
US42261810 true 2010-12-13 2010-12-13
US61/422,618 2010-12-13
PCT/US2011/055871 WO2012051235A1 (en) 2010-10-13 2011-10-12 Leadless cardiac pacemaker with anti-unscrewing feature

Publications (1)

Publication Number Publication Date
CN103249454A true true CN103249454A (en) 2013-08-14

Family

ID=45938687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201180058931 CN103249454A (en) 2010-10-13 2011-10-12 Leadless cardiac pacemaker with anti-nscrewing feature

Country Status (5)

Country Link
US (1) US9020611B2 (en)
EP (1) EP2627406A1 (en)
JP (1) JP2013540022A (en)
CN (1) CN103249454A (en)
WO (1) WO2012051235A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7532933B2 (en) 2004-10-20 2009-05-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
EP2471448A1 (en) 2005-10-14 2012-07-04 Nanostim, Inc. Leadless cardiac pacemaker and system
JP2009518115A (en) 2005-12-09 2009-05-07 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Heart stimulation system
US7840281B2 (en) 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
WO2008034005A3 (en) 2006-09-13 2008-07-10 Boston Scient Scimed Inc Cardiac stimulation using leadless electrode assemblies
WO2009099550A1 (en) 2008-02-07 2009-08-13 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US8527068B2 (en) 2009-02-02 2013-09-03 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US9060692B2 (en) 2010-10-12 2015-06-23 Pacesetter, Inc. Temperature sensor for a leadless cardiac pacemaker
US20160023003A1 (en) * 2012-07-17 2016-01-28 Laura Tyler Perryman Miniature implantable device and methods
US9511236B2 (en) 2011-11-04 2016-12-06 Pacesetter, Inc. Leadless cardiac pacemaker with integral battery and redundant welds
EP2879758B1 (en) 2012-08-01 2018-04-18 Pacesetter, Inc. Biostimulator circuit with flying cell
US9308365B2 (en) * 2012-11-27 2016-04-12 Biotronik Se & Co. Kg Detachable electrode and anchor
WO2014159568A1 (en) * 2013-03-12 2014-10-02 Cardiac Pacemakers, Inc. Implantable medical devices with separate fixation mechanism
US9358387B2 (en) * 2013-04-09 2016-06-07 Biotronik Se & Co Kg Leadless pacemaker
US9333342B2 (en) 2013-07-22 2016-05-10 Cardiac Pacemakers, Inc. System and methods for chronic fixation of medical devices
US9119959B2 (en) 2013-07-31 2015-09-01 Medtronic, Inc. Tine fixation components for implantable medical devices
US10071243B2 (en) * 2013-07-31 2018-09-11 Medtronic, Inc. Fixation for implantable medical devices
US9155882B2 (en) 2013-07-31 2015-10-13 Medtronic, Inc. Implantable medical devices including tine fixation component having hook segment
EP3033145A1 (en) 2013-08-16 2016-06-22 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US20150051614A1 (en) * 2013-08-16 2015-02-19 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
WO2015026495A1 (en) * 2013-08-20 2015-02-26 Cardiac Pacemakers, Inc. Fixation mechanism assembly and method for implantable devices
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US10004907B2 (en) * 2014-02-21 2018-06-26 Pacesetter, Inc. Automatic capture verification within leadless implantable medical devices
EP3137163A1 (en) 2014-04-29 2017-03-08 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
WO2015168153A1 (en) 2014-04-29 2015-11-05 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
FR3022790A1 (en) * 2014-06-25 2016-01-01 Sorin Crm Sas implantable capsule screw fastening, including autonomous capsule pacemaker
EP2959936A1 (en) 2014-06-25 2015-12-30 Sorin CRM SAS Implantable capsule with attachment by screwing, in particular an autonomous cardiac stimulation capsule
US9399140B2 (en) 2014-07-25 2016-07-26 Medtronic, Inc. Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing
WO2016033197A3 (en) 2014-08-28 2016-04-21 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
WO2016065058A1 (en) 2014-10-22 2016-04-28 Cardiac Pacemakers, Inc. Delivery devices for leadless cardiac devices
US9623234B2 (en) 2014-11-11 2017-04-18 Medtronic, Inc. Leadless pacing device implantation
US9724519B2 (en) 2014-11-11 2017-08-08 Medtronic, Inc. Ventricular leadless pacing device mode switching
US9492669B2 (en) 2014-11-11 2016-11-15 Medtronic, Inc. Mode switching by a ventricular leadless pacing device
US9492668B2 (en) 2014-11-11 2016-11-15 Medtronic, Inc. Mode switching by a ventricular leadless pacing device
EP3226968A1 (en) * 2014-12-01 2017-10-11 Cardiac Pacemakers, Inc. Implantable medical device with stacked circuit components
US9289612B1 (en) 2014-12-11 2016-03-22 Medtronic Inc. Coordination of ventricular pacing in a leadless pacing system
EP3253450A1 (en) 2015-02-06 2017-12-13 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
WO2016130477A3 (en) 2015-02-09 2016-09-15 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
EP3337558A1 (en) 2015-08-20 2018-06-27 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US10092764B2 (en) 2015-08-20 2018-10-09 Cardiac Pacemakers, Inc. Implantable medical device with modified surface texture
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
EP3173126A1 (en) * 2015-11-27 2017-05-31 Sorin CRM SAS Implantable capsule, in particular an autonomous cardiac stimulation capsule
EP3248649A1 (en) * 2016-05-24 2017-11-29 Sorin CRM SAS A torque limiting mechanism between a medical device and its implantation accessory
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531781A (en) * 1993-11-02 1996-07-02 Alferness; Clifton A. Implantable lead having a steering distal guide tip
US20070088418A1 (en) * 2005-10-14 2007-04-19 Jacobson Peter M Delivery system for implantable biostimulator
US20090082828A1 (en) * 2007-09-20 2009-03-26 Alan Ostroff Leadless Cardiac Pacemaker with Secondary Fixation Capability

Family Cites Families (487)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199508A (en) 1962-04-25 1965-08-10 W R Medical Electronies Co Coding of physiological signals
BE632412A (en) 1962-05-17
US3218638A (en) 1962-05-29 1965-11-16 William M Honig Wireless passive biological telemetry system
US3212496A (en) 1962-08-21 1965-10-19 United Aircraft Corp Molecular physiological monitoring system
US3478746A (en) 1965-05-12 1969-11-18 Medtronic Inc Cardiac implantable demand pacemaker
US3603881A (en) 1968-03-01 1971-09-07 Del Mar Eng Lab Frequency shift telemetry system with both radio and wire transmission paths
US3836798A (en) 1970-05-11 1974-09-17 Greatbatch W Ltd Device for converting nuclear energy into electrical energy
US3835864A (en) 1970-09-21 1974-09-17 Rasor Ass Inc Intra-cardiac stimulator
USRE30366E (en) 1970-09-21 1980-08-12 Rasor Associates, Inc. Organ stimulator
US3757778A (en) 1971-01-13 1973-09-11 Comprehensive Health Testing L Electrocardiograph lead distribution and contact testing apparatus
US3727616A (en) 1971-06-15 1973-04-17 Gen Dynamics Corp Electronic system for the stimulation of biological systems
GB1434524A (en) 1972-04-27 1976-05-05 Nat Res Dev Urinary control apparatus
US3946744A (en) 1972-05-30 1976-03-30 Medalert Corporation Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency
US3823708A (en) 1972-06-08 1974-07-16 Cardiodynamics Tachycardia detector
US3830228A (en) 1972-06-12 1974-08-20 M Foner Biophysiological information processing device
US4318412A (en) 1974-08-05 1982-03-09 Gilbert P. Hyatt Arrangement for cardiac electrode implementation
GB1443705A (en) 1972-12-15 1976-07-21 Int Research & Dev Co Ltd Rock drills
US3872251A (en) 1973-02-20 1975-03-18 Medalert Corp Electrocardiography transmitter and transmission method
US3943926A (en) 1974-04-10 1976-03-16 Oscar Arvizu Barragan Wholly disposable dental type syringe
US3905364A (en) 1974-04-17 1975-09-16 Marquette Electronics Inc Artifact detector
US4146029A (en) 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US3952750A (en) 1974-04-25 1976-04-27 Mieczyslaw Mirowski Command atrial cardioverting device
US4151513A (en) 1975-03-06 1979-04-24 Medtronic, Inc. Apparatus for sensing and transmitting a pacemaker's stimulating pulse
US4072154A (en) 1976-05-28 1978-02-07 Cardiac Pacemakers, Inc. Sealing arrangement for heart pacer electrode leads
US4083366A (en) 1976-06-16 1978-04-11 Peter P. Gombrich Heart beat rate monitor
US4102344A (en) 1976-11-15 1978-07-25 Mentor Corporation Stimulator apparatus for internal body organ
US4256115A (en) 1976-12-20 1981-03-17 American Technology, Inc. Leadless cardiac pacer
US4173221A (en) 1977-04-15 1979-11-06 Wallace Rogozinski EKG cable monitoring system
US4152540A (en) 1977-05-03 1979-05-01 American Pacemaker Corporation Feedthrough connector for implantable cardiac pacer
US4187854A (en) 1977-10-17 1980-02-12 Medtronic, Inc. Implantable demand pacemaker and monitor
US4151540A (en) 1977-12-08 1979-04-24 Fairchild Camera And Instrument Corporation High beta, high frequency transistor structure
DE2755643A1 (en) 1977-12-14 1979-06-21 Zeiss Carl Fa Method and arrangement for electronic long-term herzueberwachung
FR2419720B1 (en) 1978-03-14 1983-08-12 Cardiofrance Co
US4210149A (en) 1978-04-17 1980-07-01 Mieczyslaw Mirowski Implantable cardioverter with patient communication
US4223678A (en) 1978-05-03 1980-09-23 Mieczyslaw Mirowski Arrhythmia recorder for use with an implantable defibrillator
US4350169A (en) 1979-01-05 1982-09-21 Medtronic, Inc. Flexible tip stiffening stylet for use with body implantable lead
US4481950A (en) 1979-04-27 1984-11-13 Medtronic, Inc. Acoustic signalling apparatus for implantable devices
US4296756A (en) 1979-07-26 1981-10-27 Cyber Diagnostics, Inc. Remote pulmonary function tester
US4440173A (en) 1979-11-08 1984-04-03 Medtronic Programmable body stimulation system
US4310000A (en) 1980-01-23 1982-01-12 Medtronic, Inc. Implantable pulse generator having separate passive sensing reference electrode
US4336810A (en) 1980-09-30 1982-06-29 Del Mar Avionics Method and apparatus for arrhythmia analysis of ECG recordings
US4374382A (en) 1981-01-16 1983-02-15 Medtronic, Inc. Marker channel telemetry system for a medical device
US4406288A (en) 1981-04-06 1983-09-27 Hugh P. Cash Bladder control device and method
US4522208A (en) 1981-04-16 1985-06-11 Cardiofrance Compagnie Francaise D'electrocardiologie Method for determining parameter values of an implanted programmable pacemaker
US4793353A (en) 1981-06-30 1988-12-27 Borkan William N Non-invasive multiprogrammable tissue stimulator and method
US4612934A (en) 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
DE3130104A1 (en) 1981-07-30 1983-02-17 Messerschmitt Boelkow Blohm Arrangement for stimulation of a human, muscle
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4424551B1 (en) 1982-01-25 1991-06-11 Highly-reliable feed through/filter capacitor and method for making same
US4411271A (en) 1982-02-10 1983-10-25 Medtronic, Inc. Body tissue depolarization evaluation system
US4458692A (en) 1982-02-11 1984-07-10 Arrhythmia Research Technology, Inc. System and method for predicting ventricular tachycardia with a gain controlled high pass filter
WO1983003744A1 (en) 1982-04-23 1983-11-10 Reinhold Herbert Edward Jr Ambulatory monitoring system with real time analysis and telephone transmission
US4453162A (en) 1982-05-10 1984-06-05 Telectronics Pty. Ltd. Efficient and fast-switching telemetry transmitter
US4995390A (en) 1982-05-19 1991-02-26 Purdue Research Foundation Exercise responsive cardiac pacemaker
US4442840A (en) 1982-06-07 1984-04-17 Wojciechowicz Jr Alexander Electrical connector apparatus and method for a temporary cardiac pacing wire
DE3232478C1 (en) 1982-09-01 1984-03-01 Werner Prof Dr-Ing Irnich Synced pacemaker
US4550370A (en) 1982-10-29 1985-10-29 Medtronic, Inc. Pacemaker programmer with telemetric functions
US4513743A (en) 1982-11-12 1985-04-30 Vitatron Medical B.V. Physiological devices such as pacemakers and method for providing histogram data
US4681117A (en) 1983-02-15 1987-07-21 Brodman Richard F Intracardiac catheter and a method for detecting myocardial ischemia
US4552127A (en) 1983-04-01 1985-11-12 Peter Schiff Percutaneous intra-aortic balloon having an EKG electrode and a twisting stylet for coupling the EKG electrode to monitoring and/or pacing instrumentation external to the body
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
US4562846A (en) 1983-09-15 1986-01-07 Duke University System and process for monitoring myocardial integrity
US4875483A (en) 1983-10-17 1989-10-24 Telectronics, N.V. Implantable cardiac pacer with programmable antitachycardia mechanisms
JPS60134543A (en) 1983-12-22 1985-07-17 Sharp Corp Contactless type data transfer system
US4552154A (en) 1984-03-12 1985-11-12 Medtronic, Inc. Waveform morphology discriminator and method
US4586508A (en) 1984-03-23 1986-05-06 Cordis Corporation Implant communication system with patient coil
US4607639A (en) 1984-05-18 1986-08-26 Regents Of The University Of California Method and system for controlling bladder evacuation
US4606352A (en) 1984-07-13 1986-08-19 Purdue Research Foundation Personal electrocardiogram monitor
US4802481A (en) 1984-07-19 1989-02-07 Cordis Leads, Inc. Apparatus for controlling pacing of a heart in response to changes in stroke volume
US4679144A (en) 1984-08-21 1987-07-07 Q-Med, Inc. Cardiac signal real time monitor and method of analysis
US4681111A (en) 1985-04-05 1987-07-21 Siemens-Pacesetter, Inc. Analog and digital telemetry system for an implantable device
US4625730A (en) 1985-04-09 1986-12-02 The Johns Hopkins University Patient ECG recording control for an automatic implantable defibrillator
US4702253A (en) 1985-10-15 1987-10-27 Telectronics N.V. Metabolic-demand pacemaker and method of using the same to determine minute volume
US4905708A (en) 1985-10-31 1990-03-06 Davies David W Apparatus for recognizing cardiac rhythms
DE3541598C2 (en) 1985-11-25 1990-12-06 Eckhard Dr. 8000 Muenchen De Alt
EP0236562B2 (en) 1985-12-11 2006-06-07 Telectronics N.V. Apparatus for cardiac pacing with detection of cardiac evoked potentials
US4860750A (en) 1986-04-17 1989-08-29 Intermedics Inc. Sidelock pacer lead connector
US4722342A (en) 1986-06-16 1988-02-02 Siemens Aktiengesellschaft Cardiac pacer for pacing a human heart and pacing method
EP0249822B1 (en) 1986-06-16 1991-10-16 Siemens Aktiengesellschaft Frequency-controlled cardiac stimulator
US4830006B1 (en) 1986-06-17 1997-10-28 Intermedics Inc Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias
DE3631155C2 (en) 1986-09-12 1988-08-18 Alt, Eckhard, Dr., 8000 Muenchen, De
EP0264666B1 (en) 1986-09-30 1993-01-27 Pacesetter AB Activity sensor for a cardiac pace-maker
US4794532A (en) 1986-11-10 1988-12-27 Hewlett-Packard Company Virtual arrhythmia system
DE3709073C2 (en) 1987-03-19 1990-09-06 Eckhard Dr. 8000 Muenchen De Alt
US4827940A (en) 1987-04-13 1989-05-09 Cardiac Pacemakers, Inc. Soluble covering for cardiac pacing electrode
US4903701A (en) 1987-06-05 1990-02-27 Medtronic, Inc. Oxygen sensing pacemaker
US4750495A (en) 1987-06-05 1988-06-14 Medtronic, Inc. Oxygen sensing pacemaker
US4787389A (en) 1987-07-16 1988-11-29 Tnc Medical Devices Pte. Ltd. Using an implantable antitachycardia defibrillator circuit
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US4809697A (en) 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4883064A (en) 1987-11-19 1989-11-28 Equimed Corporation Method and system for gathering electrocardiographic data
US4886064A (en) 1987-11-25 1989-12-12 Siemens Aktiengesellschaft Body activity controlled heart pacer
US4880004A (en) 1988-06-07 1989-11-14 Intermedics, Inc. Implantable cardiac stimulator with automatic gain control and bandpass filtering in feedback loop
US4844076A (en) 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
DE3831809A1 (en) 1988-09-19 1990-03-22 Funke Hermann geraet for at least partial implantation in the living body specific
US5040534A (en) 1989-01-25 1991-08-20 Siemens-Pacesetter, Inc. Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment
JPH0649078B2 (en) 1990-06-13 1994-06-29 シーメンス アクチエンゲゼルシヤフト Automatic implantable cardioverter / defibrillator and pacemaker system programmable
US5014701A (en) 1989-05-19 1991-05-14 Ventritex, Inc. Implantable cardiac defibrillator employing a digital waveform analyzer system
US5111816A (en) 1989-05-23 1992-05-12 Ventritex System configuration for combined defibrillator/pacemaker
US4987897A (en) 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5876425A (en) 1989-09-22 1999-03-02 Advanced Bionics Corporation Power control loop for implantable tissue stimulator
US4974589A (en) 1989-10-17 1990-12-04 Siemens-Pacesetter, Inc. Automatically adjustable blanking period for implantable pacemaker
JPH0659319B2 (en) 1989-11-17 1994-08-10 三洋電機株式会社 Wireless low-frequency therapy device
US5010887A (en) 1989-11-17 1991-04-30 Siemens-Pacesetter, Inc. Noise discrimination in implantable pacemakers
US5235742A (en) 1989-11-20 1993-08-17 Siemens Pacesetter, Inc. Method of making an implantable device
US5088488A (en) 1989-12-22 1992-02-18 Medtronic, Inc. Method and apparatus for implementing histogram storage and trend analysis in a medical stimulator
US5040533A (en) 1989-12-29 1991-08-20 Medical Engineering And Development Institute Incorporated Implantable cardiovascular treatment device container for sensing a physiological parameter
US5042497A (en) 1990-01-30 1991-08-27 Cardiac Pacemakers, Inc. Arrhythmia prediction and prevention for implanted devices
US5040536A (en) 1990-01-31 1991-08-20 Medtronic, Inc. Intravascular pressure posture detector
US5058581A (en) 1990-02-20 1991-10-22 Siemens-Pacesetter, Inc. Telemetry apparatus and method for implantable tissue stimulator
US5284136A (en) 1990-04-04 1994-02-08 Cardiac Pacemakers, Inc. Dual indifferent electrode pacemaker
US5076270A (en) 1990-05-03 1991-12-31 Siemens-Pacesetter, Inc. Apparatus and method for making electrical connections in an implantable pacemaker
US5085224A (en) 1990-05-25 1992-02-04 Hewlett-Packard Company Portable signalling unit for an ekg
DE4019002A1 (en) 1990-06-13 1992-01-02 Siemens Ag Electrode assembly for a defibrillator
US5076272A (en) 1990-06-15 1991-12-31 Telectronics Pacing Systems, Inc. Autocontrollable pacemaker with alarm
US5086772A (en) 1990-07-30 1992-02-11 Telectronics Pacing Systems, Inc. Arrhythmia control system employing arrhythmia recognition algorithm
US5252962A (en) 1990-08-03 1993-10-12 Bio Medic Data Systems System monitoring programmable implantable transponder
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
US5065759A (en) 1990-08-30 1991-11-19 Vitatron Medical B.V. Pacemaker with optimized rate responsiveness and method of rate control
US5052399A (en) 1990-09-20 1991-10-01 Cardiac Pacemakers, Inc. Holter function data encoder for implantable device
US5170784A (en) 1990-11-27 1992-12-15 Ceon Ramon Leadless magnetic cardiac pacemaker
US5193550A (en) 1990-11-30 1993-03-16 Medtronic, Inc. Method and apparatus for discriminating among normal and pathological tachyarrhythmias
FR2671010B1 (en) 1990-12-27 1993-07-09 Ela Medical Sa Endocardial probe provided with an active fixation member.
US5170802A (en) 1991-01-07 1992-12-15 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5179947A (en) 1991-01-15 1993-01-19 Cardiac Pacemakers, Inc. Acceleration-sensitive cardiac pacemaker and method of operation
US5133350A (en) 1991-01-31 1992-07-28 Medtronic, Inc. Mode switching pacemaker
US5135004A (en) 1991-03-12 1992-08-04 Incontrol, Inc. Implantable myocardial ischemia monitor and related method
US5383915A (en) 1991-04-10 1995-01-24 Angeion Corporation Wireless programmer/repeater system for an implanted medical device
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5217010A (en) 1991-05-28 1993-06-08 The Johns Hopkins University Ecg amplifier and cardiac pacemaker for use during magnetic resonance imaging
US5267150A (en) 1991-08-07 1993-11-30 Medtronic, Inc. Input isolation circuit for computer-controlled medical device
US5304209A (en) 1991-09-24 1994-04-19 Angeion Corporation Remote-control temporary pacemaker
US5184616A (en) 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
US5318596A (en) 1991-11-13 1994-06-07 Exonic Corporation Activity sensing pacemaker
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5193540A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US5217019A (en) 1991-12-27 1993-06-08 Abbott Laboratories Apparatus and method for continuously monitoring cardiac output
US5313953A (en) 1992-01-14 1994-05-24 Incontrol, Inc. Implantable cardiac patient monitor
US5419337A (en) 1992-02-14 1995-05-30 Dempsey; George J. Non-invasive multi-electrocardiographic apparatus and method of assessing acute ischaemic damage
US5565005A (en) 1992-02-20 1996-10-15 Amei Technologies Inc. Implantable growth tissue stimulator and method operation
JPH05245215A (en) 1992-03-03 1993-09-24 Terumo Corp Heart pace maker
US5354317A (en) 1992-04-03 1994-10-11 Intermedics, Inc. Apparatus and method for cardiac pacing responsive to patient position
GB9211085D0 (en) 1992-05-23 1992-07-08 Tippey Keith E Electrical stimulation
US5342401A (en) 1992-08-19 1994-08-30 The Regents Of The University Of California Real time cardiac arrhythmia stabilizing system
US5300093A (en) 1992-09-14 1994-04-05 Telectronics Pacing Systems, Inc. Apparatus and method for measuring, formatting and transmitting combined intracardiac impedance data and electrograms
DE669839T1 (en) 1992-10-01 1996-10-10 Cardiac Pacemakers Inc Stent-like structure for entflimmerungselektroden.
US5336244A (en) 1992-10-07 1994-08-09 Medtronic, Inc. Temperature sensor based capture detection for a pacer
WO1994008657A1 (en) 1992-10-20 1994-04-28 Noel Desmond Gray A heart pacemaker
US5291902A (en) 1993-01-11 1994-03-08 Brent Carman Incontinence treatment
US5539775A (en) 1993-03-17 1996-07-23 Micron Technology, Inc. Modulated spread spectrum in RF identification systems method
US5406444A (en) 1993-03-29 1995-04-11 Medtronic, Inc. Coated tantalum feedthrough pin
DE69413585D1 (en) 1993-03-31 1998-11-05 Siemens Medical Systems Inc Apparatus and method for providing dual output signals in a telemetry transmitter
US5333095A (en) 1993-05-03 1994-07-26 Maxwell Laboratories, Inc., Sierra Capacitor Filter Division Feedthrough filter capacitor assembly for human implant
US5383912A (en) 1993-05-05 1995-01-24 Intermedics, Inc. Apparatus for high speed data communication between an external medical device and an implantable medical device
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5404877A (en) 1993-06-04 1995-04-11 Telectronics Pacing Systems, Inc. Leadless implantable sensor assembly and a cardiac emergency warning alarm
US5411532A (en) 1993-06-04 1995-05-02 Pacesetter, Inc. Cardiac pacemaker having integrated pacing lead and oxygen sensor
US5373852A (en) 1993-06-25 1994-12-20 The Regents Of The University Of California Monitoring uterine contractions by radiotelemetric transmission
US5431171A (en) 1993-06-25 1995-07-11 The Regents Of The University Of California Monitoring fetal characteristics by radiotelemetric transmission
DE69432148D1 (en) 1993-07-01 2003-03-27 Boston Scient Ltd Catheter for image display, for displaying electrical signals and for ablation
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5654984A (en) 1993-12-03 1997-08-05 Silicon Systems, Inc. Signal modulation across capacitors
US5413594A (en) 1993-12-09 1995-05-09 Ventritex, Inc. Method and apparatus for interrogating an implanted cardiac device
US5456261A (en) 1993-12-16 1995-10-10 Marquette Electronics, Inc. Cardiac monitoring and diagnostic system
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and a method for manufacturing the same
US5417222A (en) 1994-01-21 1995-05-23 Hewlett-Packard Company Patient monitoring system
US5446447A (en) 1994-02-16 1995-08-29 Motorola, Inc. RF tagging system including RF tags with variable frequency resonant circuits
US5738102A (en) 1994-03-31 1998-04-14 Lemelson; Jerome H. Patient monitoring system
US5598848A (en) 1994-03-31 1997-02-04 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
US5549654A (en) 1994-04-15 1996-08-27 Medtronic, Inc. Interactive interpretation of event markers in body-implantable medical device
US5466246A (en) 1994-07-29 1995-11-14 Pacesetter, Inc. Telemetry receiver for implantable device, incorporating digital signal processing
US5571148A (en) 1994-08-10 1996-11-05 Loeb; Gerald E. Implantable multichannel stimulator
US5579775A (en) 1994-10-20 1996-12-03 Hewlett-Packard Company Dynamic control of a patient monitoring system
US5522876A (en) 1994-10-26 1996-06-04 Vitatron Medical, B.V. Screw-in pacing lead
US5549659A (en) 1994-11-04 1996-08-27 Physio-Control Corporation Communication interface for transmitting and receiving serial data between medical instruments
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5591217A (en) 1995-01-04 1997-01-07 Plexus, Inc. Implantable stimulator with replenishable, high value capacitive power source and method therefor
US5531783A (en) 1995-01-17 1996-07-02 Vitatron Medical, B.V. Pacing lead with x-ray visible soluble covering and method of inserting same into a patient's heart
US5551427A (en) 1995-02-13 1996-09-03 Altman; Peter A. Implantable device for the effective elimination of cardiac arrhythmogenic sites
US5556421A (en) 1995-02-22 1996-09-17 Intermedics, Inc. Implantable medical device with enclosed physiological parameter sensors or telemetry link
CA2211844C (en) 1995-02-27 2001-01-30 Medtronic, Inc. External patient reference sensor
EP0820258B1 (en) 1995-03-23 2002-10-09 Advanced Animal Technology Limited Substance delivery device
US5586556A (en) 1995-05-11 1996-12-24 T Z Medical, Inc. Pacemaker and heart monitoring and data transmitting device and method
US5697958A (en) 1995-06-07 1997-12-16 Intermedics, Inc. Electromagnetic noise detector for implantable medical devices
US5662689A (en) 1995-09-08 1997-09-02 Medtronic, Inc. Method and apparatus for alleviating cardioversion shock pain
US6076016A (en) 1995-10-19 2000-06-13 Feierbach; Gary F. Galvanic transdermal conduction communication system and method
WO1997015125A1 (en) 1995-10-19 1997-04-24 The University Of Melbourne Embedded data link and protocol
US5650759A (en) 1995-11-09 1997-07-22 Hittman Materials & Medical Components, Inc. Filtered feedthrough assembly having a mounted chip capacitor for medical implantable devices and method of manufacture therefor
CA2229620A1 (en) 1995-11-24 1997-05-29 Advanced Bionics Corporation System and method for conditioning pelvic musculature using an implanted microstimulator
US5693076A (en) 1996-01-16 1997-12-02 Medtronic, Inc. Compressed patient narrative storage in and full text reconstruction from implantable medical devices
US5814076A (en) 1996-02-09 1998-09-29 Cardiac Control Systems, Inc. Apparatus for improved cardiac pacing and sensing using extracardiac indifferent electrode configurations
US5605159A (en) 1996-02-16 1997-02-25 Smith; Joseph M. System and method for determining spatial organization of atrial activation
US6132390A (en) 1996-02-28 2000-10-17 Eupalamus Llc Handle for manipulation of a stylet used for deflecting a tip of a lead or catheter
US5728154A (en) 1996-02-29 1998-03-17 Minnesota Mining And Manfacturing Company Communication method for implantable medical device
US6208900B1 (en) 1996-03-28 2001-03-27 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer
US6223081B1 (en) 1996-03-28 2001-04-24 Medtronic, Inc. Implantable stimulus system having stimulus generator with pressure sensor and common lead for transmitting stimulus pulses to a body location and pressure signals from the body location to the stimulus generator
US5702427A (en) 1996-03-28 1997-12-30 Medtronic, Inc. Verification of capture using pressure waves transmitted through a pacing lead
US5730143A (en) 1996-05-03 1998-03-24 Ralin Medical, Inc. Electrocardiographic monitoring and recording device
US5899928A (en) 1996-05-14 1999-05-04 Pacesetter, Inc. Descriptive transtelephonic pacing intervals for use by an emplantable pacemaker
US6594523B1 (en) 1996-05-14 2003-07-15 Pacesetter, Inc. Implantable stimulation device, programmer, and method for automatically evaluating interaction of the device with a patient's heart
US5891178A (en) 1996-05-14 1999-04-06 Pacesetter, Inc. Programmer system and associated methods for rapidly evaluating and programming an implanted cardiac device
US5725559A (en) 1996-05-16 1998-03-10 Intermedics Inc. Programmably upgradable implantable medical device
US6496715B1 (en) 1996-07-11 2002-12-17 Medtronic, Inc. System and method for non-invasive determination of optimal orientation of an implantable sensing device
EP0944414B1 (en) 1996-07-11 2005-11-09 Medtronic, Inc. Minimally invasive implantable device for monitoring physiologic events
US5735880A (en) 1996-09-16 1998-04-07 Sulzer Intermedics Inc. Method and apparatus for reliably producing pacing pulse trains
US5792205A (en) 1996-10-21 1998-08-11 Intermedics, Inc. Cardiac pacemaker with bidirectional communication
US6119031A (en) 1996-11-21 2000-09-12 Boston Scientific Corporation Miniature spectrometer
US6238348B1 (en) 1997-07-22 2001-05-29 Scimed Life Systems, Inc. Miniature spectrometer system and method
US5999857A (en) 1996-12-18 1999-12-07 Medtronic, Inc. Implantable device telemetry system and method
US5814087A (en) 1996-12-18 1998-09-29 Medtronic, Inc. Rate responsive pacemaker adapted to adjust lower rate limit according to monitored patient blood temperature
US5814089A (en) 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US6785576B2 (en) 1997-04-21 2004-08-31 Medtronic, Inc. Medical electrical lead
US5957861A (en) 1997-01-31 1999-09-28 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US5876353A (en) 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6695885B2 (en) 1997-02-26 2004-02-24 Alfred E. Mann Foundation For Scientific Research Method and apparatus for coupling an implantable stimulator/sensor to a prosthetic device
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6164284A (en) 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US20050075682A1 (en) 1997-02-26 2005-04-07 Schulman Joseph H. Neural device for sensing temperature
WO1998037926A1 (en) 1997-02-26 1998-09-03 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US5931861A (en) 1997-04-25 1999-08-03 Medtronic, Inc. Medical lead adaptor having rotatable locking clip mechanism
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
US6248080B1 (en) 1997-09-03 2001-06-19 Medtronic, Inc. Intracranial monitoring and therapy delivery control device, system and method
US6185443B1 (en) 1997-09-29 2001-02-06 Boston Scientific Corporation Visible display for an interventional device
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
US6096065A (en) 1997-09-29 2000-08-01 Boston Scientific Corporation Sheath for tissue spectroscopy
US5984861A (en) 1997-09-29 1999-11-16 Boston Scientific Corporation Endofluorescence imaging module for an endoscope
US6289229B1 (en) 1998-01-20 2001-09-11 Scimed Life Systems, Inc. Readable probe array for in vivo use
US6148230A (en) 1998-01-30 2000-11-14 Uab Research Foundation Method for the monitoring and treatment of spontaneous cardiac arrhythmias
US5931864A (en) 1998-02-20 1999-08-03 Cardiac Pacemakers, Inc. Coronary venous lead having fixation mechanism
US6265100B1 (en) 1998-02-23 2001-07-24 Research International, Inc. Rechargeable battery
US6141592A (en) 1998-03-06 2000-10-31 Intermedics Inc. Data transmission using a varying electric field
US6132456A (en) 1998-03-10 2000-10-17 Medtronic, Inc. Arrangement for implanting an endocardial cardiac lead
US5902331A (en) 1998-03-10 1999-05-11 Medtronic, Inc. Arrangement for implanting an endocardial cardiac lead
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6045513A (en) 1998-05-13 2000-04-04 Medtronic, Inc. Implantable medical device for tracking patient functional status
US6093146A (en) 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
EP1378262A3 (en) 1998-06-12 2004-03-17 Cardiac Pacemakers, Inc. Modified guidewire for left ventricular access lead
US6243608B1 (en) 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US6477424B1 (en) 1998-06-19 2002-11-05 Medtronic, Inc. Medical management system integrated programming apparatus for communication with an implantable medical device
US6444970B1 (en) 1998-06-26 2002-09-03 Scimed Life Systems, Inc. Miniature low-noise photodiode system
US6704602B2 (en) 1998-07-02 2004-03-09 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
US6735474B1 (en) 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
US6212434B1 (en) 1998-07-22 2001-04-03 Cardiac Pacemakers, Inc. Single pass lead system
US6141588A (en) 1998-07-24 2000-10-31 Intermedics Inc. Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy
US6129751A (en) 1998-07-28 2000-10-10 Intermedics Inc. Cardiac lead with active fixation and biocompatible lubricant
US6002969A (en) 1998-08-05 1999-12-14 Intermedics Inc. Cardiac lead with shape-memory structure
EP1102560A4 (en) 1998-08-07 2003-03-12 Infinite Biomedical Technologi Implantable myocardial ischemia detection, indication and action technology
US6240321B1 (en) 1998-08-12 2001-05-29 Cardiac Pacemakers, Inc. Expandable seal for use with medical device and system
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6141584A (en) 1998-09-30 2000-10-31 Agilent Technologies, Inc. Defibrillator with wireless communications
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US6163723A (en) 1998-10-22 2000-12-19 Medtronic, Inc. Circuit and method for implantable dual sensor medical electrical lead
US20020041987A1 (en) 1998-10-23 2002-04-11 Joseph H. Schulman Prismatic zincair battery for use with biological stimulator
US6125291A (en) 1998-10-30 2000-09-26 Medtronic, Inc. Light barrier for medical electrical lead oxygen sensor
US6125290A (en) 1998-10-30 2000-09-26 Medtronic, Inc. Tissue overgrowth detector for implantable medical device
US6144866A (en) 1998-10-30 2000-11-07 Medtronic, Inc. Multiple sensor assembly for medical electric lead
US6134459A (en) 1998-10-30 2000-10-17 Medtronic, Inc. Light focusing apparatus for medical electrical lead oxygen sensor
US6198952B1 (en) 1998-10-30 2001-03-06 Medtronic, Inc. Multiple lens oxygen sensor for medical electrical lead
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US6134470A (en) 1998-11-09 2000-10-17 Medtronic, Inc. Method and apparatus for treating a tachyarrhythmic patient
US6201993B1 (en) 1998-12-09 2001-03-13 Medtronic, Inc. Medical device telemetry receiver having improved noise discrimination
US6115636A (en) 1998-12-22 2000-09-05 Medtronic, Inc. Telemetry for implantable devices using the body as an antenna
US6466820B1 (en) 1998-12-29 2002-10-15 Medtronic, Inc. Multi-site cardiac pacing system having trigger pace window
WO2000038783A1 (en) 1998-12-31 2000-07-06 Ball Semiconductor, Inc. Injectable thermal balls for tumor ablation
US6358202B1 (en) 1999-01-25 2002-03-19 Sun Microsystems, Inc. Network for implanted computer devices
US6152882A (en) 1999-01-26 2000-11-28 Impulse Dynamics N.V. Apparatus and method for chronic measurement of monophasic action potentials
US6266554B1 (en) 1999-02-12 2001-07-24 Cardiac Pacemakers, Inc. System and method for classifying cardiac complexes
US6112116A (en) 1999-02-22 2000-08-29 Cathco, Inc. Implantable responsive system for sensing and treating acute myocardial infarction
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6223078B1 (en) 1999-03-12 2001-04-24 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US6230059B1 (en) 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
US6272379B1 (en) 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6263242B1 (en) 1999-03-25 2001-07-17 Impulse Dynamics N.V. Apparatus and method for timing the delivery of non-excitatory ETC signals to a heart
US6324421B1 (en) 1999-03-29 2001-11-27 Medtronic, Inc. Axis shift analysis of electrocardiogram signal parameters especially applicable for multivector analysis by implantable medical devices, and use of same
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
US6128526A (en) 1999-03-29 2000-10-03 Medtronic, Inc. Method for ischemia detection and apparatus for using same
US6115630A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Determination of orientation of electrocardiogram signal in implantable medical devices
US6167310A (en) 1999-03-31 2000-12-26 Medtronic, Inc. Downlink telemetry system and method for implantable medical device
US6178349B1 (en) 1999-04-15 2001-01-23 Medtronic, Inc. Drug delivery neural stimulation device for treatment of cardiovascular disorders
US6190324B1 (en) 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US6223072B1 (en) 1999-06-08 2001-04-24 Impulse Dynamics N.V. Apparatus and method for collecting data useful for determining the parameters of an alert window for timing delivery of ETC signals to a heart under varying cardiac conditions
US6233487B1 (en) 1999-06-08 2001-05-15 Impulse Dynamics N.V. Apparatus and method for setting the parameters of an alert window used for timing the delivery of ETC signals to a heart under varying cardiac conditions
DE19930262A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Electromedical implant, especially pacemaker, has telemetry device transmitter containing oscillator with first transistor and resonator, buffer stage, antenna driver with second transistor
DE19930256A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Implant with near and far field telemetry
DE19930263A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Method and apparatus for data transmission between an electromedical implant and an external device
DE19930240A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg A method for data retrieval for implant follow-up
DE19930241A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Method for data transmission in the implant monitoring
DE19930250A1 (en) 1999-06-25 2001-02-15 Biotronik Mess & Therapieg Device for monitoring of data, in particular of an electro-medical implant
DE19930245A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Electromedical implant
US7181505B2 (en) 1999-07-07 2007-02-20 Medtronic, Inc. System and method for remote programming of an implantable medical device
US6512949B1 (en) 1999-07-12 2003-01-28 Medtronic, Inc. Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto
US6236882B1 (en) 1999-07-14 2001-05-22 Medtronic, Inc. Noise rejection for monitoring ECG's
US6347245B1 (en) 1999-07-14 2002-02-12 Medtronic, Inc. Medical device ECG marker for use in compressed data system
US6449503B1 (en) 1999-07-14 2002-09-10 Cardiac Pacemakers, Inc. Classification of supraventricular and ventricular cardiac rhythms using cross channel timing algorithm
US6334859B1 (en) 1999-07-26 2002-01-01 Zuli Holdings Ltd. Subcutaneous apparatus and subcutaneous method for treating bodily tissues with electricity or medicaments
US6263245B1 (en) 1999-08-12 2001-07-17 Pacesetter, Inc. System and method for portable implantable device interogation
US6381494B1 (en) 1999-08-20 2002-04-30 Cardiac Pacemakers, Inc. Response to ambient noise in implantable pulse generator
US6361522B1 (en) 1999-10-21 2002-03-26 Cardiac Pacemakers, Inc. Drug delivery system for implantable cardiac device
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6385593B2 (en) 1999-10-29 2002-05-07 Medtronic, Inc. Apparatus and method for automated invoicing of medical device systems
US6363282B1 (en) 1999-10-29 2002-03-26 Medtronic, Inc. Apparatus and method to automatic remote software updates of medical device systems
DE10053118A1 (en) 1999-10-29 2001-05-31 Medtronic Inc Apparatus and method for self-identification from a distance of components in the medical device systems
US6409675B1 (en) 1999-11-10 2002-06-25 Pacesetter, Inc. Extravascular hemodynamic monitor
US6386882B1 (en) 1999-11-10 2002-05-14 Medtronic, Inc. Remote delivery of software-based training for implantable medical device systems
US6480733B1 (en) 1999-11-10 2002-11-12 Pacesetter, Inc. Method for monitoring heart failure
US6542781B1 (en) 1999-11-22 2003-04-01 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
DE19963246A1 (en) 1999-12-17 2001-06-21 Biotronik Mess & Therapieg Device for detecting the circulatory effects of extrasystoles
US6497655B1 (en) 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6471645B1 (en) 1999-12-30 2002-10-29 Medtronic, Inc. Communications system for an implantable device and a drug dispenser
FR2803186B1 (en) 2000-01-05 2002-08-09 Guy Charvin Method and auditory evoked potentials collection device
WO2001051122A9 (en) 2000-01-07 2002-08-15 Biowave Corp Electro therapy method and apparatus
US6873268B2 (en) 2000-01-21 2005-03-29 Medtronic Minimed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US6370434B1 (en) 2000-02-28 2002-04-09 Cardiac Pacemakers, Inc. Cardiac lead and method for lead implantation
US6699200B2 (en) 2000-03-01 2004-03-02 Medtronic, Inc. Implantable medical device with multi-vector sensing electrodes
US6615075B2 (en) 2000-03-15 2003-09-02 The Regents Of The University Of California QRST subtraction using an adaptive template for analysis of TU wave obscured atrial activity
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
US6895281B1 (en) 2000-03-31 2005-05-17 Cardiac Pacemakers, Inc. Inductive coil apparatus for bio-medical telemetry
US6654638B1 (en) 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
US6441747B1 (en) 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US6925328B2 (en) 2000-04-20 2005-08-02 Biophan Technologies, Inc. MRI-compatible implantable device
US6574511B2 (en) 2000-04-21 2003-06-03 Medtronic, Inc. Passive data collection system from a fleet of medical instruments and implantable devices
US6459937B1 (en) 2000-04-25 2002-10-01 Pacesetter, Inc. Endocardial pacing lead with detachable tip electrode assembly
US6580948B2 (en) 2000-04-25 2003-06-17 Medtronic, Inc. Interface devices for instruments in communication with implantable medical devices
US6522928B2 (en) 2000-04-27 2003-02-18 Advanced Bionics Corporation Physiologically based adjustment of stimulation parameters to an implantable electronic stimulator to reduce data transmission rate
EP1284781B1 (en) 2000-05-04 2017-10-11 Impulse Dynamics N.V. Signal delivery through the right ventricular septum
WO2001087412A3 (en) 2000-05-17 2002-03-07 Cook Vascular Inc Lead removal apparatus
WO2001097909A3 (en) 2000-06-14 2002-04-11 Medtronic Inc Deep computing applications in medical device systems
US6738670B1 (en) 2000-06-19 2004-05-18 Medtronic, Inc. Implantable medical device telemetry processor
US6482154B1 (en) 2000-08-02 2002-11-19 Medtronic, Inc Long range implantable medical device telemetry system with positive patient identification
US6871099B1 (en) 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US6690959B2 (en) 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
EP1326675B1 (en) 2000-09-07 2011-04-13 Mann Medical Research Organization Apparatus for control of bowel function
DE60143621D1 (en) 2000-09-13 2011-01-20 Device for conditioning of muscles in sleep
WO2002032499A9 (en) 2000-09-15 2003-07-31 Alfred E Mann Inst Biomed Eng Method and apparatus to treat disorders of gastrointestinal peristalsis
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US6856835B2 (en) 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6647292B1 (en) 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
EP1342289B1 (en) 2000-10-11 2010-05-19 Alfred E. Mann Foundation for Scientific Research Improved antenna for miniature implanted medical device
US6498951B1 (en) 2000-10-13 2002-12-24 Medtronic, Inc. Implantable medical device employing integral housing for a formable flat battery
US6764446B2 (en) 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US6522915B1 (en) 2000-10-26 2003-02-18 Medtronic, Inc. Surround shroud connector and electrode housings for a subcutaneous electrode array and leadless ECGS
US6681135B1 (en) 2000-10-30 2004-01-20 Medtronic, Inc. System and method for employing temperature measurements to control the operation of an implantable medical device
US6684100B1 (en) 2000-10-31 2004-01-27 Cardiac Pacemakers, Inc. Curvature based method for selecting features from an electrophysiologic signals for purpose of complex identification and classification
US6512959B1 (en) 2000-11-28 2003-01-28 Pacesetter, Inc. Double threaded stylet for extraction of leads with a threaded electrode
US6458145B1 (en) 2000-11-28 2002-10-01 Hatch Medical L.L.C. Intra vascular snare and method of forming the same
US6611710B2 (en) 2000-11-29 2003-08-26 Pacesetter, Inc. Double threaded stylet for extraction of leads with a threaded electrode
US6649078B2 (en) 2000-12-06 2003-11-18 The Regents Of The University Of California Thin film capillary process and apparatus
US6589187B1 (en) 2000-12-08 2003-07-08 Medtronic, Inc. Prioritized dynamic memory allocation of arrhythmia episode detail collection
US6689117B2 (en) 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
US6783499B2 (en) 2000-12-18 2004-08-31 Biosense, Inc. Anchoring mechanism for implantable telemetric medical sensor
US6746404B2 (en) 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
US7254441B2 (en) 2000-12-21 2007-08-07 Medtronic, Inc. Fully inhibited dual chamber pacing mode
US6484057B2 (en) 2000-12-21 2002-11-19 Uab Research Foundation Pacing methods and devices for treating cardiac arrhythmias and fibrillation
US6584352B2 (en) 2000-12-27 2003-06-24 Medtronic, Inc. Leadless fully automatic pacemaker follow-up
US6697677B2 (en) 2000-12-28 2004-02-24 Medtronic, Inc. System and method for placing a medical electrical lead
US6445953B1 (en) 2001-01-16 2002-09-03 Kenergy, Inc. Wireless cardiac pacing system with vascular electrode-stents
US6735475B1 (en) 2001-01-30 2004-05-11 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain
US6567680B2 (en) 2001-02-02 2003-05-20 Medical Data Electronics Disposable electro-cardiogram transmitter device and electrode node placement facilitator
US20020116029A1 (en) 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US6848052B2 (en) 2001-03-21 2005-01-25 Activcard Ireland Limited High security personalized wireless portable biometric device
US6766203B2 (en) 2001-04-05 2004-07-20 Pacesetter, Inc. Body implantable lead with improved tip electrode assembly
US6592518B2 (en) 2001-04-05 2003-07-15 Kenergy, Inc. Cardiac monitoring system and method with multiple implanted transponders
US6912420B2 (en) 2001-04-10 2005-06-28 Cardiac Pacemakers, Inc. Cardiac rhythm management system for hypotension
US6580946B2 (en) 2001-04-26 2003-06-17 Medtronic, Inc. Pressure-modulated rate-responsive cardiac pacing
US7756582B2 (en) 2001-05-01 2010-07-13 Intrapace, Inc. Gastric stimulation anchor and method
US6716238B2 (en) 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6468263B1 (en) 2001-05-21 2002-10-22 Angel Medical Systems, Inc. Implantable responsive system for sensing and treating acute myocardial infarction and for treating stroke
US6901296B1 (en) 2001-05-25 2005-05-31 Advanced Bionics Corporation Methods and systems for direct electrical current stimulation as a therapy for cancer and other neoplastic diseases
US6901294B1 (en) 2001-05-25 2005-05-31 Advanced Bionics Corporation Methods and systems for direct electrical current stimulation as a therapy for prostatic hypertrophy
US6733485B1 (en) 2001-05-25 2004-05-11 Advanced Bionics Corporation Microstimulator-based electrochemotherapy methods and systems
US6472991B1 (en) 2001-06-15 2002-10-29 Alfred E. Mann Foundation For Scientific Research Multichannel communication protocol configured to extend the battery life of an implantable device
US6792314B2 (en) 2001-06-18 2004-09-14 Alfred E. Mann Foundation For Scientific Research Miniature implantable array and stimulation system suitable for eyelid stimulation
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6648823B2 (en) 2001-07-31 2003-11-18 Medtronic, Inc. Method and system of follow-up support for a medical device
US6823217B2 (en) 2001-08-21 2004-11-23 Medtronic, Inc. Method and apparatus for imparting curves in elongated implantable medical instruments
US6731979B2 (en) 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
US6850801B2 (en) 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US6786860B2 (en) 2001-10-03 2004-09-07 Advanced Bionics Corporation Hearing aid design
US6879695B2 (en) 2001-10-03 2005-04-12 Advanced Bionics Corporation Personal sound link module
US7027876B2 (en) 2001-10-12 2006-04-11 Medtronic, Inc. Lead system for providing electrical stimulation to the Bundle of His
US6728574B2 (en) 2001-10-19 2004-04-27 Medtronic, Inc. System and method for patient-controlled relief of pain associated with electrical therapies
US6829508B2 (en) 2001-10-19 2004-12-07 Alfred E. Mann Foundation For Scientific Research Electrically sensing and stimulating system for placement of a nerve stimulator or sensor
US6809507B2 (en) 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US6741886B2 (en) 2001-10-25 2004-05-25 Cardiac Pacemakers, Inc. ECG system with minute ventilation detector
US6728576B2 (en) 2001-10-31 2004-04-27 Medtronic, Inc. Non-contact EKG
US6862480B2 (en) 2001-11-29 2005-03-01 Biocontrol Medical Ltd. Pelvic disorder treatment device
US6961621B2 (en) 2001-12-04 2005-11-01 Cardiac Pacemakers, Inc. Apparatus and method for stabilizing an implantable lead
US6768923B2 (en) 2001-12-05 2004-07-27 Cardiac Pacemakers, Inc. Apparatus and method for ventricular pacing triggered by detection of early ventricular excitation
US6865420B1 (en) 2002-01-14 2005-03-08 Pacesetter, Inc. Cardiac stimulation device for optimizing cardiac output with myocardial ischemia protection
US6999821B2 (en) 2002-01-18 2006-02-14 Pacesetter, Inc. Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same
US8364278B2 (en) 2002-01-29 2013-01-29 Boston Scientific Neuromodulation Corporation Lead assembly for implantable microstimulator
US7236821B2 (en) 2002-02-19 2007-06-26 Cardiac Pacemakers, Inc. Chronically-implanted device for sensing and therapy
US6839596B2 (en) 2002-02-21 2005-01-04 Alfred E. Mann Foundation For Scientific Research Magnet control system for battery powered living tissue stimulators
US7023359B2 (en) 2002-03-15 2006-04-04 Medtronic, Inc. Telemetry module with configurable physical layer for use with an implantable medical device
US6711440B2 (en) 2002-04-11 2004-03-23 Biophan Technologies, Inc. MRI-compatible medical device with passive generation of optical sensing signals
US7146222B2 (en) 2002-04-15 2006-12-05 Neurospace, Inc. Reinforced sensing and stimulation leads and use in detection systems
US6922330B2 (en) 2002-04-18 2005-07-26 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor fabricated with laser welded anode sheets
US20050038474A1 (en) 2002-04-30 2005-02-17 Wool Thomas J. Implantable automatic defibrillator with subcutaneous electrodes
US20040147973A1 (en) 2002-06-27 2004-07-29 Hauser Robert G. Intra cardiac pacer and method
US7437193B2 (en) 2002-06-28 2008-10-14 Boston Scientific Neuromodulation Corporation Microstimulator employing improved recharging reporting and telemetry techniques
GB0220770D0 (en) 2002-09-06 2002-10-16 Ares Trading Sa Proteins
US6609023B1 (en) 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
US8303511B2 (en) 2002-09-26 2012-11-06 Pacesetter, Inc. Implantable pressure transducer system optimized for reduced thrombosis effect
US7209790B2 (en) 2002-09-30 2007-04-24 Medtronic, Inc. Multi-mode programmer for medical device communication
US7103418B2 (en) 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
US7164950B2 (en) 2002-10-30 2007-01-16 Pacesetter, Inc. Implantable stimulation device with isolating system for minimizing magnetic induction
US7146225B2 (en) 2002-10-30 2006-12-05 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US20040133242A1 (en) 2003-01-02 2004-07-08 Chapman Fred W. Medical device communication
US20040143262A1 (en) 2003-01-21 2004-07-22 Baylis Medical Company Inc. Surgical perforation device and method with pressure monitoring and staining abilities
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7158838B2 (en) 2003-01-31 2007-01-02 Medtronic, Inc. Arrangement for implanting a miniaturized cardiac lead having a fixation helix
US6869404B2 (en) 2003-02-26 2005-03-22 Medtronic, Inc. Apparatus and method for chronically monitoring heart sounds for deriving estimated blood pressure
GB0307866D0 (en) 2003-04-04 2003-05-14 Novartis Ag Pharmaceutical composition
US20040230282A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Acute and chronic fixation for subcutaneous electrodes
US7082336B2 (en) 2003-06-04 2006-07-25 Synecor, Llc Implantable intravascular device for defibrillation and/or pacing
EP1633434B1 (en) 2003-06-04 2014-11-19 Synecor Intravascular electrophysiological system
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
EP1659921B1 (en) 2003-08-04 2016-05-11 Vision-Sciences, Inc. Sheath with channel for endoscope
US20050038491A1 (en) * 2003-08-11 2005-02-17 Haack Scott Graham Cardiac pacing lead having dual fixation and method of using the same
US7289853B1 (en) 2003-08-28 2007-10-30 David Campbell High frequency wireless pacemaker
US6917833B2 (en) 2003-09-16 2005-07-12 Kenergy, Inc. Omnidirectional antenna for wireless communication with implanted medical devices
US6821154B1 (en) 2003-10-03 2004-11-23 Alfred E. Mann Foundation For Scientific Research Electrical device connector and method therefor
US7017267B2 (en) 2003-10-15 2006-03-28 James Allen Carroll Method and apparatus for zone cabling
US7003350B2 (en) 2003-11-03 2006-02-21 Kenergy, Inc. Intravenous cardiac pacing system with wireless power supply
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US20050165456A1 (en) 2003-12-19 2005-07-28 Brian Mann Digital electrode for cardiac rhythm management
US7277754B2 (en) 2003-12-24 2007-10-02 Cardiac Pacemakers, Inc. Method and system for removing pacing artifacts from subcutaneous electrocardiograms
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
EP1744809A4 (en) 2004-05-04 2008-05-07 Univ Rochester Leadless implantable intravascular electrophysiologic device for neurologic/cardiovascular sensing and stimulation
US20050267555A1 (en) 2004-05-28 2005-12-01 Marnfeldt Goran N Engagement tool for implantable medical devices
US7630767B1 (en) 2004-07-14 2009-12-08 Pacesetter, Inc. System and method for communicating information using encoded pacing pulses within an implantable medical system
US7212870B1 (en) 2004-09-16 2007-05-01 Pacesetter, Inc. Dual helix active fixation stimulation lead
US7493174B2 (en) 2004-09-23 2009-02-17 Medtronic, Inc. Implantable medical lead
US7200437B1 (en) 2004-10-13 2007-04-03 Pacesetter, Inc. Tissue contact for satellite cardiac pacemaker
US7532933B2 (en) 2004-10-20 2009-05-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
WO2006045075A1 (en) * 2004-10-20 2006-04-27 Boston Scientific Limited Leadless cardiac stimulation systems
US7650186B2 (en) 2004-10-20 2010-01-19 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
WO2006050125A1 (en) 2004-10-29 2006-05-11 Medtronic, Inc. Laser penetration weld
US8818504B2 (en) 2004-12-16 2014-08-26 Cardiac Pacemakers Inc Leadless cardiac stimulation device employing distributed logic
US7558631B2 (en) 2004-12-21 2009-07-07 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
WO2006069215A3 (en) 2004-12-21 2009-06-18 Ebr Systems Inc Leadless cardiac system for pacing and arrhythmia treatment
US20060161222A1 (en) 2005-01-15 2006-07-20 Haubrich Gregory J Multiple band communications for an implantable medical device
US7565195B1 (en) 2005-04-11 2009-07-21 Pacesetter, Inc. Failsafe satellite pacemaker system
US7634313B1 (en) 2005-04-11 2009-12-15 Pacesetter, Inc. Failsafe satellite pacemaker system
DE102005020071A1 (en) 2005-04-22 2006-10-26 Biotronik Crm Patent Ag Pacemaker
US20060247750A1 (en) 2005-04-28 2006-11-02 Seifert Kevin R Guide catheters for accessing cardiac sites
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US7711419B2 (en) 2005-07-13 2010-05-04 Cyberonics, Inc. Neurostimulator with reduced size
US7765001B2 (en) 2005-08-31 2010-07-27 Ebr Systems, Inc. Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices
WO2007059386A3 (en) 2005-11-10 2008-02-21 Medtronic Inc Intravascular medical device
US20070123923A1 (en) 2005-11-30 2007-05-31 Lindstrom Curtis C Implantable medical device minimizing rotation and dislocation
JP2009518115A (en) 2005-12-09 2009-05-07 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Heart stimulation system
WO2007068284A1 (en) 2005-12-12 2007-06-21 Synergio Ag Intra cardiac device, system and methods
US7627376B2 (en) 2006-01-30 2009-12-01 Medtronic, Inc. Intravascular medical device
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8630710B2 (en) 2006-03-01 2014-01-14 The Board Of Trustees Of The Leland Stanford Junior University Implanted cardiac device for defibrillation
US7809441B2 (en) 2006-05-17 2010-10-05 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
US20070276444A1 (en) 2006-05-24 2007-11-29 Daniel Gelbart Self-powered leadless pacemaker
US20070293904A1 (en) 2006-06-20 2007-12-20 Daniel Gelbart Self-powered resonant leadless pacemaker
US20080004535A1 (en) 2006-06-29 2008-01-03 Smits Karel F A A Implantable medical device with sensing electrodes
US7840281B2 (en) 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US9439581B2 (en) 2006-08-11 2016-09-13 Medtronic, Inc. Guided medical element implantation
WO2008034005A3 (en) * 2006-09-13 2008-07-10 Boston Scient Scimed Inc Cardiac stimulation using leadless electrode assemblies
US8992545B2 (en) 2006-09-28 2015-03-31 W.L. Gore & Associates, Inc. Implant-catheter attachment mechanism using snare and method of use
US20080091255A1 (en) 2006-10-11 2008-04-17 Cardiac Pacemakers Implantable neurostimulator for modulating cardiovascular function
WO2008058265A3 (en) 2006-11-08 2008-08-14 Emerge Medsystems Llc Transmuscular left ventricular cardiac stimulation leads and related systems and methods
JP5568316B2 (en) 2007-03-19 2014-08-06 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Mri / rf adapted leads, and related operations leads, the method of making
US20090082827A1 (en) 2007-09-26 2009-03-26 Cardiac Pacemakers, Inc. Hinged anchors for wireless pacing electrodes
WO2009099550A1 (en) 2008-02-07 2009-08-13 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
US8834361B2 (en) 2009-05-15 2014-09-16 Cook Medical Technologies Llc Systems, devices and methods for accessing a bodily opening
EP2330985A4 (en) 2008-09-04 2015-11-18 Curaseal Inc Inflatable devices for enteric fistula treatment
US9370654B2 (en) 2009-01-27 2016-06-21 Medtronic, Inc. High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation
US8527068B2 (en) * 2009-02-02 2013-09-03 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US8170690B2 (en) * 2009-02-13 2012-05-01 Pacesetter, Inc. Implantable medical lead having an anchor providing enhanced fixation
US8359098B2 (en) 2009-05-29 2013-01-22 Medtronic, Inc. Implantable medical device with exposed generator
US20110004117A1 (en) 2009-07-01 2011-01-06 Medtronic, Inc. Implant parameter selection based on compressive force
US9072890B2 (en) * 2009-09-03 2015-07-07 Mayo Foundation For Medical Education And Research Pacing, sensing or defibrillator leads for implantation into the myocardium
US20110077708A1 (en) 2009-09-28 2011-03-31 Alan Ostroff MRI Compatible Leadless Cardiac Pacemaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531781A (en) * 1993-11-02 1996-07-02 Alferness; Clifton A. Implantable lead having a steering distal guide tip
US20070088418A1 (en) * 2005-10-14 2007-04-19 Jacobson Peter M Delivery system for implantable biostimulator
US20090082828A1 (en) * 2007-09-20 2009-03-26 Alan Ostroff Leadless Cardiac Pacemaker with Secondary Fixation Capability

Also Published As

Publication number Publication date Type
US20120116489A1 (en) 2012-05-10 application
WO2012051235A1 (en) 2012-04-19 application
US9020611B2 (en) 2015-04-28 grant
JP2013540022A (en) 2013-10-31 application
EP2627406A1 (en) 2013-08-21 application

Similar Documents

Publication Publication Date Title
US6505082B1 (en) Single pass lead system
US5376108A (en) Electrode lead anchoring apparatus and method employing dual suture collars
US6141594A (en) Single pass lead and system with active and passive fixation elements
US6178356B1 (en) Coronary venous lead having fixation mechanism
US6298272B1 (en) High impedance electrode tip with internal drug delivery capability
US7840281B2 (en) Delivery of cardiac stimulation devices
US8340780B2 (en) Leadless cardiac stimulation systems
US8032219B2 (en) Cardiac pacemaker having a sealed oblong housing
US7647109B2 (en) Leadless cardiac stimulation systems
US4030508A (en) Low output electrode for cardiac pacing
US3788329A (en) Body implantable lead
US6249709B1 (en) Endocardial defibrillation lead with multi-lumen body and axially mounted distal electrode
US6256541B1 (en) Endocardial lead having defibrillation and sensing electrodes with septal anchoring
US20100274336A1 (en) Torque lock anchor and methods and devices using the anchor
US20090069803A1 (en) Selective depth electrode deployment for electrical stimulation
US5772693A (en) Single preformed catheter configuration for a dual-chamber pacemaker system
US6704605B2 (en) Medical electrode assembly
US20070088396A1 (en) Leadless cardiac pacemaker
US20040106964A1 (en) Implantable Medical Device with Multiple Electrode Lead and Connector with Central Fastener
US7729758B2 (en) Magnetically coupled microstimulators
US6370434B1 (en) Cardiac lead and method for lead implantation
US8108054B2 (en) Active fixation implantable medical lead configured to indicate via fluoroscopy embedment of helical anchor in cardiac tissue
US5383922A (en) RF lead fixation and implantable lead
US8527068B2 (en) Leadless cardiac pacemaker with secondary fixation capability
US6754536B2 (en) Implantable medical device affixed internally within the gastrointestinal tract

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)